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Abstract

Fatty acid desaturases (FADS) gene polymorphisms have been implicated in cardiovascular diseases, allergies,
psychiatric disorders as well as the metabolic syndrome. The relationship of genetic variation and diet is complex.
Recent studies have confirmed that polymorphisms in the FADS1 and FADS2 genes are associated with fatty acid
compositions which may eventually influence disease susceptibility. Dietary intake of long chain polyunsaturated
fatty acids (LC-PUFAs) has been studied to influence the effects of FADS gene polymorphisms. In this review, we
give an insight of the diet-gene interaction with respect to FADS gene polymorphisms.

Keywords: FADS gene polymorphisms; LC-PUFA intake; Diet-gene
interaction

Introduction
In recent times, the diet-gene interactions are the front-runners in

research on nutrition. Modifiable risk factors due to faulty lifestyle
practices such as physical inactivity, high body mass index (BMI),
smoking, alcohol use and last but not the least, unhealthy eating habits
are attributed to the development of diseases [1-5]. Poor dietary habits
are known to be harmful to health; additionally the numerous
interactions between nutrients and genes can further modulate an
individual's risk for developing disease.

The relationship of genetic variation and diet is complex. A number
of genetic variations have been shown to increase the susceptibility to
diet-related diseases. Numerous studies have demonstrated that diets
high in refined sugars and saturated fats are associated with a higher
incidence of metabolic syndrome, cardiovascular disease, cancer and
autoimmune diseases [6-8].

Single nucleotide polymorphisms (SNPs) are the most common
form of sequence variations that could modify an individual's response
to diet. Other types of variations include nucleotide repeats, insertions
and deletions [9].

Recent studies have confirmed that SNPs in the FADS1 and FADS2
genes are associated with fatty acid compositions in the human body
which may eventually influence disease susceptibility [10-12].

Polyunsaturated fatty acid metabolism
Long-chain polyunsaturated fatty acids (LC-PUFAs) are important

for health and maintenance of all metabolic functions. They are
associated with various disorders like cardiovascular diseases, allergies,
metabolic syndrome and psychiatric disorders [13,14].

Essential fatty acids (EFAs) like linoleic acid (LA) and alpha-
linolenic acid (ALA) are precursors to LC-PUFAs. These precursors are
further elongated and desaturated with the help of rate-limiting

enzymes delta-6-desaturases (D6D) and delta-5 desaturases (D5D). LA
is the precursor to arachidonic acid (AA) while ALA is the precursor
to EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid).
D6D and D5D catalyze both LA (omega-6) and ALA (omega-3) to
their respective LC-PUFAs through a cascade of reactions [15].

SNP ID & Gene
name

Genoty
pe

Populatio
n size Findings Referenc

es

rs174537
FADS1 G/T 1453

GG < GT, TT Increase
in LA, ALA; Decrease in
EDA, AA, EPA, LA, LDL
and total cholesterol

rs174545
FADS1 C/G 876

CC < CG<GG; Increase
in AA, AA/LA, EPA/ALA;
Decrease in LA and
ALA

-21

rs174556
FADS1 C/T 658 CC < CT < TT; Increase

in EDA; Decrease in AA -39

rs174570
FADS2 C/T 727

CC< CT&TT; Increase
in EDA; Decrease in
GLA & AA

-39

rs174611
FADS2 T/C 876

TT < TC < CC; Increase
in LA & ALA; Decrease
in AA, AA/LA &
EPA/ALA

-21

Rs968567
FADS2 C/T 1144

CC < CT< TT ; Increase
in LA & ALA; Decrease
in AA & EPA

-35

Table 1: FADS1 and FADS2 SNPs and their associations with various
fatty acids.

D5D and D6D are encoded by the genes FADS1 and FADS2
respectively and are arranged in a head to head fashion to form a gene
cluster on chromosome 11 (11q12-13.1) in humans (Figure 1) [16].
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Contrasting roles of Omega-6 and Omega-3 PUFAS
Omega-6 and Omega-3 PUFAs compete for the rate limiting

enzymes D6D and D5D to synthesize their respective products ARA
and EPA, DHA. Many oxidative products of ARA are proven to be pro-
inflammatory whereas a variety of omega-3 PUFA products like
protectins, maresins, resolvins studied have shown anti-inflammatory
activity [17-19] establishing the opposing effects of omega-6 and
omega3 LC PUFAs. Their levels play a critical role in determining
disease risk factors like the amount of circulating phospholipids,
cholesterol and triglycerides.

Dietary changes over time
Our diet has changed over the past 10 decades with changes

occurring in the type of fat and vitamins we consume. The present day
“western diet” lacks a balance between omega-6 and omega-3 PUFAs
with the ratio being 15/1-17/1 as opposed to the prehistoric ratio of 1/1
[20]. Genetic variations may have arisen in response to the dietary
influences during evolution where there was a balance between the
intake of omega-6 and omega-3 PUFAs. Today, we live in a
nutritionally distinct environment from which our genetic constitution
was selected [21-23]. Thus a balance of EFAs is essential for our health
and development [21]. PUFA composition of cell membranes is
dependent largely on both dietary intakes as well genetics. Our present
day western diet has increased amounts of omega-6 fatty acids which
are precursors to the inflammatory prostaglandins, thromboxanes,
leukotrienes. This shifts the physiological balance giving rise to a
number of inflammatory disorders.

FADS SNPs
Several FADS1 and FADS2 SNPs have been studied for their

association on plasma fatty acids (Cholesterol, LDL, HDL, triglycerides
etc.) [11,24-27]. These SNPs have been significantly associated with
higher levels of plasma or serum fatty acids (Table 1).

Diet-FADS gene interaction
The diet-FADS gene interaction has been studied recently in several

randomized studies which gives us in-depth information of the
relationship between genetics and diet.

Liu et al studied the effects of dietary omega-3 PUFAs on FADS1
SNP rs174547 and coronary artery disease (CAD) risk in middle aged
and elderly Chinese men. Minor T allele of rs174547 increased CAD
risk (OR=1.36, 95% CIs: 1.03-1.80). However, this association held true
only in individuals with lower dietary EPA intakes. Likewise, there was
a significant interaction of rs174547 minor T allele and dietary DHA
intake on CAD risk (OR=1.52, 95% CI: 0.95-2.42) [28]. Thus it can be
concluded that elevated dietary omega-3 intakes can modify the
disease risk of CAD in minor allele carriers of rs174547 in Chinese
population.

In a randomized crossover design, Gillingham et al. [29]
investigated the effect of flaxseed oil (FXCO) and high-oleic acid
canola oil (HOCO) enriched diets and FADS gene polymorphisms on
plasma fatty acid levels and [U-13C] ALA metabolism. Rs174537,
rs174561, rs174545 and rs174583 were studied and minor allele
carriers of all the four SNPs had lower AA in comparison to the major
allele carriers. Similar results were obtained with omega-3 PUFAs with
subjects homozygous for the minor alleles having lower plasma EPA
levels (p<0.05).

Interestingly, the lower concentration of plasma EPA in the minor
allele carriers for all four SNPs increased after consuming the ALA rich
FXCO diet in comparison to the HOCO diet (p=0.048) and western
diet control (p=0.036). Thus it can be stated that an increase in the
intake in ALA increases the plasma EPA levels which in turn can be
cardio protective in minor allele carriers of many of the FADS genes
[29].

FADS gene polymorphisms and diet are also key regulators of
erythrocyte membrane phospholipid PUFA concentrations [11,30].
Few of the SNPs are also associated with cholesterol concentrations
which in turn are influenced by dietary PUFA intakes [31-36].

Imholz et al. [37] demonstrated significant interaction between
FADS1 rs174546 and total and non-HDL cholesterol in the high
omega-3 intake group (p=0.006 and 0.047 respectively) but not in the
low intake group. The major allele C was associated with high
cholesterol concentrations in the high omega-6 intake group which
highlights the interplay of FADS1 gene polymorphisms and dietary
PUFAs in Dutch adults [37].

In yet another large observational study, Hellstrand et al. [38]
observed that for the 11% of the homozygous minor allele carriers of
FADS1 gene SNP rs174546 high ALA and ALA/LA intake ratio was
significantly associated (p=0.04) (after excluding participants
suspected to misreport food habits) in preventing CVD and ischemic
stroke.

The diet-gene interaction has been explored not only in adults but
also in adolescents and infants giving us an insight of the interaction
even in the early stages of life.

Dumont et al assessed whether dietary LA and ALA were associated
with FADS1 rs174546 and concentrations of PUFAs in European
adolescents. The subjects were grouped as per the median dietary
intake of LA and ALA with 7.5 and 1.1 g/day in the low intake group
and 12 and 1.8 g/day in the high intake group respectively. Serum LA
levels were higher in the high LA intake group. However, ALA intake
was not associated with serum ALA levels. FADS1 rs174546 minor T
allele was associated with higher concentrations of ALA in both low
and high ALA intake groups and also significantly associated with
lower serum EPA levels in high ALA intake groups [39]. This study
also showed a significant relation of FADS1 rs174546 T allele with
lower serum total cholesterol and non-HDL cholesterol only in the
high ALA intake group similar to Lu et al. [28] Dutch study.

Furthermore in a cross-sectional study with Danish infants, Harsløf
et al. [40] studied the red blood cells (RBC) DHA status at 9 months
and 3 years and genotyped four FADS SNPs rs3834458, rs1535,
rs174575 and rs174448. Fish intake and information on breastfeeding
was obtained by questionnaires. It was observed that FADS genotype;
breastfeeding and fish intake explained 25% of the variation in the
RBC DHA status of the infants. DHA fatty acid levels (FA%) was
higher in infants still being breastfed at 9 months with 0.7 FA% higher
DHA as compared to infants who were no longer breastfed (p=0.001).
Homozygous minor allele carriers of FADS SNP rs1535 had an
increase in DHA of 1.8 FA% in comparison to the wild type allele. The
minor allele carriers of the FADS SNPs rs174575 and rs174448 had
reduced FA% of 2.0 (p=0.001) and 1.1 (p=0.005), respectively. Every 10
g increment in fish intake was linked to elevated DHA status of 0.3 FA
% [40]. Thus, it can be concluded that breastfeeding, FADS genotypes
and fish intake are implicated in determining the DHA status in late
infancy as well.
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Molto-Puigmarti et al. [41] studied associations of maternal PUFA
intakes in pregnancy with pregnancy durations and birth-weight as
well as their associations with maternal and fetal FADS genotypes.
FADS1 SNP rs174556 was genotyped in pregnant women (1516) and
children (1515). Homozygous minor allele carriers of rs174556 with
75th percentile of DHA intake had infants 226 g heavier than those at
25th percentile intake (p=0.030). DHA intake was not associated
significantly with infant birth-weight in major allele carriers. This
study highlights the correlation of FADS gene variations on maternal
and fetal fatty acid requirements [41].

Conclusion
It is long known that FADS gene polymorphisms are associated with

blood PUFA levels. However, the influence of diet on this association

has been studied only recently. Minor allele carriers of FADS genes
have been observed to have lower levels of LC-PUFAs due to lower
desaturase enzyme activity [10,42-44].

The diet-gene interaction with respect to FADS genes and PUFA
intake has been very well highlighted by recent studies where the
circulating PUFA levels are affected not only by the variation in FADS
genes but also by the dietary intake of EFAs in adults [28,37,29]. This
diet-gene interaction analysis has been extended and confirmed even
in European adolescents and infants [39,40]. Moreover the modulatory
effects of dietary PUFA intake on the FADS gene variation and disease
risks are studied in diverse ethnic populations.

Figure 1: PUFA biosynthesis pathway.

With diet neutralizing the effects of FADS gene polymorphisms to
some extent, we can hypothesize that indeed environment, in this case
in the form of diet, does play a role in genetics and variation. Although

the intricacies of chronic diseases are extensive, integrating the
knowledge of diet-gene interactions may help us elucidate the
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underlying molecular mechanisms to maintain good health and
prevent the onset or progression of certain diseases.
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