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Abstract
The medicinal activities of garlic organosulfur compounds identified include antitumor, antimicrobial, antifungal, 

antivirus, anti-atherosclerosis, blood lipids and sugar lowering, antithrombotic, anti-hypotension and immune 
modulation effects. These multi-targeted new agents may be especially promising since recently developed highly 
specific anti-cancer agents as well as other disease treatment drugs have failed to live up to the expectations. Despite 
more than one thousand articles have been published on garlic organosulfur compounds, the drug metabolism 
and pharmacokinetics of these compounds behind their health-promoting effects are still poorly understood. In this 
review, we will focus on metabolic pathways and pharmacokinetics of organosulfur compounds from garlic, which is 
intended to fill the void on the important aspect for further nutraceutical and pharmaceutical product development of 
this group of compounds. The effects of these organosulfur compounds on various cytochrome P450 enzymes as 
well as on P-glycoprotein (P-gp) and multidrug resistance proteins (Mrp1 and Mrp 2) will also be discussed.
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Introduction
Garlic (Allium sativum) has been used in medicines and foodstuff 

for almost three thousand years as evidenced by ancient writings 
from China, Egypt, Greece, and India [1,2]. Epidemiological studies 
have shown that the enhanced dietary intake of garlic could reduce 
the incidence of various types of tumors such as colon, breast, lung, 
prostate, and stomach [3-9]. Garlic gives other beneficial effects 
including anti-atherosclerosis [10], blood lipids and sugar modulation 
[11], antifungal [12], antimicrobial [13], antithrombotic [14], 
cardiovascular disease treatment [15] and stimulating immune system 
[16]. The garlic pharmacological actions and health-promoting benefits 
are summarized in Table 1. The mechasims of biological activies of 
garlic organosulfur compounds were found to inhibit carcinogen 
activations, cause cell cycle arrest, stimulate the apoptotic pathway, 

increase acetylation of histones, boost phase-2 detoxifying processes, 
overcome drug resistance, modulate immune activities and protect 
liver functions and so on [2]. These multi-targeted new agents may 
be especially promising since recently developed highly specific anti-
cancer agents as well as other disease treatment drugs have failed to live 
up to the expectations.

The unique flavor and biological effects of garlic are generally 
attributed to its characteristic organosulfur components, which are released 
from garlic upon their processing (mincing, chewing and etc.) [17]. The 
γ-glutamyl-S-alk(en)yl-L-cysteines are the primary sulfur compounds in 
the intact garlic, which can be hydrolyzed and oxidized to yield S-alkyl(en)
yl-L-cysteine sulfoxide (alliin). Alliin could be transformed to allicin when 
chewing or cutting, which activates the enzyme allinase. Allicin is highly 
unstable and instantly decompose to form various oil-soluble compounds 
involving diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide 
(DATS), vinyl dithiin and ajoene if conditions are appropriate [18]. At 
the same time, γ-glutamyl -S-alk(en)yl-L-cysteines are also converted to 
water-soluble organosulfur compounds including S-allyl cysteine (SAC) 
and S-allyl mercaptocysteine (SAMC). In contrast to the oil-soluble 
organosulfur compounds, the water-soluble organosulfur compounds 
are odorless and posses more delicate and less characteristic flavor [19]. 
Majority garlic preparations contain the different type of organosulfur 
compounds. For example, aged garlic extracts consist of mostly water-
soluble compounds [20] while garlic oils are enriched in the oil-soluble 
components of garlic [21]. The transformed pathways and chemical 
structures of the widely studied organosulfur compounds are depicted 
in Figure 1.

Garlic pharmacological actions Health-promoting 
benefits

Inhibit cell division, induce apoptosis, block carcinogen 
activation, enhance DNA repair, induce detoxifying 
enzymes

Anticarcinogenic/
Antimutagentic

Inhibit microbiological growth as antibiotics Antimicrobial (antifungal, 
antiviral, antibacterial)

Scavenge oxidizing agents, induce SOD, GPx, GST, 
catalase Antioxidant

Increase proinflammatory cytokine release, stimulate 
natural killer cells Immuomodulatory

Inhibit enzymes in cholesterol and fatty acid synthesis Anti-hypolipidemic
Inhibit cholesterol synthesis, enhance cholesterol 
turnover

Anti-
hypocholesterolemic

Inhibit angiotensin II, induce NO and H2S, cause 
vasodilation Anti-hypertensive

Stimulate insulin production, interfere glucose 
absorption Anti-diabetic

Reduce trombosane formation, change platelet 
membrane Anti-thrombotic

Increase GSH levels by induction of GST Hepatoprotective

* Derived partially from the publications by Cardelle-Cobas et al. [2] as well as
Salman et al. [16]
Table 1: Summary of garlic pharmacological actions and health-promoting 
benefits.**
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Existing critical reviews have focused on the garlic-derived 
compounds and pharmacological effects of garlic and its active 
components. In this review, we will focus on drug metabolism and 
pharmacokinetics of organosulfur compounds from garlic, which is 
intended to fill the void on the important aspect for further nutraceutical 
and pharmaceutical product development of this group of organosulfur 
compounds.

Metabolic pathways of organosulfur compounds
The sulfur exists in biological systems in about 10 different 

oxidation states, which exhibit an extensive and complicated network 
of sulfur-based redox systems. Natural organosulfur compounds from 
plants such as garlic and their intracellular targets provide the basis 
for innovative sources of novel antibiotics, fungicides, pesticides and 
anticancer agents [22]. Many redox chemotherapeutics that involve 
simultaneous modulation of multiple redox sensitive targets can 
overcome cancer cell drug resistance originating from redundancy 
of oncogenic signaling and rapid mutation [23]. Garlic organosulfur 
compounds have been widely investigated regarding their therapeutic 
applications acting as hydrogen sulfide donors or mediators in 
pharmaceutical studies [24]. In this section, the review of metabolic 
pathways of organosulfur compounds will focus on the aspects of 
reduction (including methylation), oxidation, glutathione and N-acetyl 
conjugations.

It was shown by GC-MS analysis that allyl mercaptan, allyl methyl 
sulfide (AMS), allyl methyl disulfide (AMDS), diallyl sulfide (DAS), 
and diallyl disulfide (DADS) were the components with allyl methyl 
sulfide (AMS) being the most abundance detected in the human breath 
soon after the ingestion of raw garlic and commercial garlic products 
[25-27]. Allyl mercaptan (AM) and diallyl disulfide (DADS) were 
identified as the main metabolites of the isolated pure allicin, whereby 
diallyl disulfide probably is the metabolic precursor of allyl mercaptan 
as shown by perfusion with diallyl disulfide alone. Ajoenes and vinyl 
dithiins were detected in the perfusion medium after the liver passage 
but no metabolites of them could be identified then [28,29]. Allyl 
mercaptan (AM) and allyl methyl sulfide (AMS) were determined 
as the metabolites of DADS in primary rat hepatocytes prepared by 
collagenase perfusion [30,31]. In a metabolic study of diallyl disulfide 
(DADS) in rats, allyl mercaptan (AM) and allyl methyl sulfide (AMS) 
along with allyl methyl sulfoxide (AMSO) and allyl methyl sulfone 

(AMSO2) were identified as the major in vivo metabolites of DADS 
[32]. During a study of anticancer mechanism of organosulfur 
compounds on human colon cancer cells HCT-15 and DLD-1, it was 
found that diallyl trisulfide (DATS) disrupted microtubule network 
formation of the cells and a specific oxidative modification of cysteine 
residues Cys12β and Cys354β forming S-allyl mercaptocysteines in the 
tubulin molecule was identified, indicating the oxidative potential of 
DATS on the tumor cells. When incubated in fresh human blood, the 
water-soluble S-allyl mercaptocysteine (SAMC) was metabolized to 
almost quantitatively to stable amounts of allyl mercaptan (AM) while 
AM was not formed incubated with vinyl dithiins [33]. Based on above 
metabolism studies of some organosulfur compounds, the reduction 
and methylation pathways of organosulfur compounds could be 
summarized in Figure 2a, where allyl mercaptan (AM) may be formed 
by the reduction of the disulfides or polysulfides and further methylated 
by S-adenosylmethionine synthetase into allyl methyl sulfide (AMS) as 
hypothesized initially by Lawson and Wang [22,34].

Diallyl sulfoxide (DASO) and diallyl sulfone (DASO2) were 
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Figure 1: Chemical structures of commonly studied organosulfur compounds 
from garlic.
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Figure 2:  Proposed metabolic pathways of organosulfur compounds from 
garlic. GSH, glutathione (γ-Glu-Cys-Gly); GSSA: S-allyl mercaptoglutathione 
(γ-Glu-Cys-(S-allyl)-Gly); GSSG: oxidized glutathione; SAM: S-adenosyl 
methionine; and SAH: S-adenosyl homocysteine; R1 or R2: saturated or 
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by Lawson and Wang [34] as well as Jin and Baillie [38].
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detected in the extracts of rat liver, blood, and urine after the treatment 
with diallyl sulfide (DAS) [35,36]. The metabolic conversion of diallyl 
sulfide to the sulfoxide and sulfone suggests that diallyl sulfide inhibits 
the metabolism of P-450 2E1 substrates by competitive inhibition 
mechanisms and by inactivating P-450 2E1 via a suicide-inhibitory 
action of DASO2 [35,36]. Similarly, diallyl disulfoxide (DADSO, 
allicin) was detected when diallyl disulfide (DADS) was incubated with 
human liver microsomes and NADPH, which was mainly mediated 
by CYP2E1 and possibly flavin-containing monooxygenases [37]. In 
the in vivo metabolic study of diallyl disulfide (DADS) in rats, allyl 
methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2) besides 
allyl mercaptan (AM) and allyl methyl sulfide (AMS) were identified 
as the major in vivo metabolites of DADS [32]. In a similar fashion, 
when the isolated rat liver was perfused with dipropyl disulfide 
(DPDS), propyl mercaptan (PM), methyl propyl sulfide (MPS), methyl 
propyl sulfone (MPSO2), and propyl glutathione sulfide were detected 
in the liver tissue. The in vivo metabolism study of S-Allyl-L-cysteine 
(SAC) indicated that S-allyl-L-cysteine sulfoxide (SACS), N-acetyl-S-
allyl-L-cysteine (NASAC), and N-acetyl-S-allyl-L-cysteine sulfoxide 
(NASACS) were the major metabolites of SAC in the urine of rats. 
The in vitro results provide an evidence for the involvement of flavin-
containing monooxygenases (FMOs) in the in vivo metabolism of SAC 
and that SAC is a much better substrate for FMOs than its corresponding 
mercapturic acid. Based upon the metabolic profile studies listed above, 
the oxidative pathway of organosulfur compounds could be postulated 
in Figure 2b, where the sulfide bond on the sulfides can be oxided by 
CYP2E1 and/or flavin-containing monooxygenases (FMOs) into the 
corresponding sulfoxides and sulfones.

The potential glutathione (GSH) conjugates of diallyl sulfide 
(DAS) as well as its metabolites diallyl sulfoxide (DASO) and diallyl 
sulfone (DASO2) were identified by the Ionspray LC-MS/MS in the bile 
collected from rats after the dosing of DAS, DASO, DASO2, respectively 
[38]. During the incubations of murine and human lung microsomes 
containing diallyl sulfone (DASO2) and nicotinamide adenine 
dinucleotide phosphate (NADPH) as well as the oral administration of 
DASO2 in rats, an epoxide (DASO3) of DASO2 was found to be a reactive 
intermediate produced from CYP2E1-mediated metabolilsm of DASO2, 
which supported the contention that an epoxide formed from DASO2 
mediated the inactivation of hepatic CYP2E1 [39,40]. Based upon these 
metabolism studies mentioned above, the glutathione conjugation 
pathways of organosulfur compounds could be summarized in Figure 
2c as proposed by Jin and Baillie [38]. 

N-acetyl-S-allylcysteine (NASAC) was found in the urine of human 
after the oral consumption of garlic and onion, which could presumably 
be formed by the transform of S-allyl cysteine SAC with N-acetyl 
transferase(s) into the N-acetylated metabolite [41,42]. The metabolic 
pathway of N-acetyl conjugation of organosulfur compounds is shown 
in Figure 2d.

The major pathways of reduction, methylation, oxidation, 
glutathione and N-acetyl conjugation listed in Figure 2 could be 
different for each individual organosulfur compound due to the 
complicated nature of different in vitro model systems as well as various 
in vivo animal species and human ethnic groups.

Pharmacokinetics, bioavailability and tissue distribution of 
organosulfur compounds

Accurate and comprehensive understanding of pharmacokinetic 
and metabolic profiles of new chemical components as active 
ingredients should always be provided to support drug discovery and 

development. Therefore, the detailed information and rationale for the 
pharmacokinetics and metabolism of organosulfur compounds must be 
clearly illustrated. Among garlic organosulfur compounds, the studies 
of pharmacokinetics, bioavailability and tissue distribution have been 
conducted on alliin, allicin, diallyl disulfide (DADS), diallyl trisulfide 
(DATS), allyl dithiins and so on. Novel drug delivery systems such as 
microemulsion, liposomes and nanoparticles have also developed to 
increase the stability, bioavailability and systemic circulation time of 
relatively stable organosulfur compounds such as DADS and DATS. 
The biopharmaceutical evaluations of these novel drug delivery 
systems have been recent focuses in the development of potential 
pharmaceutical products based on these organosulfur compounds.

After ingestion of raw garlic of 38 g, allyl methyl sulfide (AMS), 
allyl methyl disulfide (AMDS), diallyl sulfide (DAS), diallyl disulfide 
(DADS), diallyl trisulfide (DATS), dimethyl sulfide, and acetone were 
discovered in the breath of the tested volunteers. AMDS, DAS, DADS 
and DATS reached the maxima shortly within the 2-3 h while the 
concentrations of others increased much more slowly [43]. In a rat liver 
perfusion study, a remarkable first-pass effect of allicin was observed. 
90% of allicin decreased just after incubation for 3 minutes while 
99% disappeared after 6 minutes. DADS quickly formed and later ally 
mercaptan (AM) was also observed in the collected bile as well as in the 
liver whereas DADS was probably the metabolic precursor after infusion 
of allicin in a low concentration [28,29]. A relative stability study of 
allicin was carried out in the blood, different solvents, simulated gastric 
fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.5) [44]. 
The stability study results indicate that neat allicin decomposed rapidly 
at 37oC and was more stable in protic polar methanol than in aprotic 
polar ethyl acetate. Approximately 90% of the allicin remained after 
incubation at 37°C for 5 h in the simulated gastric fluid (pH 1.2) and 
intestinal fluid (pH 7.5). Only trace amount of allicin could be detected 
after it was incubated in blood for 5 min. About 80% and 62% of allicin 
remained even after one day without the increase of the concentration 
of the allicin decomposition products such as diallyl disulfide, ajoene, 
and so on [44]. This phenomenon proclaimed gastric or intestinal pH 
may not be the key factor affecting allicin absorption or decomposition 
in the body during the digestive period. In a pharmacokinetic study in 
rats using synthesized 35S-labeled alliin, allicin and vinyl dithiines, the 
peak time (Tmax) of alliin was determined to be less than 10 min and 
the elimination from the blood was almost complete after 6 h while the 
peak time (Tmax) of allicin and vinyl dithiines were determined to be 
30-60 and 120 min for allicin and vinyl dithiines, respectively, and their 
eliminations were not completed at the end of the study after 72 h. The 
mean total urinary and fecal excretion after 72 h was 85.5% and 92.3% 
for 35S-allicin and labeled vinyl dithiines, respectively. The urinary 
excretion indicated a minimum absorption rate of 65% and 73% for 
35S-allicin and vinyl dithiines, respectively [45]. 

When diallyl disulfide (DADS) was prefused with the isolated rat 
liver, allyl mercaptan (AM) was found to be a metabolite of DADS 
while AM and allyl methyl sulfide (AMS) were both discovered in the 
extracellular fluid of primary rat hepatocytes [28-30]. The peak times of 
AM and AMS were found to be 60 and 90 min for AM and AMS after the 
treatment of 1.0 mM DADS, respectively. The peak concentration (Cmax) of 
0.93 μg mL-1 for AMS was much less than that of 46.2 μg mL-1 for AM [30]. 
An in vivo study of the uptake and metabolic fate of DADS was done with 
35S-labelled DADS in mice by injecting in a peritoneal cavity at a sublethal 
dose of 100 mg kg-1 [46]. DADS was found to be rapidly absorbed and the 
concentration did not reach the highest until 90 min after administration. 
70% of the radioactivity was present in the liver cytosol, 80% of which 
was metabolized to sulfides and only 8% as 35S-DADS after 2 h [46].
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A systematic study of pharmacokinetics of DADS was investigated 
by the oral administration of 200 mg kg-1 to rats [32]. In addition to 
allyl mercaptan (AM) and allyl methyl sulfide (AMS), allyl methyl 
sulfoxide (AMSO) and allyl methyl sulfone (AMSO2) were identified 
as DADS metabolites in the stomach, plasma, liver and urine of rats. 
The plasma concentration-time curves of 4 major metabolites of DADS 
after single oral administration of DADS are shown in Figure 3 and 
their pharmacokinetic parameters are summarized in Table 2 [32]. The 
coefficient of variations of the metabolite concentrations in the plasma 
were found to be 81%, 32%, 38%, and 7% for AM, AMS, AMSO, and 
AMSO2, respectively. DADS was detected only during the first 2 h after 
administration in the liver, then transiently detected in the plasma, but 
undetected in the urine. The level of DADS in the liver and plasma was 
less than 0.5% of that in the stomach. The apparent half time of DADS 
was estimated as <1 h in the isolated rat liver, which was too short 
to assess the in vivo pharmacokinetic parameters of DADS. AMSO2 
and AMSO appeared to be the oxidative products of AMS. The half 
times (T1/2’s) of 4 DADS metabolites were found to be 4.39, 6.78, 7.16 
and 8.64 h for AM, AMS, AMSO, and AMSO2, respectively. The peak 
concentrations (Cmax’s) of 4 DADS metabolites were determined to be 8, 
8, 376 and 1440 µM for AM, AMS, AMSO, and AMSO2, respectively, 
indicating that the effective therapeutic concentrations of these active 
metabolite(s) may be potentially achievable (Table 2).

The major organosulfur compounds in garlic oil were reported to be 
diallyl trisulfide (DATS) and diallyl disulfide (DADS) and the product 
development of these compounds including their mixtures such as 

various garlic oil extracts has been focused on the improvement of its 
stability by entrapping the active(s) in micro- and nano-formulation 
and enhancement of bioavailability by increasing its systemic circulation 
time (short half life). The novel drug delivery systems of organosulfur 
compounds such as DATS and DADS evaluated include the pegylated 
liposomes [47], nanoparticles [48], microemulsion [49], niosome and so on.

A long-circulating liposomal formulation of diallyl trisulfide 
(Pegylated liposome) was prepared by using a polyethylene glycol 
2000-dipalmitoyl phosphatidyl ethanolamine (PEG-DPPE) derivative 
and its pharmacokinetics in rabbits was compared with the formulations 
of a DATS liposome without PEG and simple DATS suspension with 
a dose of 1.25 mg kg-1 [47]. The results indicate that the pegylated 
liposome of DATS significantly enhanced the bioavailability and 
prolonged the resident time of DATS in the blood circulation system. 
The pharmacokinetics of all the formulations was fitted into a two-
chamber model. The half time of the pegylated liposome was almost 
6 times longer than that of the non-pegylated liposome and 3 times 
longer than that of the simple DATS suspension. The bioavailability of 
the pegylated liposome was also much higher than that of other two 
formulations. In another study, the polybutylcyanoacrylate (PBCA)-
nanoparticles of DATS were found to enhance the bioavailability 
and increase the systemic circulation time [48]. In addition, the 
DATS nanoparticles enhanced the liver targeting in rabbits. The peak 
concentration of DATS in liver was increased 3.4 fold and the liver 
targeting efficiency was also improved from 5.2% to 40.3% while the 
DATS concentration in the rabbit kidney was significantly reduced [48].

In order to achieve higher solubility, lower venous irritation and 
better stability of diallyl trisulfide (DATS), an oil-free intravenous 
microemulsion of DATS was developed [49]. After the intravenous 
administration to rats at a dose of 30 mg kg-1, the significant higher 
area under the curve (AUC) and lower clearance and distribution 
volume than those of the commercial product (p<0.05) were achieved 
[49]. A novel noisome-based formulation of diallyl disulfide (DADS) 
was evaluated for its potential to treat disseminated candidiasis in 
a mouse model. The niosome formulation containing Span 80 was 
found to be the most efficient in the entrapment of DADS. The liver 
and kidney function tests as well as histopathologic evaluation of the 
DADS noisome formulation suggested that the noisome-based DADS 
formulations were safe at the dose investigated. When administered to 
Candida albicans infected animals, the DADS niosomal formulation 
cleared the fungal burden and increased their survival much more 
efficiently than its free form. 

The cyclic organosulfur compounds from garlic include 
1,3-vinyldithiin and 1,2-vinyldithiin and the profiles of their 
pharmacokinetics were found to belong to their own different classes 
[28,29,45]. The pharmacokinetics of vinyl dithiins were investigated 
after an oral administration of 27 mg 1,3-vinyldithiin and 9 mg of 
1,2-vinyldithiin to rats. In the rat serum, kidney, and fat tissue, both 
vinyl dithiins were detected over a period of 24 hours, while only 
1,3-vinyl dithiin was found in the liver. 1,2-vinyldithiin is more 
lipophilic and seemed to accumulate in the fat tissue, whereas 1,3-vinyl 
dithiin was rapidly disappeared from the serum, kidney, and fat tissue. 
No metabolites of vinyl dithiins in the isolated perfused rat liver were 
identified in the perfusate, bile and liver [28,29].

The water-soluble organosulfur compounds from garlic consist 
of S-allyl cysteine (SAC) and S-allyl mercaptocysteine (SAMC) and 
the behaviors of their pharmacokinetics were discovered to be quite 
different from oil-soluble garlic organosulfur compounds [50-52]. The 
pharmacokinetic behavior of S-allylcysteine (SAC) was investigated 

Figure 3: Plasma concentration-time curve of metabolites of DADS after one 
oral administration of DADS (200 mg kg-1) to male rats. Data are the means of 
three separate experiments ± SEM. After 75 h for AM and AMS, and after 125 
h for AMSO, the measured amounts were beneath the detection limit. Adopted 
from the work by Germain et al. [32].

Parameters DADS AM AMS AMSO AMSO2

t1/2 (h) NDa 4.39 6.78 7.16 8.64

Cmax (mM L-1) 0.001 0.008 0.008 0.376 1.440
Tmax (h) < 1b 24 24 48 48
AUCtotal (h mM L-1) ND 0.324 0.328 23.75 116.86
Clp (L h-1) ND 1.475 1.455 0.020 0.004

* Adopted from the work by Germain et al. [32]
a ND: not determined; 
b Estimated value
Table 2: Pharmacokinetic parameters of DADS and its metabolites after a single 
oral administration of 200 mg Kg-1 in rats.*
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after oral administration to rats, mice, and dogs [50]. SAC was rapidly 
and easily absorbed in the gastrointestinal tract and distributed mainly 
in the plasma, liver, and kidney. The bioavailability was 98.2, 103.0, and 
87.2% in rats, mice, and dogs, respectively. SAC was mainly excreted 
into urine in the N-acetyl form in rats; however, mice excreted both 
SAC and the N-acetyl form. The half life of SAC was longer in dogs 
than in rats and mice [50]. The pharmacokinetic study of SAC in 
humans was performed by oral administration of garlic preparation 
containing SAC. SAC from garlic consumption was rapidly absorbed 
from the gastrointestinal tract. The half life of SAC in humans after oral 
administration was more than 10 h and clearance time was estimated 
to be more than 30 h (Figure 4). These results appeared similar to 
experimental results tested in dogs, where the half life was found to be 
about 10 h and clearance time was more than 24 h, but they differ from 
experimental results from tests in murine [50,51]. These study results 
from the evaluation of the safety and efficacy of SAC indicate that SAC 
seemed to play an important role in the biological effects of garlic [51].

Effects of garlic organosulfur compounds on phase I and 
phase II metabolizing enzymes

Cytochrome P450 enzymes (CYP450s) play a key role in catalyzing 
the microsomal biotransformation of many xenobiotic compounds 
such as drugs, environmental pollutants, and dietary chemicals 
[53,54]. Biotransformation of xenobiotics is important to protect all 
living organisms from environmental toxic insults. These xenobiotic-
metabolizing enzymes are usually classified as phase I and phase II 
enzymes in mammalian systems. Drug metabolism starts with phase 
I reactions, generally modifying the functional groups, setting the 
stage for phase II reactions involving conjugations with endogenous 
compounds, and facilitating the excretion from the body. Increased 
or decreased activities of specific CYP450 enzymes can be directly 
beneficial by decreasing metabolism and/or increasing excretion 
of some carcinogens as well as by circumventing the DNA damage. 
Various garlic active components have been found to selectively 
enhance or suppress the levels of cytochrome P450 genes or proteins 
[54,55]. The chemopreventive action of organosulfur compounds 
opens significant questions concerning their effects on the proteins 
involved in the detoxification process. In fact, it was hypothesized 

that the defective sulfur metabolism in cancer cells and the anticancer 
effects of sulfane sulfur compounds may be due to the control of a set of 
enzymes normally inactivated by sulfane sulfur [56].

It was believed that the inhibition of CYP2E1 could be a major 
mechanism by which organosulfur compounds would exert their 
chemopreventive effects because CYP2E1 is responsible for the 
activation of numerous carcinogenic chemicals [57]. The CYP2E1 
enzyme kinetics studies have been performed using diallyl sulfide as 
a substrate. The sulfur atom on diallyl sulfide is oxidized by CYP2E1 
to diallyl sulfone (DASO), then subsequently to diallyl sulfoxide 
(DASO2). The final metabolite was an epoxide, generated by oxidation 
of the terminal double bond of DASO2, which bonded irreversibly 
to the CYP2E1 enzyme and lead to the autocatalytic destruction 
of the enzyme [35,36]. The hepatic CYP2E1 protein expression 
and N-nitrosodimethylamine demethylase (NDMA) activity were 
suppressed by diallyl sulfide (DAS), diallyl disulfide (DADS), and 
allyl mercaptan (AM) in a time- and NADPH-dependent manner 
[58]. The gastric incubation of rats with a single dose of 200 mg kg-1 
diallyl sulfide (DAS), diallyl disulfide (DADS), and ally methyl sulfide 
(AMS) decreased the hepatic CYP2E1 protein by 45%, 25% and 47%, 
respectively [59]. The alkyl sulfides such as dipropyl sulfide (DPS), 
dipropyl disulfide (DPDS), and propyl methyl sulfide (PMS) did not 
inhibit the hepatic CYP2E1 protein expression, indicating that the 
alkenyl group on the organosulfur compounds may be critical for 
inhibiting the CYP2E1 enzyme [59]. In contrast, the water-soluble 
S-allyl cysteine (SAC) did not inhibit CYP2E1, which may be explained 
by the relative hydrophobic nature of the active site of CYP2E1 that may 
restrict the access of the water-soluble molecules such as S-allyl cysteine 
[59]. However, another water-soluble S-allyl mercaptocysteine (SAMC) 
was found to significantly inhibit the CYP2E1 enzyme [60,61].

The most abundant CYP450 enzyme expressed in the liver is CYP3A4, 
which accounts for approximately 40% of phase I drug metabolism 
[62]. The garlic extract and various commercial garlic products 
exhibited no or very low effect on the intestinal and hepatic CYP3A4 
in humans [63,64]. On the other hand, a study of human microsomal 
P450 activities suggested that two water soluble constituents S-allyl- or 
S-methyl-L-cysteine at 0.1 mg mL-1 slightly inhibited CYP3A4 without 
impact on CYP2C9, CYP2C19 or CYP1A2 [65]. Garlic organosulfur 
compounds were found to be the moderate inducers of CYP1A 
subfamily [66]. The reason for the increase in CYP1A1 and CYP1A2 
levels may be related to the oxidation of the terminal double bond on 
the sulfides by CYP2E1. The induction of CYP1A enzymes may prevent 
the metabolic activation of procarcinogens, increase the clearance 
rate of toxic metabolites, and become relevant in the anticarcinogenic 
properties associated with garlic and related organosulfur compounds 
[67]. Organosulfur compounds presented in garlic have been found to 
inhibit the formation of tumors in rats treated with various carcinogenic 
substrates of CYP1A1 and CYP1A2 [68,69]. The immunoblot assay 
showed that the protein contents of cytochrome P450 1A1, 2B1, and 
3A1 were increased by diallyl sulfide (DAS), diallyl disulfide (DADS), 
and diallyl trisulfide (DATS), and the change among the allyl sulfides 
was in the order of DAS > DADS > DATS [70]. The daily treatment for 
1, 4 and 8 weeks with 200 mg kg-1 diallyl sulfide (DAS) and ally methyl 
sulfide (AMS) resulted in time-dependent increases in hepatic CYP1A1 
and CYP1A2 protein levels to a maximum of 600% and 50% for DAS, 
and 1600% and 240% for AMS after 8 weeks [59]. Some of organosulfur 
compounds were discovered to be a potent inhibitor of CYP2A6 [71]. 
Garlic organosulfur compounds were found to be strong inducers of 
the CYP2B family [66,72-74]. Following a single dosing of DAS (200 
mg kg-1 body weight) to rats, the liver microsomal pentoxyresorufin 

Figure 4: SAC content in human volunteers orally consuming garlic supplement 
containing SAC. Volunteer F: age, 46; sex, male; body weight, 64 kg; SAC 
consumed, 0.82 mg. Volunteer H: age, 38; sex, male; body weight, 63 kg; SAC 
consumed, 0.67 mg. Volunteer I: age, 45; sex, male; body weight, 65 kg; SAC 
consumed, 0.67 mg. Adopted from the work by Kodera et al. [19].
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dealkylase (PORd) activity (a representative activity of P450 2B1) was 
induced 3, 16, 26, and 43 fold at 6, 12, 18, and 24 h after the treatment, 
respectively [72]. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), 
methyl propyl disulfide (MPDS), dipropyl sulfide (DPS), dipropyl 
disulfide (DPDS) and diallyl disulfide (DADS) from Allium species 
were identified to be an inducer of CYP2B1 and CYP2B2 [73]. DAS 
and DADS were found to induce CYP3A2, CYP2B1, and CYP2B2, DAS 
being more potent [74].

Organosulfur compounds have also been found to increase 
the levels of phase II enzymes such as glutathione S-transferase 
(GST), epoxide hydrolase (EH), quinone reductase (QR), and UDP-
glucuronosyl transferase (UGT), which contributed to the enhanced 
deactivation and excretion of reactive metabolites of carcinogens [75]. 
Recently, special emphasis has been placed on the study of the effects 
of the garlic organosulfur compounds on the GST enzymes. GSTs are 
detoxification enzymes, which have been recently considered as either 
phase I or phase II enzymes that catalyze the conjugation of a wide 
variety of electrophiles and carcinogens with glutathione (GSH) [76].

Diallyl sulfide (DAS), allyl methyl disulfide (AMDS), allyl methyl 
trisulfide (AMTS), diallyl disulfide (DADS), diallyl trisulfide (DATS), 
and S-allyl cysteine (SAC) rather than their corresponding saturated 
compounds in which propyl groups were substituted for the allyl groups 
were found to be an inducer of GST, catalyzing the conjugation of a wide 
variety of electrophiles and carcinogens with glutathione (GSH) in the 
forestomach, small-bowel mucosa, liver, colon and lung of mice [76-80]. 
The induction of GST among allyl sulfides was with the order of DATS 
> DADS > DAS in the rat liver. DATS possessing triple sulfur bonds 
(–S–S–S) in its structure was found to be the most active than mono- 
and di-sulfur compounds in the induction of detoxifying enzymes. The 
saturated analogs were almost without inhibitory activity, indicating 
the importance of the allyl group on the sulfides. Not all GST isozymes 
were influenced equally by these compounds, the up-regulation of the 
GST-α, GST-µ, and GST-π induced by organosulfur compounds may 
represent a particularly important event in the antitumor properties 
associated with different organosulfur compounds [81-86]. However, 
a significant decrease in the GST activity was also observed in the 
hepatocytes after treatment with a high concentration of DADS (2 
mM), indicating the GST modulation effects [30].

Lipid-soluble organosulfur compounds not only increased the 
activity of GST but also that of other detoxifying enzymes such as epoxide 
hydrolase (EH), quinone reductase (QR), and UDP-glucuronosyl 
transferase (UGT). GST, NAD(P)H-dependent quinone reductase, and 
UDP-glucuronosyl transferase activities in the rats were significantly 
elevated in animals fed with diallyl disulfide (DADS), compared to 
those fed with the control diet [80,83,87]. A good correlation between 
chemopreventive efficacies of forestomach and lung tumorigenesis 
and their inductive effects on the expression of NAD(P)H:quinone 
oxidoreductase (NQO) was established for diallyl sulfide (DAS), diallyl 
disulfide (DADS), diallyl trisulfide (DATS), dipropyl sulfide (DPS) and 
dipropyl disulfide (DPDS) [88]. Garlic oil was found dose-dependently 
increased hepatic glutathione S-transferase (GST), glutathione 
reductase, superoxide dismutase (SOD) and ethoxyresorufin 
O-deethylase (EROD) activities, but decreased glutathione peroxidase 
and N-nitrosodimethylamine demethylase (NDMAD) activities [84]. 
The transcriptional levels of NAD(P)H:quinone oxidoreductase 1 
(NQO1) and heme oxygenase 1 (HO1) genes, and the protein level 
of transcription factor nuclear factor E2-related factor 2 (Nrf2) were 
elevated after administration of DAS, DADS, and DATS in human 
hepatoma HepG2 cells [68]. DAS, DADS, and DATS regulated the 
drug-metabolizing enzymes by activation of two transcription factors, 

constitutive androstane receptor (CAR) and NF-E2-related factor-2 
(Nrf2) [69,89]. CAR plays a key role in the control of drug metabolism 
by mediating the induction of many phase I and II drug-metabolizing 
enzymes (such as P4502B, P4502C, P4503A, UGT1A1, and GST-α1), 
as well as drug transporters, including multidrug resistance-associated 
protein 2 (Mrp2) and organic anion transporting polypeptide 4 (Oatp4).
Water-soluble organosulfur compounds such as S-allyl cysteine (SAC) 
and S-allyl mercaptocysteine (SAMC) as well as their mixtures (i.e., 
aged garlic extract) have also been found to increase the activities 
of detoxifying enzymes such as GST, PPx, manganese superoxide 
dismutase (Mn-SOD), Cu-Zn-superoxide dismutase (Cu-Zn-SOD) 
and glutathione reductase (GR) [61,90-97]. SAC and aged garlic 
extract were found to increase the activities of manganese superoxide 
dismutase (Mn-SOD), GPx, and glutathione reductase (GR) in the 
rat renal cortex, which ameliorated the gentamicin-induced acute 
renal failure [90,91]. SAMC treatment reduced the gonadotoxic and 
spermiotoxic effects caused by cadmium (Cd) by producing a marked 
rise in the level of glutathione (GSH) and the activities of superoxide 
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) [96]. 
The hepatoprotective effects of SAMC observed in a rat model of non-
alcoholic fatty liver disease were partially linked to the induction of 
antioxidant enzymes GPx and catalase [61].

Modulation of multidrug resistance proteins and 
P-glycoproteins

The multidrug resistance (MDR) is one of the major challenges 
of effective anticancer chemotherapy. There are two main transporter 
proteins involved in establishing the multidrug resistance in cancer 
cells: P-glycoprotein (P-gp) and multidrug resistance protein 2 (Mrp2) 
[98-100]. The over-expression of the ATP-binding cassette transporter 
P-gp has been related to the development of MDR in human cancers 
such as leukemias, lymphomas, multiple myeloma, neuroblastoma, and 
soft tissue sarcoma [101]. Mrp2 is an ATP-dependent transporter for 
organic anions that contributes to the drug resistance by transporting a 
wide range of glutathione, glucuronate and sulfate conjugates out of cells 
[102]. The extract of fresh garlic and various garlic commercial products 
including garlic oil, freeze-dried garlic and aged garlic exhibited a low-
to-moderate inhibitory effect on P-gp [103]. The treatment of leukemia 
K562 cells resistant to vinblastine (K562R) with a non-cytotoxic dose 
of diallyl sulfide (DAS) enhanced the cytotoxic activity of vinblastine as 
well as other Vinca alkaloids. DAS reduced the protein level of P-gp in 
K562R cells at a level comparable to non-resistant K562 [104]. The oil-
soluble diallyl disulfide (DADS) and water-soluble S-allyl cysteine (SAC) 
modulated the expression of both Mrp2 and P-glycoprotein (P-gp) in rat 
renal brush-border membranes (BBM). The co-treatment of cisplatin 
with DADS lead to a 30-fold increase of Mrp2 expression, suggesting 
that Mrp2 could be involved in the secretion of cisplatin–GSH and/
or DADS–GSH conjugates. Interestingly, the co-treatment of cisplatin 
with S-allyl cysteine decreased the P-gp protein expression. A synergetic 
effect of the combination of ajoene with cytarabine and fludarabine was 
discovered in the improvement of the chemotherapy-induced apoptosis 
of cytarabine and fludarabine in human acute myeloid leukemia cells 
[105]. The garlic extract containing various garlic components induced 
the intestinal P-glycoprotein, but exhibited no effect on the intestinal 
and hepatic CYP3A4 in humans, suggesting that the induction of 
the intestinal expression of P-glycoprotein and multidrug resistance 
protein 1 (Mrp1) by garlic extracts was independent of cytochrome 
P450 3A4 in the human intestine and liver [63]. However, diallyl sulfide 
(DAS) and diallyl trisulfide (DATS) were found to have no effect on the 
P-gp function using human multidrug-resistant carcinoma KB-C2 cells 
[106]. The limited existing data indicate that organosulfur compounds 
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present in garlic products or pure chemical forms might have different 
effects on the P-glycoprotein (P-gp) and multidrug-resistant proteins 
(Mrp1 and Mrp2) in the chemotherapeutic treatments of various tumors 
and therefore further studies are required to clarify the mechanisms of 
organosulfur compounds in affecting the cancer multidrug resistance.

Conclusion
The major metabolic pathways of garlic organosulfur compounds 

identified in the primary rat hepatocytes, human liver microsomes, 
various animal models and human volunteers include reduction, 
methylation, oxidation, glutathione and N-acetyl conjugations. The 
primary metabolic pathways for specific organosulfur compounds could 
be different due to the complicated nature of different in vitro model 
systems as well as in vivo animal species and human ethnic groups. The 
published studies of drug metabolism and pharmacokinetics (DMPK) 
of organosulfur compounds from garlic have been mostly limited 
to rodents (mostly rats). The most completed DMPK data package 
available in the literature among garlic organosulfur compounds 
was done on diallyl disulfide (DADS). The rapid disappearance 
and quick formation of long-circulating active metabolites (AM, 
AMS, AMSO and AMSO2) of DADS in rats suggest that these garlic 
organosulfur compounds may behave like prodrugs and their multiple 
active metabolites with different biological properties could provide 
mechanistic evidences for multiple targets in physiological systems. 
The high exposures of these active metabolites in the rat indicated that 
the effective therapeutic concentrations of some garlic organosulfur 
compounds may be potentially achievable in vivo. Some of these 
active metabolites of garlic organosulfur compounds could be used 
as the biomarker compounds to establish the relationship between 
pharmacokinetics and pharmacodynamics (PK-PD) in animal models 
and clinical trials. Besides the majority DMPK studies done on rats, 
there are very little published DMPK work on non-rodents in the 
literature while rare DMPK studies on humans were only done on garlic 
nutraceutical products containing either garlic powders or extracts. 
Additional DMPK studies of pure garlic organosulfur compounds in 
animal models including rodents and non-rodents and humans should 
be performed in order to obtain the complete DMPK profiles for these 
compounds since these compounds seem to have a very promising 
profile for further pharmaceutical development.

Based on the published metabolic studies, a special attention 
should be given to the detection techniques when the DMPK studies of 
garlic organosulfur compounds are performed since these compounds 
have weak chromatographic and mass spectrometric responses due to 
the lack of appropriate functional groups on the compounds interested. 
Multiple hyphenated techniques such as GC-MS and LC-MS may 
have to be utilized in the detection of garlic organosulfur compounds 
and their metabolites due to different sensitivities of these detection 
techniques to specific compounds that may be present in various 
biological systems. A derivatization technique of garlic organosulfur 
compounds and their metabolites may need to be utilized when the 
detection sensitivity is an issue.

The effects of garlic organosulfur compounds on various 
cytochrome P450 enzymes as well as on P-glycoprotein (P-gp) and 
multidrug resistance proteins (Mrp1 and Mrp 2) are some special 
medicinal benefits for these compounds. Some garlic organosulfur 
compounds have been shown to protect against toxicants and 
carcinogens. These beneficial effects are believed to involve, at least in 
part, the ability of these compounds to inhibit the enzymatic activation 
of pro-toxicants and to increase tissue activities of enzymes that 
protect against electrophiles. The enhanced detoxification and liver 

protection of garlic organosulfur compounds could be attributed to 
the modulation of cytochrome P450 phase-I and II enzymes such as 
CYP2E1 and GST. Studies on the effect of some garlic organosulfur 
compounds on chemically induced cancer in animals and on phase II 
enzyme activities in humans would be of great interest to further clarify 
the dominating mechanisms of chemoprevention and chemotherapy. 
On the other hand, special precautions should be considered when 
these compounds are co-administered with other medicines because 
of their potential effects on some of cytochrome P450 enzymes. In 
addition, organosulfur compounds present in garlic products or pure 
chemical forms might have different affects on the P-glycoprotein 
(P-gp) and multidrug-resistant proteins (Mrp1 and Mrp2) in the 
chemotherapeutic treatments of various tumors and therefore further 
studies are required when they are used along with other anticancer 
agents.

Garlic organosulfur compounds clearly target widespread 
physiological pathways and are very potent against a variety of 
diseases, especially those of the cardiovascular system and several 
types of cancer. While a wealth of evidence points to various 
medicinal benefits of garlic organosulfur compounds, there is a 
compelling need for controlled clinical intervention studies to truly 
assess the safety and efficacy of these compounds for establishing 
adequate application schemes for specific populations. Systematic 
studies of drug metabolism and pharmacokinetics (DMPK) for garlic 
organosulfur compounds are clearly required for critical evaluation of 
their pharmaceutical applications. Therefore, future DMPK research 
focuses should be placed on a) the details of metabolic transformations 
of organosulfur compounds from garlic in non-rodents and humans, 
b) the determination of the biomarker compound(s) in order to define 
appropriate pharmacokinetic parameters and safety margins, c) whether 
the efficient concentration of organosulfur compounds used in vitro 
cultures can be achieved in humans, d) the evaluation of appropriate 
active metabolites to determine the synergetic effects among them and 
therapeutic targets, e) the relationship between pharmacokinetics and 
pharmacodynamics of organosulfur compounds in appropriate animal 
models and humans.

Tailored pharmacokinetic studies are also required in the 
biopharmaceutical development of appropriate drug products of 
single organosulfur compounds or compound mixtures from garlic. 
Appropriate drug formulations with the acceptable stability, systemic 
circulation time and oral bioavailability are needed to enable clinical 
trials on specific populations using clearly defined dosages of known 
compositions. Additionally drug formulations of these compounds 
should be developed to eliminate or minimize the known clinical side 
effects by masking their strong odor and by reducing their stomach 
irritation effect.
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