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INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has 
invaded wireless communication due to its high data rate and 
capacity with high bandwidth efficiency and its robustness for 
multipath delay. It was used in wireless LAN standards such 
as the American communication standard IEEE802.11a and 
IEEE 802.11p in vehicular environments the dynamic channel 
estimation is performed before the demodulation of OFDM signals 
because the radio channel is frequency-selective and time varying 
for broadband mobile communication systems [1]. In recent years, 
deep learning has almost invaded the world of telecom electronics 
and other fields, given the spectacular results it achieves in terms of 
improving the performance of digital processing chains. Wireless 
Access in Vehicle Environments (WAVE) technology has been 
developed, and IEEE 802.11p defines the Physical Layer (PHY) 

and Media Access Control (MAC) layer in the WAVE standard. 
However, the IEEE 802.11p frame structure, which has a low pilot 
density, makes it difficult to predict wireless channel properties 
in a vehicle environment with high vehicle speeds (high Doppler 
frequency), thus system performance are degraded in realistic 
vehicle environments. The motivation of this article is to improve 
channel estimation and tracking performance without modifying 
the IEEE 802.11p frame structure. Therefore, we propose a 
channel estimation technique based on deep learning that can 
perform well over the entire range of SNR values, the effects of 
ISI and ICI interference remain inescapable phenomena. The 
improvement brought by the LS channel estimation methods, 
MMSE and linear equalizers, cubic spline, linear DFT and cubic 
spline DFT interpolation are reviewed, these interpolation 
techniques contribute to the reduction of the BER in the chain. 
The different vehicular channel environment scenarios are split; 
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simulations of the new estimation DNN method are performed 
on examples of high mobility channels, and compared to the 
LS and MMSE methods. A strong immunity of the proposed 
estimator against the high mobility of the channels is observed. 

In this paper, we study in section 2 channel estimation in the 
physical layer of IEEE 802.11p. Standard channel model for 
wireless communication systems, in section 3 we describe all 
the traditional channel environment estimation methods and 
the proposed method based on DNN are presented in section 
4. In section 5 all the simulations and the results and their 
interpretations finally section 6 concludes the article.

Channel estimation in IEEE 802.11p

In vehicular communications, reliable channel estimation of 
channels is considered a major critical challenge to ensure system 
performance due to the extremely time-varying characteristic of 
vehicular channels. The main challenge is to follow the channel 
variations over the length of the packets while respecting the 
standard specifications. Figure 1  specifies the comb-type driver 
arrangement in IEEE 802.11p [2]. This layout consists of two 
types of drivers: block and comb drivers. The figure shows the 
principle of Least Squares (LS) estimation based on block pilots, 
which are executed first to obtain the response channel frequency. 
Such LS appreciates limits performance due to rapid channel 
variations and sparse block driver placement. To overcome this 
problem, pilots must be periodically added to the data network 
to provide channel updating and tracking, after which the initial 
insertion correlation in the time and frequency domains can be 
exploited to improve the performance of Estimate of the channel. 
Accordingly, after performing the initial LS estimation on the 
block pilots in [3], linear filtering of the minimum Mean Squared 
Error (MSE) in the time domain was implemented on the comb 
pilots to track the channel change over time, given

2 1 1 1
Im ( (X ) )H

mse c c c ch Rh Rh X X y
∧

− − −= +σ

Where R
h
=E (h hH) is the channel time domain correlation 

matrix, X
C
 is the pilot training comb, y

c
 is the received signal, and 

σ2 is the power noise. For WSSUS environments, the correlation 
of channel frequency responses at different times and frequencies 
[4], r

H
 (∆t, ∆f) can be decoupled as the product of that in the time 

domain, rt (∆t), and that in the frequency domain, r
f
 (∆f), i.e.  r

H
 

(∆t, ∆f)=r
t
 (∆t) r

f
 (∆f) where r

t
 (∆t), depends on the speed of the 

vehicle or, equivalently, the Doppler shift and rf (∆f), depend 
on the multipath delay propagation channel estimation based on 
block pilots. Channel block, there will be no channel estimation 
error since pilots are sent on all carriers. Estimation can be 
performed using LS or MMSE. If inter symbol interference is 
eliminated by the guard interval, the problem is how, where and 
how often to insert pilot symbols. The spacing between pilot 
symbols must be smaller to make channel estimates reliable. 
to determine the number of pilot tones needed, the frequency 
domain channel transfer function H (f) is the Fourier transform 
of the impulse response h (t). Each of the impulses in the impulse 
response will result in a complex exponential function T in the 
frequency domain, given its delay where is the symbol time. 
sampling this contribution to H (f) assumes compliance with 
Nyquist sampling theorem and the maximum pilot spacing, 
Δ f in the OFDM symbol is: ∆p ≤ (NT

S
Δf)/2τ where N is the

number of subcarriers, Δf is the  Doppler shift TS=8 μs is the 
symbol duration OFDM. The channel can be estimated at 
pilot frequencies in two ways: LS and (LMMSE). For block type 
arrangements, the pilot tone channel can be estimated using LS 
or MMSE estimate, it also assumes that the channel remains the 
same for the whole block. MMSE estimate gives 10-12 dB gain 
in Signal-to-Noise Ratio (SNR) on the LS estimate for the same 
root mean square error of the channel estimate. Comb type pilot 
tone estimation was introduced to meet the need for equalization 
when the channel changes even in an OFDM block.  Channel 
estimation at pilot frequencies for channel estimation based on 
comb type can be based on LS, MMSE or Least-Mean-Square 
(LMS) MMSE works much better than LS. For study Principe of 
LS estimate see appendix 1 in comb type pilot arrangement, pilot 
symbols are inserted into sub-carriers with same interval. This 
type of pilot arrangement is suitable when channel conditions 
change from one OFDM block to the subsequent one. If NP are 
numbers of pilot signals then X (k) can be written as:

( ) ( ) { ,

(m)1 0
1 1,...N_F p

F

X
dataX k X mN l =

== + = (1)

Where X (k) is the information, including pilots and data of all 
sub-carriers, Xp (m) is the mth pilot carrier value and N

F
 represents 

frequency interval of inserted pilots (N
F
=N

FFT
/NP). According to 

the pilot positions, frequency response of corresponding sub-
channel is calculated in the receiver.

( )
(mN )

(m) p F
p

P F
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H
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After estimating the channel transfer function Hp (m) from pilot 
tones, an efficient interpolation method is applied on pilot sub-
carriers and obtained N

FFT
 points channel transfer function H 

(k).

Linear interpolation

Linear interpolation is also a simple method. It consists, for data 
subcarrier km GI ≤k ≤ (m+1) GI, the estimated channel response 
using linear interpolation is given by:

Figure 1: Group-three clustering cell.Figure 3: Group-three clustering cell.
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The linear channel interpolation can be implemented by using 
digital filtering such as Farrow-structure. Furthermore, by carefully 
inspecting equation, we find that if GI is chosen as power of 2, the 
multiplications operations involved in equation can be replaced 
by shift operations, and therefore no multiplication operation is 
needed in the linear channel interpolation. GI=N/N

p
, N is the 

number of subcarrier, N
p
 number of pilot It is obvious to notice 

that this method of interpolation is clearly better than that of the 
nearest eighbor. In addition, we notice that this method offers 
bad results when the channel is very selective in frequency.

Spline cubic interpolation

Method gives smooth and better interpolation accuracy but the 
performance improvement is not obviously proven. It uses higher 
order interpolation. Spline cubic interpolation is representented 
as in Figure 2 the expression of the interpolated channel is given 
by: 

( )1 01 0(f) (kN 1) ( 1) (m) N 1 (m)P pF p F pF
H H H m H H m N H
∧ ∧ ∧ ∧ ∧ ∧
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 is the first order ( )pH m
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MATERIALS AND METHODS

IEEE 802.11p standard

AThe Intelligent Transport System (ITS) is one of many 
viable solutions to improve road safety, where the means of 
communication (e.g., between vehicles and between vehicles 
and other components of and ITS environment, such as road 
infrastructure) are usually wireless. The typical communication 
standard adopted by car manufacturers is IEEE 802.11p. Thus, 
this article presents an inventory of the IEEE 802.11p, more 
precisely, we analyze the MAC and PHY layers in an environment 
Dedicated to Short-Range Communications (DSRC) by studying 
the limitations of the chain and we propose the solutions. To 
improve the efficiency of the wireless transmission chains used 
in this standard.

Criterion of the IEEE 802.11p standard: For vehicular 
communications, the IEEE 802.11a standard [5] has been 
modified by the P working group (TGp) to give birth to the 

IEEE 802.11 standard p. It uses the physical layer (OFDM) 
(previously specified in IEEE 802.11a IEEE 802.11p specifies 
a set of parameters for the physical layer (PHY), dealing with 
vehicle scenarios. OFDM is a modulation technique in which 
the bandwidth of overall transmission B is subdivided into N 
orthogonal B/N band subcarriers. Each subcarrier is subject to 
flat frequency fading, allowing simple channel equalization on 
the receiver side. To (ISI) avoid intersymbol interference; OFDM 
implements a specific form of guard period, the cyclic prefix. 
The cyclic prefix is a copy of the last G samples from the end 
of the OFDM symbol. To implement OFDM, a Discrete Fourier 
Transform (DFT) is computed with T

x
 and R

x
. In addition to 

efficient DFT using the fast fourier transform. For OFDM system 
design, two basic wireless channel parameters must be considered: 
Excess delay f

max
 and the doppler spread f

D
. Excessive (maximum) 

sets a limit to the maximum data rate that can be used without 
an equalizer, or similarly it determines the minimum duration of 
the cyclic prefix in OFDM.

T
max

<G/B                (6)

The Doppler spread determines the minimum subcarrier spacing 
in OFDM systems before the onset of inter carrier interference, 
due to loss of Subcarrier orthogonality.

f
D
<<B/N                  (7)

As additional constraint the spectral efficiency

n=N/N+G               (8)

Shall be as large as possible for coherent detection, Channel State 
Information (CSI) is required. To obtain CSI, current   standards 
rely on known pilot symbols that are interleaved with the data in 
the OFDM time-frequency grid. For the system design it is crucial 
to place the pilot symbols in the OFDM time-frequency grid 
according to the maximum excess delay and the doppler spread 
of the wireless communication channel. The maximum excess 
delay determines how dense pilot symbols must be transmitted in 
frequency domain, and the maximum pilot spacing f (number of 
subcarriers) will satisfy.

  
max

f
N

T B
∆ ≤      (9)

The Doppler spread determines how dense pilot symbols must 
be placed in time. The maximum spacing t (number of OFDM 
symbols) will satisfy.

  2 (N G)f
D

B
f

∆ ≤
+ (10)

Specific choices of OFDM parameters allow for a wide range of 
applications from broadcasting [6] to cellular [7], WLAN [8], and 
vehicular connectivity [9].

IEEE 802.11p system performance: Ensure that the cyclic 
prefix length G=16 corresponding samples corresponding to a 
tolerable excessive delay of 1.6 µs corresponding to a distance at a 
propagation distance of 480 m. 802.11p bandwidth reduced to 10 
MHZ With N=64 subcarriers, only 52 are used due to guard band 

Figure 2: Spline cubic interpolation method.   Note: ( ) Pilot, ( ) 
Data, ( ) Interpolations.Figure 3: Group-three clustering cell.
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requirements. The performance of the 802.11p system is largely 
determined by the receiver’s channel estimator and channel 
equalizer. the estimation and equalization techniques of the IEEE 
802.11a model are the same as those used in IEEE 802.11p this 
type of driver is well suited for mobile indoor use, but not for 
vehicular scenarios where the channels are jointly time-selective 
frequency. Which leads to a loss of performance if too naive 
channel estimators are used the IEEE 802.11p driver model uses 
two types of drivers: 1) block drivers and 2) comb drivers. The 52 
subcarriers of the first two OFDM symbols are dedicated to the 
pilots. In the remaining OFDM symbols, only four subcarriers 
contain pilots for the entire duration of the frame two types of 
estimators exist; block type channel estimator: a channel estimate 
is calculated from block pilots only. The estimated channel 
coefficients are used for the whole frame the LS estimator is used 
SEE appendix a.

Block-comb channel estimator: First, the temporal correlation 
function is estimated using the comb pilots. Subsequently, a 
linear Minimum Mean Squared Error (MMSE) filtering structure 
requires greater complexity than the LS estimator to allow for 
the temporal variance of the channel. Acceptable performance 
is expected for short block lengths, as well as for channels with 
short delay spread and high doppler spread, or high delay spread 
but low doppler spread. Conversely, under NLOS conditions 
with a Doppler spread f

D
>500 Hz and a maximum delay 

max>400 ns, performance losses are unavoidable. The objective 
of this work is. to verify that the limitations of classical  LS OR 
MMSE estimation methods, for certain channel scenarios, are 
easily overcome by using DNN-based estmators for this we will 
take some environments giving worse performance with the 
classical methods that we try with the estimation based on DNN 
transmission fidelity BER were found.

Environment and vehicular channel

DSRC robustness to doppler spread is a concern for faster 
applications. The surrounding environment was very varied due 
to the presence of hills, bridges and other concrete structures. 
Traffic was also uncontrolled, with a mix of passenger vehicles 
and large tractor-trailer trucks. Non Line of Sight (NLOS) 
conditions were created either by terrain or by the imposition 
of blocking vehicles (e.g. large trucks or towed trailers) between 
our transmitter and receiver. LOS test locations. When LOS is 
present, freeway scenarios are characterized by short delay gaps 
but potentially large doppler gaps. Highway speeds were about 
30 m/s and the carrier frequency of the waveform was 5900 
MHz. Thus, doppler shifts of 1.1 kHz or more are possible when 
reflections from obstacles directly in front of the transmitter and 
receiver are taken into account. For example, a reflection off a 
bridge crossing the road (i.e. an “overpass”) gives an effective 
path closure rate of 60 m/s and a doppler shift of 1172 Hz 
reflections off vehicles in approach (also moving at 30 m/s) lead 
to an approach speed of 120 m/s and a doppler shift of 2.3 kHz. 

doppler spread represents a range of reflections from many angles 
(and therefore different closure rates), spreads greater than 2 kHz 
are possible, the different scenarios are summarized.

Vehicular channel modeling

The effects of channel propagation in vehicular communications 
differ from those in wireless systems. Vehicular channels have 
rapid temporal variability and inherent non-stationarity in 
channel statistics due to their unique physics dynamics of the 
environment [10]. Therefore, an appropriate mathematical 
modeling for the vehicular channels is essential to evaluate their 
effects in the transmission chain. Let denote the distance in 
meters between the transmitter and receiver.

Path loss in vanet

To predict the received signal strength in the Line-of-Sight (los) 
environment or the free space propagation model is let d be the 
distance in meters.

Between transmitter and receiver when non-isotropic antennas 
are used with a transmitter gain of G

t
 and a reception gain of 

G
r
, the power received at a distance, is expressed by the Friis 

equation given by   P
r
 (d)=(P

t
 G

t
 G

r
 λ2)/(4π)2 d2L) (2.11) where P

t

is the transmit power (watts), 𝜆 is the radiation wavelength (m), 
and L is the system loss factor which does not depend  of the 
propagation environment. It represents the overall attenuation 
or loss in the actual system hardware, including the transmission 
line, filter, and antennas. Typically L>1, L=1 assuming no loss in 
system hardware. It follows from equation (2.11) that the received 
power attenuates exponentially with distance d. the free space 
path loss PL

F
 (d) without any system loss, can be directly derived 

from equation (2.11) environment, the free-space path loss PL
F
 (d), 

without any system loss can be directly derived from equation (2.11)                                                                                                         

( ) 41 20logt r F
dG G PL d Π = = =  

 λ
		 (2.12) 

for the IEEE 802.11 p standard, the free space path loss at the 
carrier frequency fc of  5.9 GHz for different antenna gains 
diminished and when the distance separating the transmitter 
and the receiver d increases, as shown in the Figure 3. A more 
generalized form of the path loss model can be constructed by 
modifying the free space path loss with the path loss exponent 
which varies by environment. This is known as the log-distance 
path loss model, in which the distance path loss d is given as 
evidence that the path loss increases by reducing the antenna 
gains PL

LD
 (d)=PL

F
 (d

0
)+10nlog (d/d

0
) (1.13). A d0 must be 

correctly determined for different propagation environments. 
Show the value of n for different environment.  Note that n=2 
correspond to the free space. Moreover tends to increase as there 
are more obstructions (Figure 4).
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Shadow-fading models

It is clear that the path loss increases with the path loss exponent. 
Even if the distance between the transmitter and receiver is equal 
to each other, every path may have different path loss since the 
surrounding environments may vary with the location of the 
receiver in practice. However, not all the aforementioned path 
loss models consider this particular situation. A lognormal 
shadowing model is useful when dealing with a more realistic 
situation. Let Xσ   denote a Gaussian random variable with a 
zero mean and a standard deviation of σ. Then, the log-normal 
shadowing model is given as:

 ( ) 0
0

(d ) 10 logFLD
dPL nL XP d
d

 
= + + 

 
σ

Alternatively, this particular model allows the receiver at the same 
distance to have different path loss, which varies with Xσ random 
shading effects. Figure 5 shows the path loss that follows the log-
normal shadowing model at fc=5. 9GHz with σ=3 dB and n=2. It 
clearly illustrates the random effect of shadowing that is imposed 
on the deterministic nature of the log-distance path loss model. 
The results clearly show that the log-normal shading introduces 
randomness into the received signal power, which can bring us 
closer to reality [11].

Determinist model of v2v channel

Small-scale fading occurs over distances from the carrier 
wavelength due to the construction and destructive effects of 
multiple time-varying delayed aftershocks original signals received 
from different paths between the transmitter and the receiver. 
The time-varying channel impulse response can be expressed as 
follows: 

    ( ) (t)
1, (t) e ( (t))n j i

ih t T i T TiΦ
== ∑ −γ δ                                                                                                      (11)

Where γ
i
 denote the complex amplitude, τ

i
 is delay and Φ

i
 (t)=2πf

c

τ
i
(t)-φνl, where φνl=∫ 2π fνl   dt is the phase that depends on the

delay and doppler of the lth multi-path component MPC at time t, 
respectively. In time variant systems it is important to distinguish 
between the delay τ and the absolute time t over their way the 
general expression (1.1) represents a doubly selective channel 
since there are several paths and the attenuations and delays are a 
function of time two examples s for h (t,τ) are used.

Time-invariant frequency-selective channel: When the 
transmitter, receiver, and surroundings are stationary, the 
attenuations γ

i
 (t) and the deadlines for propagation τ

i
 (t) do

not depend on time. However, the delays are significantly large 
compared to the period of the symbol.  Figure 6 gives an example 
for velocity v=2 km/h.

Time-varying (or time-selective) flat-fading channel: The delays 
τ

i
(t) is approximately constant and small compared to the symbol

period. This scenario occurs when the transmitter or receiver is 
mobile and when the symbol the period of the transmitted signal 
greatly exceeds one of all the delays. Since the symbol period TS 
decreases when the data rate increases, the channel may be flat or 
frequency-selective fading depending on the data rate. The delay 
spread is another relevant parameter delay spread.

      

,
max (t) (t)d i j

i j
T T T= − (12)

T
S
>>T

d
  we defined also BC=1/5T

ram
=1/T

max
, (3.3) channel fades 

flat. Otherwise, the channel is frequency selective. As an example 
the typical delay propagation in a wireless channel in an urban 
area is 5 μs when the distance between transmitter and receiver 

Figure 3: Free-space path loss in vanet. Note: ( ) G
t
-1.G

r
-1, ( ) 

G
t
-1.G

r
-0.5, ( ) G

t
-0.5.G

r
-0.5.

Figure 4: Log-distance path loss model. Note: ( ) n=2, ( ) n=3, 
( ) n=6.

Figure 6: Doppler effect in times domain for the vanet channel.

Figure 5: Log normal shadowing path loss model. Note: ( ) Log 
normal shadowing, ( ) First model.
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is 1 km for data rate is 1 kbps, 1 ms and the channel is faded flat 
because T

d
<< T

s
. for a debit of 1 Mbps, Ts is 1 µs the channel 

becomes frequency selective because T
s
<<T

d
 the mobility of the 

transmitter or the receiver will induce a change of radiofrequency, 
called Doppler shift D

s
. T

C 
coherence time, one parameter Linked 

to the Doppler shift by:

 
1

2 2c
d c

cT
f vf

= = (13)

If the coherence time TC is comparable to the symbol period, 
the channel is time-varying. In contrast, in time-invariant 
channels, the coherence time TC is much larger than the period 
of the symbol i.e. the channel remains constant. As an example, 
D

S
=54.62 Hz given if v=2 km/h and the transmit data rate is 

1 Mbps, then T
C
=9.145ms is much greater than 1 µs symbol 

duration. Another value for   D
S
=2185.18 Hz for v=400 km/h 

and the transmit rate is 1Mbps then T
C
=0.228 ms less than the 

1 ms symbol duration   if the transmit rate is 1 kbps, Figures 2 
and 3 shows the effect of the doopler effect for the vanet channel 
it gives this type of channel for velocity v=120 km/h and 400 
km/h this is a time varying channel. Figure 7 shows how the 
amplitude of the first path of the channel varies according to the 
speed of the mobile, so the doppler effect on the behavior of the 
channel we find the behavior of the two types of channel already 
mentioned. The types of wireless channels are depicted in Table 1.

Table 1: Give value of n for different environment.  

Environment Path  loss exponent (n)

Free space 2

Urban area cellular radio 2.7-3.5

Shadowed urban cellular radio 3-5

In building line-of-sight 1.6-1.8

Obstructed in building 4-6

Obstructed in factories 2-3

Statistical channel parameters

The impulse response of the time-varying CIR channel: h (τ, t) 

is usually estimated via the measured power Delay Profiles (PDP). 
The most common PDP statistic is RMS delay deviation, τ

rms
.  H

(f, t) is the fourier transform of h (τ, t) with respect to τ. The 
Spaced-Frequency, Spaced-Time (SFST) correlation function: 
R (t, f, ∆t, ∆f)=correlation of time variation TF, to time shift 
∆t, frequency separation ∆f. When the scattering at different 
delays is uncorrelated and the time variation is broad-sense 
stationary, this reduces to R (∆t, ∆f). The width of R (∆t, ∆f) 
is called coherence, or correlation, bandwidth, Bc, which is a 
measure of correlation between channel effects at two different 
frequencies. As a rule, we have B

c
=1/τ

rms
. The width of R (∆t,

0) is the coherence time, T
C
. Diffusion function SF: S (t, f, υ,

τ)=average channel output power as a function of delay τ and
doppler, this is the double fourier transform of R (t, f, ∆t , ∆f) =
correlation of the variable time TF, at the time shift ∆t, frequency
difference ∆f in case of uncorrelated scattering and broad-sense
stationarity, SF reduces to S (υ, τ), double Fourier transform of
R (∆t, ∆f). The approximate width of S(υ, τ) in υ is the Doppler
spread f

d
=1/T

C
. The corresponding function simultaneously

observes the dispersion provided by the channel in the time and
frequency domains, hence its name: delay-doppler dispersion
function. The dispersion function combines information about
doppler shifts and path delays. The basic idea behind dispersion
functions is that they plot expected power by doppler shift and
excessive delay each path can be described by its Angle of arrival
and doppler shift Excessive delay. Thus, we can plot the received
energy in a two-dimensional plane, with a Doppler shift on one
horizontal axis and a delay on the other horizontal axis example
consider a u-shaped doppler spectrum, as it occurs with uniformly 
distributed angles of arrival of reflected waves. The maximum
offset is f

m
. an exponential delay spread of average T

rms
. Moreover,

we assume that the delay spread and the doppler spread are
separable. Then the amount of (broadcast power) per frequency
and time slot can be expressed as:

   
( )2

2

1(f, t) exp

(1

local mean

rms rmsC

m

P TS
T Tf f

f

−  
= − 

 −
−

(14)

Appendix B gives the theoretical foundations of this type of 
channel. The function S (τ, ν), this function is simulated for 
two types of channels VTV Expressway (VTV-EX) and RTV-
UC: Described in Tables 2 and 3 to describe the channel, we use 
the statistical function denoted shy, and function 1/τ

rms
 exp (-τ/

τ
rms

) can is easily derived from the functions previously defined 
with the following relation’s (∆f):  Where, P(local-mean) is the 
received power level averaged over an area of tens or hundreds of 
meters fc=5.9G Hz is the carrier frequency used in IEEE 802.11p, 
fm is the maximum doppler frequency defined in Table 2 for 
each channel type. The following script plots the given diffusion 
function as a 3D plot. It also plots the power delay profile and 
the doppler power spectrum by projecting the 3D plot along 
the x-axis and the y-axis represents this function for two types of 
v2v channel, Figure 8 gives the channel characteristics RTV-SS 
channel for τ

rms
=21.6 ns, f

d
=580 Hz (v=30 km/h), Figure 9 gives

the characteristic of the channel VTV-EX channel. By making 

Figure 7: Doppler effect in first path weakening for jakes model 
channel. Note: ( ) Mobile velocity=10 km/h, ( ) Mobile 
velocity=100 km/h, ( ) Mobile velocity =500 Km/h.
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a simulation comparison, it can be seen that the power of the 
received signal degrades significantly when the doppler frequency 
increases.

Table 2: Shadow-fading parameter for V2V communication.

Environment link 
type

Highway  σ (dB) Urban σ (dB)

LOS 3.3 5.2

Nosh 3.8 5.3

Lobs 4.1 6.8

Table 3: VANET channel parameter and configuration.

Type of channel Conditions and characteristics

Time varying Tc<<Ts

Time invariant Tc>>Ts

Flat fading Td<<Ts

Frequency selective Td>>Ts

This is the reason to think about the new method of channel 
estimation to compensate for these channel effects for 
τrms=774.58 ns, fd=1280 Hz (v=278 km/h) fc=5.9 GHz detailed 
channels Study the response of the responses of the two channels.

Environment comparison

Examination of Table 4 pull in suggests that the proposed design 
parameters for 802.11p are met [12]. A first examination of Table 
1 we can see that .the guard interval is 1.6 µs is less than the 
propagation delay T ̅ and τ

rms
 can deduce that the phenomenon

of intersymbol interference ISI does not exist for all the scenarios 
of the ISI website. For 802.11p, this Guard Interval (GI) is 1.6 µs, 
twice as long as the 802.11a IG of 0.8 µs for an OFDM transmitter 
to insert a small number of pilot tones into a symbol of data for 
DSRC.

Figure 8: Scattering function, power delay profile and doppler 
power spectrum for RTV UC channel for Trms=21 ns, fd=207 Hz 
(v=104.4 km/h) fc=5.9 GHz.

Figure 9: Scattering function, power delay profile and doppler 
power spectrum for VTV-EX channel for Trms=774.58 ns, fd=1280 
Hz, fc (v=235 km/h)=5.9 GHz.

Table 4: Technical characteristics of the different types of vehicular channel.

Environment Separation (m) T (ns) Tram (ns) Tmax (ns)
Coherence time 

(µs)
Ds (hz)

High loss

00-50 RTVUC 69.18 21.06 349.43 880.46 µs 567.88

50-200 208.21 95. 02 1227.22 184.21 µs 2714.29

200-00 163.63 112.33 1527.22 328.86 µs 1520.39

>500 119.39 50.88 924.24 - 1248.6

Overall 117.58 54.06 778.79 - 1223.99

High N loss

00-150 266.65 267.65 5939.39 147.84 µs 3382.01

150-300 255.66 136.59 1575.76 133.33 3750.94

>300 293.01 379.58 6109.06 - 3289.93

Overall 268.19 238.83 4152.11-284.49 - 3515.03
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The symbol contains four pilots spaced 2.1875 MHz apart (14 
subcarriers). Based on an inverse relationship between coherence 
time and delay spread should not be greater than about 457.14 
ns. Only highway LOS and coherent rural LOS environments 
need to have sufficiently large coherence bandwidth. Highway 
NLOS has an average delay propagation sum of 507.02 ns 
(1.972 MHz), while urban LOS/NLOS environments are at 
748.91 ns (1.335 MHz) and 704.9 ns (1.419 MHz), respectively. 
Therefore more complex equalization algorithms, such as pilot 
interpolation schemes, should be considered as alternatives 
to flat-fading corrections in these environments. Similarly, the 
standard takes into account some doppler deficiencies but not 
others. Induced doppler shifts can cause an ICI between OFDM 
subcarriers. However, from the table we see that the highest mean 
doppler deviation is 3750.94 Hz for the case of the NLOS 150-
300 m highway. This is a small fraction (2.40%) of the 156.25 
kHz intercarrier spacing for 802.11p. In fact, it was rare to see 
a channel price with a Doppler spread of 2 kHz, or only 1.28% 
of the intercarrier spacing. Therefore, even under the most 
dangerous Doppler conditions, the amount of ICI should be 
minimal.

RESULTS AND DISCUSSION

Structure of the DNN implants network

An Orthogonal Frequency Division Multiplexing (OFDM) 
communication system is given in Figure 10. On the transmitter 
side, the source bits X (k) drive the modulation operations, Inverse 
Discrete Fourier Transform (IDFT) and Cyclic Prefix Addition 

(CP), respectively. Denote the multipath fading channels as h 
(0), h (1), h (L-1). The signals are transmitted over the channel, 
which is generally dispersive. Express the discrete sample spacing 
multipath channel as (h(n))

n=0
N-1, where the random variable h (n) 

is the gain of the channel at time n. this channel gain will represent 
the core of this work as the idea is to implement DNN estimators 
for channels representing most scenarios of the vehicular channel 
(see Table 1 section), the receiver signal is Y (n)=x(n) ⊗ h (n)+w
(n),  (19) where x (n) and w (n) denote transmitted signal and 
noise respectively, and ⊗ represent circular convolution. After
removing CP and DFT operation, the received signals can be 
obtained as Y (k)=X (k) H (k)+W (k)  (20) où Y (k), X (k), H (K) 
et W (k) are the DFTs of y (n), x (n), h (n) and w (n) respectively. 
Finally, source information is recovered from Y (k) through 
domain frequency equalization and demodulation generally, the 
traditional.

Urban loss

0-75 VTV-EX 281.15 774.58 10870.1 - 1270.35

75-150 268.27 247.66 3347.11 - 2309.4

150-50 330.32 430.25 5232.32 - 2236.47

250-350 259.68 232.15 3188.55 - 1700.61

350-450 330.00 281.26 3396.36 - 1918.13

>450 439.38 726 10933.3 - 2533.66

Overall 312.17 436.74 5973.06 - 3515.03

Urban NLOSS

0-150 378.6 227.26 1739.39 - 2674.21

150-250 451.02 368.84 2174.25 - 950.23

250-500 490.8 406.63 2310.61 - 1146..29

500-800 366.82 402.33 2370.61 - 491.92

800-1000 319.47 343.87 2227..21 - 478..04

>1000 236.99 249.25 1765.5 - 439.24

Overall 375.52 329.38 - - 1043.48

Rural los 0-120 85.84 145.29 3125.87 - 783.63

Figure 10: System model for OFDM with DNN based equalizer.
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OFDM receiver first estimates the CSI H (k) using the driver, 
and then detects the source signal with the estimated channel 
Hˆ(k), a method based on transceiver deep learning is which can 
estimate CSI implicitly and recover the signaler directly. This 
approach considers the whole receiver as a black box, takes the 
signal received as input from a Deep NN (DNN), and outputs the 
source bits recovered after calculation and transformation in the 
hidden layers of the NN. An OFDM frame is composed of two 
blocks: One representing the pilot symbols and the other for the 
data. The channel parameters remain in each frame and may vary 
between frames. The 64 sub-carriers and the length of CP is 16. 
The first block is used in each frame, the fixed pilot symbols, and 
the second data block is composed of 128 random binary bits.
After QPSK modulations, IDFT and CP insertion, all donations 
frame data are convolved with the channel vector. This channel 
vector will be simulated by a matlab channel function, which 
will represent all the main vehicular communication scenarios, 
the simulation parameters are fixed in Table 2. On the receiver 
side, the received signals, including noise and interference in 
the frame will be collected as DNN entry after CP removal. The 
DNN model aims to learn the parameters of the wireless channel 
to be able to recover the source signals. As shown in Figure 11, 
the architecture of the DNN model is composed of five couches: 
input layer, three hidden couches, and output layer. The number 
of neurons in the input layer is 256 since the real and imaginary 
parts are processed separately. The number of neurons in the 
three hidden layers is 500, 250 and 120 respectively.

Simulation and resultants  

Linear interpolation LS Cubic spline interpolation LS Linear 
interpolation Linear spline interpolation Cubic interpolation 
DFT the simulation parameters are Given in Table 5  In Figure 
12 we compared for the LS estimator the different linear, cubic 
spline, and cubic spline (DFT) interpolation methods [13]. It is 
noticed that the cubic spline interpolation methods (DFT) give 
the best results (low BER) compared to the other methods results 
in comparison with other methods.

According to Figures 13 and 14 (LS and MMSE) can be improved 
with the incorporation of the DFT AND SPLINE algorithm. 
The improved channel estimation with the DFT algorithm has 
been achieved by removing the noise impact outside of the 
maximum channel delay length. we retain the best performance 
presented by the MMSE estimator (low BER) compared to the 
other estimation methods presented in Figure 14, the one whose 
performance is the weakest is the LS method, the new estimation 
method based on the deep-learning channel estimation methods 
In this simulation, in Figure 15  the cyclic prefix effect is studied 
here cp is taken as zero  length of the cyclic prefix is less than 
the maximum average delay propagation of the channel 350 ns, 
equalization fails for LS and MMSE estimators   by setting cp=16 
the length of the cyclic prefix of 16.8 µsec is greater than the 
maximum average delay propagation of the channel, equalization 
succeeds with the dnn estimator with cp or without cp gives better 
performance a than the classic LS and mmse estimators with cp , 
another strong point of the deep learning method (Table 6).

Figure 11: DNN architecture. 
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Figure 12: Comparing MMSE and linear interpolation and spline cubic interpolation. Note: ( + ) LS-linear
interpolation, ( ) LS-spline cubic interpolation, ( * ) MMSE.

Figure 13: Performance of LS spline cubic interpolation (DFT). Note: ( + ) LS-linear interpolation, ( ) 
LS-spline cubic interpolation, ( * ) MMSE, ( ) LS-spline cubic interpolation (DFT).

Figure 14: Impact of the cp RTV-UC channel.  Note: ( ) Without CP-DL, ( ) With CP-DL, ( ) Without 
CP-LS, ( ) Without CP-MMSE.



Page 11 of 14

11

Gregorians L, et al. OPEN ACCESS Freely available online

Int J Adv Technol, Vol.12 Iss.9 No:1000206

Channel’s coherence time effect

Table 6  propose the main parameters  used to validate the results 
of the proposed estimation method based on deep learning 
called DL estimator, especially at low values of SNR, FIR URE 
16  illustrates the performance of the bit error rate of the DNN 
method and the traditional estimators: LS and LMMSE. It can be 
seen that the LS method is the least efficient and that the DNN 
method has the same performance. One of the proposals made 
in this work is to validate the non-limitation of the estimator 
based on the DNN in the face of the high mobility present in 
the vehicular channel because these several examples of channels 
have been tested with the DNN approach the channel taken 
is the next delay=(0, 1, 2, 100, 101, 200, 201, 202, 300, 301, 
302)*1e-9s; powderd B=(0, 0, 0, -6.3, -6.3, -25.1, -25.1, -25.1, 
-22.7, --22.7, -22.7), and the doppler frequencies are 5 hz, 207
hz, 500 hz, 1200 hz, 2500 hz, 3000 hz, 3500 hz. The curves in
Figure 16 representing the results in terms of BER against the
LS and mse estimators are given in the figures clearly the DNN
estimator offers better results low BER when the channel is
more and more mobile (when fd increases) as seen in the Table
7 In this simulation, the coherence time effect of channel is
studied. The channel coherence time must be large enough for
each symbol to be visible channel. The symbol time TS=8 μs is
less than the coherence time of the channel given in equation
(3.4), representing the different scenarios described in Table 2
therefore the equalization is successful (because the entire symbol
sees the same non-variable channel). In   Table 7, we study the
impact of the doppler shift. These results show that the variations
on the channel statistics models degrade the performance of
the LMMSE estimator, but have no significant influence on
the performance of the DL based estimator. These results also
validate the excellent generalizability of the DL-based estimator
with respect to the maximum doppler frequency.

Effect of modulation scheme

Two types of modulations are tested qpsk and 64 qam. The same 
parameters are used and the comparison of the performances of 
the two methods is presented in Table 5, at constant BER The 
SNR of DL is lower than that of the LS and MMSE algorithms, 
in particular in QPSK, the DL maintains good signal detection 
in a highly mobile channel. The detection performance of the LS 
and MMSE algorithms is less affected by the modulation mode, 
but the detection accuracy is low. Increasing M for MQAM 
modulation gives better results but complicates the system on the 
implementation side (Table 8).

Effect of optimization algorithms

On the performance of the proposed estimator optimization 
algorithms play a vital role in improving DL processes. The 
formation of deep neural networks can be described as an 
optimization problem that seeks to find a global optimum thanks 
to a reliable formation trajectory and rapid convergence using 
gradient descent algorithms. The purpose of a DL process is to 
find a model that will produce better and faster results thanks to 
weights and biases adjusted to minimize loss function (gradient 
descent). Choose the optimal optimization approach for a scientific 
problem acts as a serious challenge. Choosing an inappropriate 
optimization approach can cause the network to reside in the local 
minima during training, and this does not reach any progress in 
the learning process presents an experimental comparison of the 
performance of two optimization algorithms SGDM and ADAM 
[14]. It will also study to what extent each optimizer can deal 
with the problem of channel state estimation; therefore find the 
most effective CSE the three optimization algorithms used are 
Adam, SGDM. The effectiveness of the SGDM learning process 
to obtain a more reliable DNN-based CSE will be investigated. It 
is evident from Table 9 that the SGDM models outperform the 
Adam models at 64 pilots.

Figure 15: BER in Qpsk CP=16, RTV-UCfd=207 Hz. Note: ( ) Deep Learning (DL), ( ) Least Square (LS), 
( ) Minimum Mean Square Error (MMSE) 
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Figure 16: BER in Qpsk VTV-Ex Channel CP=16 and different value of fd (a, b, c, d, e, f). Note: ( ) Deep 
Learning (DL), ( ) Least Square (LS), ( ) Minimum Mean Square Error (MMSE)

(a) fd=5 hz canal statique. (b) fd=500 hz.

(c) fd=1200 hz. (d) fd=2500 hz.

(e) fd=3000 hz. (f) fd=3500 hz.    
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Table 5: Parameter of simulation of classic estimators.                       

Parameters Specifications

FFT size 2048

Number of active subcarriers 2560

Pilot ratio 1/4

Guard interval 16

Guard type Cyclic prefix

Chan.path delays (s) (0.0, 0.2,0.5, 1.6, 2.3, 5.0)* 1e-6

Chan.avg path gain dB (-3, 0, -2, -6, -8, -10)

Channel type Rayleigh  RTV-UC

Doopler frequency shift (hz) 3382

Table 6: DNN parameter estimator.

Parameter Value

Number of subcarriers 64

Number of pilot 16

Signal modulation QPSK, 16 QAM

Cyclic prefix 16

Channel model RTV-SS  and VTV-EX

Number of path 12-11

Input number of hidden layes 160,260,360

Number of neurons 3

Epoch number 100

Training function Softmax relu

Gradient threshold 10

Learn Rate Drop Factor 0.1

Optimization algorithms SGDM, Adam

Doppler frequencies (hz) 5, 500, 1200, 2000 , 2500, 3500

Table 7: Doppler effect in BER of the estimator DNN.

Snr dB 0 2 4 6 8 10 12 14 16 18 20

Dl BER
SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

Fd=3500 
hz

0.6174 0.5633 0.4803 0.3925 0.2921 0.1845 0.101 0.0451 0.01340 0.00219 9.99 e-05

Dl BER 
Fd=3000 

hz
0.6193 0.5588 0.4834 0.3882 0.2891 0.1487 0.0146 0.0013 0.0013 3.00E-04 0

Dl BER
SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

Fd=2500 
hz

0.6102 0.566 0.4924 0.3999 0.2914 0.1925 0.0955 0.0432 0.0104 0.0022 3e-4

DL BER 
Fd=500 hz

0.6157 0.56560 0.4877 0.4018 0.2935 0.2935 0.1011 0.0412 0.0123 0.0016 9.1e-04

Dl BER
SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

SGDM, 
Adam

Fd=5 hz 0.6026 0.5611 0.9464 0.3983 0.2936 0.1843 0.1017 0.0417 0.120 0.0033 0
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Table 8: Comparison SNR for QPSK and 64 QAM for LS MMSE and DL estimator with fixed ber=510-3.

SNR  Qpsk SNR 64 QAM

LS 19.1 dB 21 B

MMSE 19 dB 20 B

DL 13 dB 18 B

Table 9: SGDM and Adam optimization algorithm comparing.

Snr dB 0 4 10 14 18 20

SER DL 0.619 0.487 0.187 0.041 0.0019 e-4

SGMD

SER DL ADAM 0.614 0.4903 0.183 0.0404 0.0125 0

CONCLUSION

In this article, a method based on deep learning is the estimation 
of the vanet channel, the latter gives good results in terms of low 
BER error rate and a strong robustness with respect to the different 
phenomena of non- linearity present in siso OFDM chain. A vanet 
channel model is proposed covering the low mobility channels 
up to the high mobility channel. Interesting results are obtained 
on the DL method for a vanet channel in comparison with the 
classical methods for the same type of channel and a strong vis 
robustness. The various non-linearity phenomena present in the 
siso OFDM chain, we retain the strong immunity presented by 
the DL method for channel estimation in the face of the great 
mobility presented by the vanet environments, satisfactory results 
in terms of low transmission fidelity ber were found.
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