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Abstract

Many researchers have surveyed damages caused by natural enemies in invasive plants in both native and
introduced ranges to testing enemy release hypothesis. Although the physiological impact of natural enemies on
invasive plants is important, little research has been conducted to compare the impacts between generalists and
specialists. In this study, we report our findings on the physiological and morphological impacts of a native specialist
insect (Agasicles hygrophila) and two generalist insects (Atractomorpha sinensis and Hymenia recurvalis) in
introduced ranges on an invasive plants Alternanthera philoxeroides in both field trials and controlled environments.
Resistances of A. philoxeroides against the generalists and the specialist were also studied. We obtained consistent
results in both the field trials and the controlled treatments. Both the generalists and the specialist decreased leaf
biomass, photosynthesis, leaf nitrogen content and total leaf non-structural carbohydrate content in A. philoxeroides.
However, the specialist decreased leaf mass, photosynthesis, and leaf nitrogen content more acutely than the
generalists. Moreover, A. philoxeroides increased both leaf lignin and cellulose concentrations upon the generalists’
attack, but only increased cellulose concentration in response to the specialist. Our results revealed that even under
the same population density, the specialists from native ranges caused more severe morphological and
physiological damages on A. philoxeroides than the generalists in introduced ranges. Which magnified the
consequence of invasive plants suffered lower richness and abundance of natural enemy and contributed to superior
performance of invasive plants in introduced regions.
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Photosynthesis; Resistance; Herbivory

Introduction
Exotic invasive plant species often attain higher growth rates,

extremely greater population densities or broader habitat distributions
in their introduced habitats than in their native ranges [1,2]. The
enemy release hypothesis explains these phenomena and attributes the
success of these exotic plants to the facts that they are liberated from
their specialist herbivores and pathogens and that enemies in the
introduced regions have a greater impact on native plants than on
exotics [3]. Therefore, exotic plants can gain a substantial advantage
because their populations are no longer directly suppressed by
specialist consumers and pathogens and they also obtain a competitive
advantage over native plants that may suffer disproportionately from
attacks by enemies in the introduced region.

However, enemy release is limited to the early stages of plant
invasion, as native herbivores tend to accumulate on invasive species
over time owing to the rapid adaptation of predators to invasive species
[4,5]. In addition, native generalist herbivores prefer exotic plants over
native plants because exotic plants share no evolutionary history with
native herbivores and therefore lack effective defences against them
[6-11]. Moreover, the co-evolved specialist enemies of invasive plants
might also arrive in the same area either accidentally or deliberately
(e.g., through classical biological control releases) [3]. When exotic
plants are introduced to a region that contains closely related native

congeners, the specialist enemies of those congeners have the potential
to attack the exotic plants [12,13].

Herbivory damages the organs and tissues of plants, reduces the leaf
area available for photosynthesis, and alters the physiological traits of
the affected plant. It can decrease the concentrations of available
nitrogen and other important nutrients for foliage and decrease
photosynthetic activity [14-16], concluded that the indirect negative
effects of reduced photosynthesis (due to herbivory stress) on
population biomass were greater than the direct negative effects of
herbivores on the loss of plant biomass. To minimize damage, plants
have developed resistance and tolerance strategies against herbivores
[14], Plants can evolve different strategies against specialists and
generalists [17]. However, due to the rapid evolution of invasive plants
in introduced regions, invasive plants have either lost or experienced a
reduction in the ability to defend themselves against enemies (EICA
hypothesis) [18]. Regardless of whether invasive plants have undergone
a reduction in their level of protection against specialist herbivores
while increasing their protection against generalist herbivores [19,20]
or have lost their ability to defend themselves against generalist
herbivores [21]. There are differences in the physiology and
populations of invasive plants when they are attacked by generalists
and specialists.

Alternanthera philoxeroides (Martius) Grisebach (Amaranthaceae)
is a perennial amphibious herbaceous plant. The native range of this
species is South America, but it has invaded the USA, China, Australia,
New Zealand, Indonesia, India and Thailand [22]. In invaded
waterbodies, A. philoxeroides often forms dense, interlocking mats and
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excludes native plants, alters the structure and function of the
surrounding ecosystem, blocks irrigation and drainage systems and
causes great economic and environmental problems. It has been listed
as one of the world’s worst invasive weeds [23,24]. In its native range,
A. philoxeroides has more than forty natural enemies [25], among
which the specialists feeding on its different organs and tissues regulate
its populations [26]. In China, many generalist herbivores also feed on
A. philoxeroides [27,28]. However, there have been few studies on the
physiological and population-level effects of generalists and specialists
on A. philoxeroides and the defence strategies used by A. philoxeroides
against these enemies.

In this study, we evaluated how the physiological and population
traits of A. philoxeroides respond to herbivory by two generalist insects
and a specialist beetle in controlled experiments and investigated some
traits used by A. philoxeroides in defence against generalists and
specialists. We intended to address the following questions: (a) Do
specialists damage populations of A. philoxeroides more intensely than
generalists? (b) Do specialists and generalists differ in their
physiological impacts on A. philoxeroides? (c) Does A. philoxeroides
defend itself differently against specialists and generalists?

Materials and Methods

Herbivores
Atractomorpha sinensis Bolivar is a ubiquitous generalist

grasshopper native to China. It is distributed in all parts of China and
feeds on a variety of vegetables and crops, including cabbage, radish,
beans, eggplant, potato, corn, spinach, sweet potato, sugarcane,
tobacco, hemp, cotton, rice, and wheat [29]. In field investigations, we
found large populations of A. sinensis where A. philoxeroides was
concentrated. Hymenia recurvalis (Fabricius) belongs to the Pyralidae
family. It is also a ubiquitous generalist insect in China and is
distributed across all parts of China, Korea, Japan, India, Sri Lanka,
Australia, North America, and Africa. This species feeds on beet,
sugarcane, tea, Amaranthus and Chenopodium [30]. The larvae of H.
recurvalis chew the mesophyll tissue of vegetables and grasses, but they
do not damage the venation. Zhuo-Kai LI et al. found that the larvae
of H. recurvalis fed on A. philoxeroides in Thailand [31,32] also found
that the larvae of H. recurvalis prefer plants of the Amaranthaceae
family, including A. philoxeroides in China and suggested that H.
recurvalis is a potential biocontrol agent for A. philoxeroides.

Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae)
is native to Argentina and Uruguay and is one of the specialist insect
herbivores of A. philoxeroides. A. hygrophila was introduced to China
in 1987 to control A. philoxeroides. Now, it is found in 16 provinces in
central, eastern, and southern China. It can gnaw the leaves and stems
of aquatic A. philoxeroides and successfully control its populations, but
this herbivore cannot control the populations of A. philoxeroides in
terrestrial habitats [33,34].

Field trials
From June 30 to July 3, 2011, various enemies of A. philoxeroides

have not appeared yet, we set A. philoxeroides populations in eight 2 m
× 2 m plots on Liangzi Island, China (30°001′–30°016′N, 114°032′–
114°043′E) and randomly selected 6-9 shoots of A. philoxeroides in
each plot to determine net photosynthetic rate on the youngest fully
expanded leaves (generally the second or third pair of leaves from the
top) with a Li-6400 Portable Photosynthesis System (Li-Cor, USA).

Under a photosynthetic photon flux density (PPFD) of red and blue
LED light source at 1700 μmol m-2 s-1 between 11:00 and 14:00, the
surrounding air temperature was 30-35°C and the relative humidity
ranged 64-72%. Next to these the measured leaves were detached and
leaf area was measured using a Li-3100 Area Meter (Li-Cor, USA) to
calculate the light-saturated photosynthetic rate per unit leaf area
(Pmax).

In August, most populations of A. philoxeroides were damaged by
various insects. On August 14, after the dominating herbivore was
distinguished, we randomly selected 5-6 shoots of A. philoxeroides
damaged by natural insects in each plot and determined net
photosynthetic rate on the second or third pair of damaged leaves from
the top of each shoot, the surrounding air temperature was 29-34°C
and the relative humidity ranged 60-67%. The area of the damaged leaf
(Ad) used for the photosynthesis measurement was measured, Pmax
was also calculated. To determine the original area of the damaged
leaves before they were attacked (Ao), we traced the outlines of the
damaged leaves on paper, cut out the leaf shapes and measured them
using a Li-3100 Area Meter. The consumed leaf area (Ac) was
calculated as: Ac=(Ao-Ad)/ Ao × 100%.

Controlled experiments
Controlled experiments were conducted in The National Field

Station of Freshwater Ecosystem of Liangzi Lake, Hubei Province,
China (30°50′-30°180′N, 114°210′-114°390′E). In April, 150 shoots of
A. philoxeroides were collected from Liangzi Lake. These shoots were
cultivated in circular basins with sandy sediment and 5 cm of water.
One week later, 36 plants of similar height and weight (mean height
11.56 ± 1.15 cm; mean fresh weight 1.38 ± 0.185 g) were transferred to
18 aquaria (L × W × H=100 cm × 50 cm × 70 cm) filled with 15 cm of
fine-textured, homogeneous sediment soil. Two plants were planted in
each aquarium and all aquaria were placed on an outdoor cement
platform. After 16 weeks, the two plants in each aquarium had formed
a single population and all leaves were intact with no herbivore bite
marks. The populations of A. philoxeroides were then exposed to the
generalist and specialist herbivores. In the generalist treatment, we
randomly selected six aquaria and placed twenty 2nd to 3rd instar
larvae of A. sinensis and twenty 3rd instar larvae of H. recurvalis on the
A. philoxeroides in each aquarium. In the specialist treatment, we
randomly selected six aquaria and placed twenty 2nd instar larvae and
twenty adults of A. hygrophila on the A. philoxeroides in each
aquarium. The six remaining aquaria were controls. All herbivores
were collected from populations of A. philoxeroides at the National
Field Station of Freshwater Ecosystem of Liangzi Lake and starved for
one day before the experiment. All aquaria were covered with a white
nylon net (mesh size: 1 mm2) during the experiment.

Three weeks later, the net photosynthetic rate was determined for
one of the second or third pairs of damaged leaves from the top at
between 11:00 and 14:00 using a Li-6400 Portable Photosynthesis
System (Li-Cor, USA) under a red and blue LED light source with a
photosynthetic photon flux density (PPFD) of 1700 μmol m-2 s-1, a
surrounding air temperature of 35-38°C and a relative humidity of
50-60%. The leaves used in the photosynthesis measurements were
marked and used again at between 19:30 and 21:00 to determine the
maximal quantum yield (Fv/Fm) using a DIVING-PAM (WALZ,
Germany). Next, these leaves were detached; the leaf area was
measured using a Li-3100 Area Meter (Li-Cor, USA) to calculate the
Pmax. Then the leaves were dried at 70°C for more than 48 h and
weighed to calculate the specific leaf area (SLA).
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The next day, the herbivores were removed. All remaining second or
third pairs of damaged leaves from the top were detached, dried at
70°C for more than 48 h, and stored at -20°C for chemical analyses.
Finally after the number of shoots was determined, the plants were
harvested. The leaves, stems and roots were separated, washed, and
dried at 70°C for more than 48 h to determine the leaf, stem and root
mass as well as the total biomass of the populations.

Leaf nitrogen concentration based on mass (Nmass) and leaf carbon
concentration based on mass (Cmass) were quantified using a Euro EA
3000 elemental analyser (Euro Vector, Italy). The leaf polyphenolic
concentration was measured using this [35]. The leaf lignin content
was determined using the method described by the leaf cellulose [36]
and total non-structural carbohydrate (TNC) content were determined
using anthrone colourimetry [37].

Statistical analyses
All data were analysed using one-way ANOVA after a test for

normality and homoscedasticity was conducted; then, Duncan’s tests

were used to compare levels within factors for significance (P<0.05).
All analyses were performed using SPSS 13.0 (SPSS Inc., Chicago, IL,
USA).

Results

The field trials
Among the five plots being analyzed, the populations of A.

philoxeroides in plots 5, 6, 7, and 8 were grazed by A. hygrophila, only
plot 4 was grazed by A. sinensis (Table 1). The consumed leaf areas
(Ac) were different in these five plots, with the value in plot 4 being the
smallest (Table 1). Pmax values were different among different
populations, both before and after herbivory. Plot 4 had the least
reduced Pmax among all five plots (Figure 1).

Plot Habitat Location Herbivore Ac (%) (mean ± SD)

1 Pool 30º15.673´N,114°33.514´E No data No data

2 Grassland 30º15.641´N,114°33.567´E No data No data

3 Cropland 30º15.798´N,114°33.521´E No data No data

4 Roadside 30°15.862´N,114°33.538´E A. sinensis 11.28 ± 6.61

5 Pond 30°15.919´N,114º33.521´E A. hygrophila 24.75 ± 9.64

6 Lake 30°15.854´N,114º33.526´E A. hygrophila 16.12 ± 6.10

7 Pond 30°15.864´N,114º33.485´E A. hygrophila 22.48 ± 11.74

8 Pond 30°15.667´N,114º33.518´E A. hygrophila 19.54 ± 4.57

Table 1: Habitation, location, herbivore and consumed leaf area (Ac) of Alternanthera philoxeroides populations in the field trials.

Figure 1: Pmax of A. philoxeroides before (black bars) and after
(white bars) herbivory in different populations in the field trials.

The controlled experiments
Both the generalist and specialist herbivores decreased the leaf mass

of A. philoxeroides. The specialists had a greater negative effect on the
leaf mass than the generalists. Compared with control, leaf mass of A.
philoxeroides in generalist and specialist treatments decreased by
42.7% and 84.0% respectively (Figure 2a). Neither the generalists nor
the specialists influenced the root mass, stem mass, total biomass or
shoot number in A. philoxeroides (Figure 2b, 2c, 2d and 2f). The root
and shoot ratio of A. philoxeroides significantly increased when the
plants were attacked by generalist and specialist herbivores (Figure 2e).
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Figure 2: Leaf mass (a), root mass (b), stem mass (c), total biomass (d), root: shoot ratio (e) and shoot number (f) of A. philoxeroides under
different treatments.

After herbivory by the generalists and specialists both the Pmax and
Nmass of A. philoxeroides were significantly lower than those in the
control; the specialists more greatly decreased Pmax and Nmass than the
generalists (Figure 3a and 3d). Compared with control, Pmax of A.
philoxeroides in general and specialist treatments decreased by 34.4%
and 66.9% respectively. The Fv/Fm and leaf TNC content of A.

philoxeroides were also significantly lower than those in the control
population after herbivory by both generalists and specialists (Figure
3b and 3f). The generalists significantly decreased the SLA of A.
philoxeroides, but the specialists had no influence on this parameter
(Figure 3c). Neither the generalists nor the specialists influenced the
leaf Cmass of A. philoxeroides (Figure 3e).
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Figure 3: Differences in the Pmax (a), Fv/Fm (b), SLA (c), leaf Nmass (d), leaf Cmass (e), and leaf TNC content (f) of A. philoxeroides under
different treatments.

The leaf polyphenolic concentration of A. philoxeroides did not
increase to resist attack by the generalists or specialists (Figure 4a).
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Figure 4: Differences in the leaf polyphenolic (a), lignin (b), and
cellulose (c) concentrations of A. philoxeroides under different
treatments.

When the generalists were present, the leaf lignin and cellulose
concentrations of A. philoxeroides increased, but only the leaf lignin
concentration increased in the presence of specialists (Figures 4b and
4c).

Discussion
In our study, both the generalists and specialists decreased the

photosynthetic rate, Fv/Fm, leaf nitrogen and TNC concentration in A.
philoxeroides. Pmax is an important leaf trait in plants because the
photosynthetic rate is related to various attributes of plant success,
including growth, competitiveness, propagation, and resistance to
herbivores or pathogens [38]. The insects feeding on leaves not only
reduce the leaf area for photosynthesis and but also decrease
photosynthesis in the remaining leaf tissues through four mechanisms:
severed vasculature, altered sink demand, defence-induced
autotoxicity, and defence-induced down-regulation of photosynthesis
[16]. The leaf N content is positively related to photosynthesis and
relative growth rates [38,39]. The loss of cytoplasm from wounds left
by herbivores results in a decrease in leaf N concentration [14].
Moreover, leaf nutritional qualities may determine plant palatability, as
herbivores prefer to feed on plants with higher N contents [40,41].
Studies have confirmed that leaf palatability is positively correlated
with leaf N content [42,43]. Therefore, an intentional reduction in
nitrogen concentrations after attack by herbivores has been suggested
to be an anti-herbivore strategy used by plants [44-46] photosynthesis
and a loss of cytoplasm can result in lower leaf TNC concentrations in
A. philoxeroides.

The populations of A. philoxeroides suffered greater herbivory from
specialists than generalists, which contributed to lower leaf mass in the

specialist treatments. Leaf photosynthesis was negatively correlated
with the degree of leaf damage [15,47]. In addition, studies have shown
that after herbivory, the remaining leaf issue closer to the wound has a
lower photosynthetic rate than leaf tissue farther away from the wound
[15,16] In our study, the larvae of the generalists, A. sinensis and H.
recurvalis, are chewers and tended to gnaw all the leaf tissue in a given
area. However, both the adults and larvae of the specialist, A.
hygrophila are miners and left holes in random locations on the leaves.
From the topology, the remaining leaf area closer to the wound caused
by the specialists was larger than that caused by the generalists when
both specialists and generalists consumed a given area leaf. As a result,
photosynthesis in the remaining leaves after attack by specialists was
lower than that after attack by generalists. Meanwhile, the larger
wound area caused by the specialists resulted in more cytoplasm loss,
which could also have contributed to the lower leaf N and TNC
concentrations after herbivory by the specialists than after herbivory by
the generalists.

Our results also reveal that A. philoxeroides responded more
strongly to the generalists than to the specialists. Although the leaf
polyphenolic concentration did not increase to resist the generalists or
the specialists in this species, the leaf lignin and cellulose
concentrations did increase to resist the generalists and only the leaf
lignin increased in response to the specialists. Lignin and cellulose are
major components of the plant cell wall. Elevated lignin and cellulose
contents increase leaf toughness [48]. Moreover, most herbivores lack
the ability to produce the enzymes necessary to decompose cellulose
and they therefore cannot digest cellulose [49,50]. These components
reduce the palatability of the plant. The specialist herbivore in this
study, A. hygrophila is a monophagous beetle herbivore of A.
philoxeroides. An increase in the leaf cellulose concentration cannot
drive them to feed on other plants. Furthermore, induced defences are
costly; they not only cost energy and materials but also affect other
physiological processes [51]. A higher leaf cellulose content contributes
to a lower SLA in plants, one of the main determinants of relative
growth and photosynthetic rates [52,53]. Although both specialists and
generalists reduce the leaf mass and physiological traits of A.
philoxeroides, they have no influence on the population traits or fitness
of A. philoxeroides. In our study, the leaf biomass of A. philoxeroides
was found to make up only approximately 10% of the population
biomass; stems and shoots constitute most of the biomass, but neither
the generalists nor the specialists damaged the stems or roots, and the
total biomass and shoot number were not influenced by herbivory. If
herbivory treatment persists for a longer time, the decline of
photosynthesis and leaf biomass will ultimately affect population
performance. In addition, after A. hygrophila consumed all leaves, they
will gnaw stems that contributes 75% of the total biomass [33,34].
However, A previous study found that herbivory has a significant and
strong negative effect on individual performance and reduces the
establishment of individual invaders but cannot completely prevent the
further spread of invasive plants once they have successfully
established [54]. The herbivory pressure from native generalist
herbivores is not sufficient to limit the spread of exotics after they cross
a density threshold; therefore, native herbivores fail to completely
eradicate exotic plants [55]. The life histories and distributions of the
specialist herbivores that are introduced from the original ranges of
invasive plants are mismatched with those of the invasive plants in the
invaded range [56] and they cannot remain present during the entire
life history or throughout the entire range of the invasive plants. In the
Yangtze River Basin, A. philoxeroides sprouts at the beginning of May,
but the population of A. hygrophila does not emerge until the end of
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July. Invasive plants always have strong competitive abilities [52] due to
their high relative growth and reproduction rates; therefore, A.
philoxeroides can rapidly colonize an area before A. hygrophila is
present. Moreover, A. philoxeroides shows strong compensatory ability
by improving its photosynthetic rate after herbivory [57,58].

In summary, in its introduced range, the defoliation and
physiological damage of A. philoxeroides populations caused by
generalist herbivores was far lower than that caused by its co-evolved
specialist herbivores and could defend against generalists better than
specialists. Which further magnified the consequence of invasive
plants suffered lower richness and abundance of natural enemy in
introduced ranges. We conclude that compared with the exotic plants
in original ranges, those in introduced areas, where specialists are
absent, have less herbivory stress from the genelralists attack, which
contributes to the better performance of exotic plants in introduced
areas.
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