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Abstract

Osteoporosis is characterized by a decrease in bone mass and micro architectural deterioration of bone tissue.
Current treatments for osteoporosis are generally associated with many limitations, including low oral bioavailability,
short half time and long-term side effects. Drug delivery systems are developed to reduce off-target side effects,
protect drugs from degradation and control release of the therapeutic agents at the desired sites. This review
presents current research strategies adopted for delivery anti-osteoporosis agents. Oral delivery systems were
developed to facilitate the oral administration of protein drugs. Targeted delivery systems based on bone seeking
agents (such as bisphosphonate) greatly enhanced the distribution of therapeutic agents to bone tissue. Local
administration based on nanoparticles and hydrogels slowly released incorporated drugs and remained a sustained
therapeutic effect in disease site. Though the effects of these systems have been widely approved in animal models,
further researches are needed for a bench-to-bedside transition.
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Introduction
Osteoporosis is a progressive systemic skeletal disease characterized

by low bone mass and micro architectural deterioration of bone tissue,
with a consequent increase in bone fragility and susceptibility to
fracture [1]. The pharmacological intervention of osteoporosis has
substantially progressed for decades. However, the existing therapies
have certain limitations including efficacy and long-term safety issues
[2].

The therapeutic efficacy of a drug depends on its intrinsic specificity
for the molecular target and concentration at the target site. The non-
specific distribution of drugs to off-target tissues and organs generates
side effects, which may limit the application of drugs, especially for
long-term treatment. For example, parathyroid hormone (PTH), the
only FDA approved drug, which is capable of inducing new bone
formation, is limited to severe cases and can only be used for less than
two years. The oral administration of bisphosphonates (BPs) has been
associated with mucosal damage, including gastritis, gastric ulcer, and
erosive esophagitis. Estrogen widely distributes to tissues other than
bone after systemic administration. Prolonged therapy with estrogen
may increase the risks of endometritis, breast and endometrial cancer,
and intrauterine hemorrhage. To solve these problems, it is highly
desirable to develop drug delivery systems, which might protect the
incorporated drug from degradation, provide a controlled release, or
effectively enhance the concentration of therapeutic agents at the
disease site and therefore decrease the off-target toxicity. This review
discusses the current novel drug delivery strategies for anti-
osteoporotic agents.

Oral Administration
Calcitonin (CT) is a polypeptide hormone consisting of 32 amino

acids. PTH is the physiological antagonist to CT. Both of them involve
in the bone metabolism in the body. Currently CT is available as
subcutaneous injection and nasal spray, whereas PTH is for
subcutaneous injection for a two-year treatment span. Because these
drugs need to be given on a daily basis over a long period of time, oral
administration is a much more desirable route for the convenience of
patients. However, there are many problems associated with peptide
and protein drugs oral delivery, such as the susceptible for enzyme
degradation and chemical instability in gastrointestinal tract, poor
intrinsic permeability across the intestinal epithelium and rapid post-
absorptive clearance. Drug delivery systems are developed to
overcome these limitations.

Yoo et al. prepared CT poly(d,l-lactide-co-glycolide) (PLGA)
nanoparticles by loading CT-fatty acid complexes [3]. In vitro study
confirmed the dose-dependent transport of the nanoparticles in
Caco-2 cell monolayers, whereas the transport rate of free CT was
negligible. Pharmacokinetic study in rats showed high plasma CT
concentration in nanoparticles group whereas negligible amounts of
CT were detected for free CT group even at a 5 times higher dosage.
Moreover, mucoadhesive liposomes were prepared by coating
liposomes with mucoadhesive carbopol or chitosan [4]. The
mucoadhesive properties were proved using intestines isolated from
SD rats. Administration of coated liposome containing CT to rats
showed an enhanced and prolonged reduction in blood calcium
concentration. In addition, pH sensitive microspheres containing CT
were prepared using pH-sensitive polymer Eudragit P-4135F. More
than 90% of CT was released within 1 hr at pH 7.4, while very slow
release at pH 6.8. Oral administration of 100 μg/kg CT in
microspheres resulted in a distinct hypocalcemia and a sustained
release of CT in rats [5]. For the oral administration of PTH, there is
no intestinal uptake of bare PTH from the digestive tract of rat.
However, the incorporation of PTH in PEGylated chitosan
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nanoparticles showed an oral bioavailability of PTH at 100−160 pg/mL
throughout 48 hrs [6].

The mechanisms of the improved efficacy of drug delivery systems
using nanocarriers have been extensively researched. Previous studies
have shown that nano- and microparticles are easily taken up by a
group of localized endothelial cells in the small intestine, especially by
Peyer’s patch [7-10]. Therefore, the drug absorption is highly
increased. In addition, the incorporation of the drug into particle core
could protect it against the harsh environment in the gastrointestinal
tract and thus increases the stability of the peptide drug [11]. The
controlled release of drug from carriers prolongs the blood circulation
[12]. Though there are many oral delivery systems developed for
preclinical studies, none has been approved for clinical use yet. Even
so, oral delivery of anti-osteoporotic protein/peptide drugs still
remains a promising possibility.

Parenteral Administration-active Targeting
The composition of bone varies with age, general health, anatomical

location and nutritional status. In general, mineralized tissue accounts
for about 50-70% of adult bone; the organic matrix for about 20-40%
and water for about 5-10% [13,14]. The mineralized bone matrix
consists of carbonated hydroxyapatite. Targeting the mineral
composition of the bone presents as an ideal way to obtain
osteotropicity. Various tetracyclines, BPs, acidic oligopeptides,
chelating compounds and salivary proteins have been employed to
target osseous tissue [15]. These compounds bind to the inorganic
hydroxyapatite (HA) part of osseous tissue. Drug delivery systems
based on these targeting moieties have been developed to obtain
osteotropicity.

Choi et al. prepared estrogen PLGA nanoparticles modified with
alendronate and polyethylene glycol. The nanoparticles had a strong
and specific adsorption to HA [16]. Several other BPs modified bone-
targeting nanoparticles and liposomes were developed for systemic
administration and were evaluated in vitro [17-19]. Oligopeptide
conjugated estradiol prodrug exhibited preferential distribution into
bone, where it gradually regenerated the parent drug. As a result,
weekly treatment with the prodrug showed comparable
pharmacological activities with every 3-day estradiol treatment but less
systemic adverse effects [20]. Zhang et al. developed a targeting system
involving cationic liposomes attached to another oligoeptide (six
repetitive sequences of aspartate, serine, serine) for delivering siRNAs
specifically to bone-formation surfaces. Using this system, they
encapsulated an osteogenic siRNA that targets casein kinase-2
interacting protein-1 (encoded by Plekho1), and this liposomal
formulation markedly promoted bone formation, enhanced the bone
micro-architecture and increased the bone mass in both healthy and
osteoporotic rats [21].

The main component of the organic matrix of bone is type I
collagen, which makes it highly interesting as another potential bone
target site. Collagen binding domains (CBD) are abundant in
collagenolytic proteases from microorganisms and are furthermore
present in mammalian matrix metalloproteinase (MMPs) [22]. The
cDNA of CBD can be added to the peptide or protein of interest by
standard molecular biology techniques to produce bone-targeting
fusion protein. Ponnapakkam et al. synthesized fusion proteins with
CBD domain and linked it with PTH. In vivo study proved the
sustained anabolic effect in bone with weekly injection [23]. In a recent
study, a peptide of 7 amino acids was first used to engineer

parathyroid hormone-related peptide to construct a collagen-targeting
system. This peptide functioned as a CBD and specially targeted the
peptide to collagen [24].

Local Administration
Though the development of active targeting delivery systems greatly

enhanced the drug concentration at desired disease site after systemic
administration, it is still a challenge to control the drug distribution in
other organs, especially the high accumulation of nanoparticles in liver
or spleen. Local delivery from a drug depot could be a viable
alternative. They are especially suitable for the treatment of
osteoporotic fractures. Numerous natural and synthetic polymers have
been studied to employ as local delivery carriers, such as alginate,
collagen, poly(lactic-acid) [25] etc. Among them, calcium phosphate
(CaP) materials such as hydroxyapatite and biphasic CaP were
extensively researched due to their high biocompatibility, bioactivity
and osteoconductivity [26,27]. The dissolution of CaP can be
controlled by adjusting the crystallinity, and thereby potentially
control the release rate of bound or incorporated drugs. Verron et al.
developed an injectable BP-combined CaP matrix for preventing
osteoporotic fractures that was preferentially localized in the proximal
femur, vertebral bodies or wrist. In vivo study proved the significantly
increased relative bone content and an improvement of micro-
architecture [28]. Besides CaP, HA and PLGA loaded with BP were
also developed [29,30]. Local delivery of BP using these biomaterials
not only minimized the gastrointestinal adverse effects but also
increased the bioavailability of BP for the treatment of osteoporosis
[31].

Hydrogels are another type of widely studied local delivery carriers.
They are exceptionally suitable as matrices for bone regeneration due
to the high tissue-like water content, generally good biocompatibility
and efficient transport of nutrients [32]. In addition, some hydrogels
could be injected as liquid and then form gel in situ, which is
convenient for drug administration [33,34]. Various natural and
synthetic polymers are used for preparing hydrogels [35,36]. Growth
factors are incorporated and released with a controlled pattern from
the hydrogel matrix [37]. Rey-Rico et al. developed in situ poloxamine
gels for sustain the release of BMP-2 [38]. These polymers undergo
sol-to-gel transition at temperature around 25-33°C. Therefore, it is
able to be administrated at room temperature and then form
viscoelastic gels at body temperature after injection. More information
about hydrogel application in bone regeneration can be found in the
reviews [2,33,39].

Miscellaneous
Nasal cavity offers a large surface area with extensive blood supply

and no hepatic first-pass metabolism. These features make nasal cavity
an interesting site for drug delivery. However, generally proteins and
peptide drugs display a relative bioavailability of approximately 1%
through nasal administration [40]. The major obstacles include the
limited drug transportation across the epithelial membrane as well as
the rapid mucociliar clearance [41]. To overcome these drawbacks,
nasal delivery systems were developed. Ishikawa et al. developed
CaCO3 dry powders as an insoluble carrier for nasal delivery of CT. In
vivo study showed a rapid absorption and almost two-fold increase in
bioavailability when compared with CT liquid formulation. The
improvement might be based on the prolonged residence time in the
nasal mucosa [42]. Other particulate nasal delivery systems were
developed as well, such as ethylcellulose PTH dry powder, CT gelatin
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microspheres [43,44]. Transdermal delivery represents another
attractive alternative to oral delivery. Transdermal patch containing
microneedles coated with CT was developed. In vivo study showed its
comparable efficacy compared with subcutaneous injection. The data
proved the patch without hypodermic needles is a viable alternative
approach to deliver CT for treating osteoporosis [45].

Conclusion
This review presents current research strategies adopted for delivery

of therapeutic agents in osteoporosis. These drug delivery modalities
aim to reduce off-target side effects, protects drugs from degradation
and controlled release of the therapeutic agents at the desired sites.
However, treatment strategies discussed in this review need further
development and discussion in future for a bench-to-bedside
transition.
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