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Abstract

Cyclo (His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the hypothalamic thyrotropin
releasing hormone, crosses the blood brain barrier and improves recovery in models of traumatic injury to the brain
and LPS-induced neuroinflammation. The protective effects are sustained by the ability of the cyclic dipeptide to
interfere with the Nrf2–NF-κB signalling systems, the former governing the antioxidant and the latter the pro-
inflammatory cellular response. Amyotrophic lateral sclerosis is a fatal disease which affects motor neurons and
causes death of the patient from respiratory failure within a few years following diagnosis. Most patients suffer from
sporadic amyotrophic lateral sclerosis, but about 5–10% of all amyotrophic lateral sclerosis cases can be attributed
to familial forms, which are caused by mutations in the gene encoding for superoxide dismutase1. Transgenic mice
overexpressing the human gene encoding for superoxide dismutase1 mutated in Gly93-Ala recapitulate several
aspects of the disease. By exposing microglial cells overexpressing the mutated human gene superoxide
dismutase1 to paraquat, we investigated whether cyclo (His-Pro) is able to alleviate the oxidative stress in a
pathological environment. We found that cyclo (His-Pro) was effective in triggering, through Nrf2 activation, the
antioxidant response which resulted primarily in the elevation of the intracellular glutathione levels. Intriguingly, we
also found that cyclo (His-Pro) acts as a neurotrophic agent by inducing neuronal differentiation in PC12 cells.

Keywords: Amyotrophic lateral sclerosis; Nrf2; NF-κB; MAP
kinases; Bdnf

Abbreviations
Akt: protein kinase B; ALS: Amyotrophic Lateral Sclerosis; Bdnf:

Brain Derived Neurotrophic Factor; CCM: Cell Conditioned Medium;
ERK 1/2: Extracellular-Signal-Regulated Kinases; Gapdh:
Glyceraldehyde-3-phosphate-dehydrogenase; Gclc: Glutamate cysteine
ligase catalytic subunit; Gclm: Glutamate cysteine ligase modifier
subunit; Gdnf: Glial cell line Derived Neurotrophic Factor; gp91phox:
Heme-binding membrane glycoprotein gp91phox; GSH: Reduced
Glutathione; JNK: C-Jun N-terminal Kinase; LPS: lipopolysaccaride;
NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells;
Ngf: Nerve Growth Factor; Nqo1: NAD (P)H: quinone oxidoreductase
1; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; PQ: Paraquat;
Prdx1: Peroxiredoxin 1; ROS: Reactive Oxygen Species; SOD1:
Superoxide Dismutase 1; Tnfα: Tumor necrosis factor alpha; xCT:
Cystine/glutamate Transporter.

Introduction
Amyotrophic Lateral Sclerosis (ALS) is a devastating disease

affecting motor neurons in the motor cortex, brain stem, and spinal
cord, leading to axon degeneration, muscle atrophy, paralysis, and
death of the patient from respiratory failure within a few years
following diagnosis. Most patients suffer from sporadic ALS, but about
5–10% of all ALS cases can be attributed to familial forms, which are
caused by mutations in the gene encoding for Superoxide Dismutase 1

(SOD1) [1]. Transgenic mice overexpressing the human gene
encoding for SOD1 mutated in Gly93-Ala (SOD1G93A) recapitulate
several aspects of the disease and provide a powerful model system to
identify pathophysiological mechanisms associated with ALS and to
screen potential therapeutics [2,3]. The mutant SOD1 proteins can
either be/become misfolded and consequently oligomerize into
increasingly high-molecular-weight species that ultimately lead to the
death of motor neurons (oligomerization hypothesis), or catalyze
oxidative reactions that damage substrates critical for viability of the
affected cells (oxidative damage hypothesis) [4]. Indeed, the
pathological mechanism of the disorder likely involves protein
aggregation, oxidative stress, excitotoxicity, and mitochondrial
dysfunction [1]. These factors eventually lead to loss of neuromuscular
junction integrity, retrograde axonal degeneration, and motoneuronal
cell death. It is widely accepted that motor neuron death in ALS is not
cell autonomous but depends upon active and passive roles for
ambient glial cells. Glial cells in the vicinity of motor neurons
contribute importantly to ALS pathophysiology [5]. Indeed, spinal
astrocytosis and microgliosis accompany the onset of clinical
symptoms in transgenic ALS mice [6,7]. Pro-inflammatory cytokines,
chemokines, prostaglandins and oxygen radicals accumulate in
tandem with reactive gliosis in spinal cords of symptomatic mice
[8-10], leading to proposed secreted glial factors being pathogenic in
ALS. Cyclo (His-Pro) (CHP), an endogenous cyclic dipeptide
produced by the cleavage of the hypothalamic thyrotropin releasing
hormone, crosses the blood brain barrier and improves recovery in
models of traumatic injury to the brain and LPS-induced
neuroinflammation [11-13]. Cyclo (His-Pro) protective effects are
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sustained by the ability of the cyclic dipeptide to interfere with the
Nrf2–NF-κB signalling systems, the former governing the antioxidant
and the latter the pro-inflammatory cellular response [14-16]. Cyclo
(His-Pro) can exert cytoprotection against oxidative insults by
activating Nrf2- leading to the up-regulation of antioxidant cellular
defence [17]. Therefore, a potential therapeutic use of cyclo (His-Pro)
against oxidative stress-related disease has already been proposed [12].
Paraquat (PQ) is a redox cycling agent which, by interfering with
electron transfer in the mitochondria, produces destructive Reactive
Oxygen Species (ROS) and oxidative stress [15,16,18].

Therefore, by exposing microglial cells overexpressing the mutated
human gene SOD1G93A to a pro-oxidant agent such as paraquat, we
aimed to determine whether cyclo (His-Pro) is able to alleviate the
oxidative stress in a SOD1G93A environment.

Materials and Methods

Materials
Cyclo (His-Pro) was synthesized as described elsewhere [19]. All the

reagents, unless otherwise stated, were from Sigma-Aldrich (St. Louis,
MO). All the antibodies, unless otherwise stated, were from Santa Cruz
Biotech (Santa Cruz, CA). Cell culture reagents were from Life
Technologies (GibcoBRL, Gaithersburg, MD).

Immortalized microglia
Immortalized microglial cells, obtained from embryonic (E14)

cortices from hSOD1G93A mice according to Righi and colleagues
[20], were a kind gift of Dr. G. Pietrini (Università di Milano).
Microglia were then characterized by Western blot and
immunofluorescence for the presence of selective markers (colony
stimulating factor 1, CSF-1) and the absence of astrocyte-specific
molecules (i.e., glial fibrillary acidic protein, GFAP).

Cell cultures and viability
hSOD1G93A microglial cells were cultured in DMEM F12

supplemented with 5% Foetal Bovine Serum (FBS), glutamine (4 mM),
penicillin (50 U/ml), and streptomycin (50 mg/ml) at 37°C in a
humidified 5% CO2 environment. After 24 h subculture, cells were
incubated for 24 h with 50 µM cyclo (His-Pro) and then exposed to
Paraquat (PQ) for various time. Inhibitors, dicumarol (NAD (P)H:
quinone oxidoreductase 1) and apocynin (NADPH oxidase), were
added to hSOD1G93A microglial cells, either in the presence or in the
absence of 50 μM cyclo (His-Pro), 1h prior to 25 μM PQ exposure.
PC12 cells were purchased from ATCC (Manassas, VA) and cultured
as described by Minelli et al. [15,16]. After 24 h subculture, cells were
exposed to cell conditioned medium (CCM) from hSOD1G93A
microglial cells treated for 24 h with 25 μM PQ, either in the presence
or in the absence of 50 μM cyclo (His-Pro). Viable cells, stained with
Trypan blue, were counted using a hemocytometer. Results were
expressed as the percentages of viable cells assuming the viability of
control cells as 100%. Cell redox activity was measured using the 3-
[4,5-dimethylthiazol-2-yl]-2,5-dephenyl tetrazolium bromide (MTT)
reduction assay. The dark blue formazan crystals formed in intact cells
were solubilized with lysis buffer (10% sodium dodecylsulfate, 0.01 M
HCl) and the absorbance at 550 nm was measured with a microplate
reader (Seac, Florence, Italy). Results were expressed as reduced MTT
assuming the absorbance of control cells as 100%.

Glutathione determination
hSOD1G93A microglial cells (3×105), seeded in 6-well plates, were

treated with 50 µM cyclo (His-Pro) for 24h and then exposed to PQ
(25 µM) for the indicated time. The concentration of glutathione
(GSH) was determined in whole cell lysate after perchloric acid
precipitation using the dithionitrobenzoic acid (DTNB) method,
measuring the absorbance at 412 nm (molar extinction coefficient 13.6
mmol-1cm-1) [21]. GSH levels were expressed as nmoles/mg protein.

Measurement of intracellular fluorescence
The 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA)

method was used to detect the levels of intracellular ROS [22]. DCFH-
DA diffuses into cells, where it is hydrolyzed by intracellular esterase
to polar 2’,7’-dichlorodihydrofluorescein. This non-fluorescent
fluorescein analogue gets trapped inside the cells and is oxidized by
intracellular oxidants to a highly fluorescent, 2’,7’-dichlorofluorescein,
and fluorescence intensity is proportional to the amount of oxidant
species produced by the cells. hSOD1G93A microglial cells (1×104),
seeded in 96-well plates, were loaded with DCFH-DA (10 μM) for 30
min at 37°C. The fluorescence of 2’,7’-dichlorofluorescein was
detected at 485 nm excitation and at 535 nm emission, using a
microplate reader Titertek Fluoroscan II (Flow Laboratories, McLean,
VA, USA). Results, expressed as percentage of the control DCF
fluorescence, were normalized to cell viability.

Apoptosis determination by flow cytometry
hSOD1G93A microglial cells were incubated with 50µM cyclo (His-

Pro) for 24 h and then exposed to PQ for a further 24h prior to
propidium iodide (PI) (50 µg/ml in 0.1% sodium citrate plus 0.1%
triton X-100) addition. The PI fluorescence of individual nuclei was
measured by flow cytometry using standard FACScan equipment
(Becton Dickinson, Franklin Lakes, NJ). The data were recorded in a
Hewlett Packard (H9 9000, model 310, Palo Alto, CA) computer. The
percentage of apoptotic cell nuclei (sub-diploid DNA peak in the DNA
fluorescence histogram) was calculated with specific FACScan
research software (Lysis II). At least 10,000 events were analysed in
each sample.

Real time PCR
Total RNA was isolated with TRIZOL Reagent (Invitrogen Ltd,

Paisley, UK) according to the manufacturer's instructions and cDNA
was synthesised using iScript cDNA synthesis kit (Bio-Rad Lab,
Hercules, CA.). Real time PCR was performed using the iCycler iQ
detection system (Bio-Rad) and SYBR Green chemistry. Primer
sequences are listed in Table 1. SYBR Green RT-PCR amplifications
were carried out in a 96-well plate in a 25 μl reaction volume that
contained 12.5 μl of 2x iQ™ SYBR® Green JumpStart™ Taq ReadyMix™,
400 nM forward and reverse primers, and 5 to 40 ng of cDNA. In each
assay, no-template controls were included and each sample was run in
triplicates. The thermal profile consisted of incubation at 95°C 3 min,
followed by 40 cycles of denaturation for 10 s at 95°C and an
annealing/extension step of 30 s at 62°C. Mean of Ct values of the
stimulated sample was compared to the untreated control sample. ΔCt
is the difference in Ct values derived from the target gene (in each
assayed sample) and Gapdh, while ΔΔ Ct represents the difference
between the paired samples. The n-fold differential ratio was expressed
as 2-ΔΔ Ct.
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Gene name Gene symbol Primer sequences (F: forward; R: reverse)

Glyceraldehyde-3-phosphate-
dehydrogenase Gapdh

F. GCCAAATTCAACGGCACAGT

R. AGATGGTGATGGGCTTCCC

Glutamate cysteine ligase catalytic
subunit Gclc

F. GGCGATGTTCTTGAGACTCTGC

R. TTCCTTCGATCATGTAACTCCC

Glutamate cysteine ligase modifier
subunit Gclm

F. CACAGGTAAAACCCAATAGTAACCAAGT

R. GTGAGTCAGTAGCTGTATGTCAAATTGTT

Heme-binding membrane glycoprotein
gp91phox gp91phox

F. TCACCACTAGTACCAGCATCACCA

R. ACTCTGTCTTGCATTTCTGGATGCC

Cystine/glutamate transporter xCT
F. CCTGGCATTTGGACGCTACAT

R. TCAGAATTGCTGTGAGCTTGCA

Peroxiredoxin 1 Prdx1
F. TTGGCGCTTCTGTGGATTCT

R. GGTGCGCTTGGGATCTGATA

Tumor necrosis factor alpha Tnfα
F. GCCCACGTCGTAGCAAACCAC

R. GGCTGGCACCACTAGTTGGTTGT

Nerve growth factor Ngf
F. GAGCGCATCGAGTTTTGGC

R. CCTCACTGCGGCCAGTATAG

Glial cell line derived neurotrophic factor Gdnf
F. GTCTGGCAGCCAACAAACAG

R. TAGCAGCCACAAAGGGAGTG

Brain derived neurotrophic factor Bdnf
F. ACTGCAGTGGACATGTCTGG

R. CTGCAGCCTTCCTTGGTGTA

NAD (P)H: quinone oxidoreductase 1 Nqo1
F. GGCTGGTTTGAGAGAGTGCT

R. TCTGGAAAGGACCGTTGTCG

Table 1: Primer sequences

Western Blotting analyses
hSOD1G93A total microglial cell lysate was obtained using boiling

Laemmli Sample Buffer. hSOD1G93A microglial cells nuclear extract
was obtained using NE-PER® Nuclear and Cytoplasmic Extraction
Reagents (Pierce Biotechnology, Rockford, IL) according to
manufacturer’s instruction. Extracts were loaded on SDS-
polyacrylamide gel, transferred on nitrocellulose membrane and
immunoblotted with phospho-NF-κB p65 (Ser536) antibody (1:1000),
phospho-Akt (Ser 473) antibody (1:1000), Akt antibody (1:1000),
phospho-p38 MAPK ( Thr 180/Tyr 182) antibody (1:1000), p38
MAPK antibody (1:1000), phospho-p44/42 MAPK (ERK 1/2) (Thr
202/Tyr 204) antibody (1:1000), p44/42 MAPK (ERK 1/2) antibody
(1:10000), phospho-SAPK/JNK (Thr 183/Tyr 185) antibody (1:1000),
SAPK/JNK antibody (1:1000) (Cell Signalling Technology,Danvers,
MA), Nrf2 (C-20) antibody (1:200), and horseradish peroxidase-
conjugated -anti IgG antibody (1:5000). Lamin B (C-20) (1:200) and
GAPDH (6-C5) (1:500) antibodies were used as marker proteins for
nuclear/total extracts. Immunocomplexes were visualized with an

enhanced chemiluminescence kit (ECL, Pierce Biotechnology,
Rockford, IL).

Actin Labeling
Phalloidin was used to detect filamentous actin (F-actin) content on

hSOD1G93A microglial and PC12 cells. Cells, seeded on glass
coverslips, were fixed with 4% paraformaldehyde for 20 minutes at
room temperature and F-actin was stained with tetramethylrhodamine
(TRITC)-labeled phalloidin (1:250) for 30 minutes at room
temperature. Cells were washed with PBS and cell nuclei were counter-
stained with 4’,6-diamidino-2-phenylindole (DAPI). After mounting,
the cells were viewed on a DM Rb epifluorescence microscope (Leica,
Wetzlar, Germany) equipped with a digital camera.

Statistical analysis
All results, confirmed in at least 3 separate experiments, were

subjected to one-way or two-way Analyses of Variance (ANOVA).
Post-hoc comparisons were performed using Dunnett’s tests (p<0.05).
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Results

Cyclo (His-Pro) alleviates paraquat toxic effects in
hSOD1G93A microglial cells.

To determine whether the cyclic dipeptide (His-Pro) is capable of
counteracting the deleterious effects of PQ, we first evaluated PQ
toxicity in hSOD1G93A microglial cells (Figure 1A).

Figure 1: PQ induced cell-toxicity and protective effects of cyclo
(His-Pro) in hSOD1G93A microglial cells. (A) hSOD1G93A
microglial cells were treated with increasing PQ concentration and
cell redox activity determined by MTT assay (6h: F3,0=36.68,
P<0.001; 24h: F3,0=328.16, P<0.001 and 48h: F3,0=262.65, P<0.001,
one-way ANOVA, n=3). hSOD1G93A microglial cells, pre-treated
with 50μM cyclo (His-Pro) for 24h, were exposed to 25 μM PQ and
used for: (B) cell redox activity assessed by MTT assay at the
indicated time points. Absorbance of untreated cells (6h: 0.73 ±
0.008; 24h: 0.98 ± 0.02; 48h: 1.34 ± 0.15) was assumed as 100% (6h:
F3,59=6.77, P=0.031; 24h: F3,59=17.79, P=0.003 two-way ANOVA,
n=3). Data represent mean ± S.D. * vs. untreated cells, # vs. PQ-
treated cells; (C) viability after a 24h PQ exposure (viable cells in
control sample: 2.5×104/ml assumed as 100%) (F3,59=6,9, P=0.03
two-way ANOVA, n=3). Data represent mean ± S.D. # vs. PQ-
treated cells; (D) morphological assessment after a 24h PQ
exposure. Magnification 20X ; and (E) Apoptotic index after a 24h
PQ exposure.

We found that decreases in cell redox activity were concentration-
dependent up to a 24h exposure, whereas, a 48h exposure resulted in a
marked decrease in cell redox activity even at very low PQ
concentration. In our study we used 25 µM PQ, since a 24h exposure

caused the loss of 40% cell redox activity. A 24h pre-treatment with 50
µM cyclo (His-Pro), confirmed as the minimum effective
concentration [23], significantly protected the hSOD1G93A microglial
cells from PQ-induced toxicity by rescuing cell redox activity (Figure
1B).

Figure 2: Cyclo (His-Pro) protects hSOD1G93A microglial cells
against PQ-induced oxidative stress. hSOD1G93A microglial cells
were treated as described. (A) GSH levels (control GSH: 23 ± 5.1
nmoles/mg protein). (2h: F3,59=11.18, P=0.01; 4h: F3,59=18.13,
P=0.001; 6h: F3,59=24.89, P=0.001; 24h: F3,59=38.2, P<0.001 two-
way ANOVA, n=3). Data represent mean ± S.D.* vs. untreated
cells. # vs. PQ-treated cells. (B) Detection of ROS generation by
DCFH-DA fluorescence (100% control ROS fluorescence: 6h: 0.98
± 0.07; 24h:1.15 ± 0.15). (6h: F3,59=24.04, P=0.001; 24h:
F3,59=51,44, P<0.001 two-way ANOVA, n=3). Data represent
mean ± S.D. *vs. untreated cells. #vs. PQ-treated cells.

While PQ exposure did not decrease cell viability, cyclo (His-Pro)
significantly increased cell viability vs. PQ (Figure 1C). Phalloidin-
stained images showed a striking change of microglia shape following
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a 24h PQ-exposure (Figure 1D) but cellular morphology nearly
reverted to control in mutant microglial cells pre-treated with cyclo
(His-Pro), indicating an attenuation of PQ toxicity. PQ did not cause
increases in apoptosis (Figure 1E) nor NO production (data not
shown). We also observed that cyclo (His-Pro) caused an early and
sustained increase in GSH cellular levels (Figure 2A) and significantly
decreased PQ-induced ROS generation (Figure 2B).

Cyclo (His-Pro) acts via MAP kinases in hSOD1G93A
microglial cells.

We have previously shown that the effects of cyclo (His-Pro) are
mediated by the concomitant activation and/or disactivation of
various MAPK pathways [23]. To investigate the mechanism of cyclo
(His-Pro) at the signalling level, we examined the activation of
extracellular-signal-regulated kinases (ERK 1/2), p38 kinase, C-Jun N-
terminal Kinase (JNK), and protein kinase B (Akt), known to be
involved in the responses to various stressors and in cell survival
(Figure 3).

Figure 3: Cyclo (His-Pro) affects kinase activation. hSOD1G93A
microglial cells were treated as described. Total cell lysates were
subjected to Western Blotting analysis with the indicated
antibodies. Respective un-phosphorilated protein were used as
loading controls. The images are representative of one out of three
separate experiments.

Cyclo (His-Pro) inhibited PQ-induced ERK 1/2 phosphorylation at
15 min without affecting phospho-p38 levels, also unmodified by PQ.
On the other hand, the cyclic dipeptide delayed the PQ-induced AKT
inactivation and slightly decreased the JNK phosphorylation at 60 min.

Cyclo (His-Pro) activates Nrf2-antioxidant response in
hSOD1G93A microglial cells.

We have already provided evidence consistent with the notion that
cyclo (His-Pro) exerts cytoprotection by interfering with the Nrf2–NF-
κB systems, the former controlling the antioxidant and the latter the
pro-inflammatory cellular response [12,14-16]. To verify whether
cyclo (His-Pro) uses the same mechanism to relieve the PQ-induced
cytotoxic effects in the hSOD1-mutated microglial cells, we analysed
the activation of Nrf2 and NF-κB. We found that cyclo (His-Pro)
induces a remarkable nuclear translocation of Nrf2 that lasts up to 3h,
while not modifying the slight PQ-induced activation of NF-κB
(Figure 4A and 4B). Nuclear translocation can be regarded as a marker
of activation [24,25].

Indeed, we found that cyclo (His-Pro) induced a robust up-
regulation of the mRNA levels of Nrf2-driven genes, such as Gclc,
Gclm, xCT, and Nqo1, while no effect was observed on the
transcription of the NF-κB–driven genes, such as Tnfα, Prdx1, and
gp91phox (Figure 4C and 4D). It is noteworthy that the up-regulation
of glutathione synthesising enzymes and cystine-glutamate transporter
are in accordance with the increased GSH levels found in cyclo (His-
Pro)-treated hSOD1G93A microglia cells.

To establish a causal link between the up-regulation of genes such
as Nqo1 by cyclo (His-Pro) and decreased ROS production, we treated
hSOD1G93A microglial cells with dicumarol, a NQO1 inhibitor, and
with apocynin, an inhibitor of NADPH oxidase activity which
generates ROS independent of NQO1. We then determined the level
of ROS generation in the presence of PQ and cyclo (His-Pro) (Figure
4E). The inhibition of NQO1 abrogated the cyclo (His-Pro)-induced
decreases in ROS production whereas the inhibition of NADPH
oxidase did not counteract the cyclo (His-Pro) effects in decreasing
ROS generation.

Cyclo (His-Pro) induces brain-derived neurotrophic factor
expression in hSOD1G93A microglial cells.

Microglial cells modulate the pathological and /or regenerative state
of the brain by producing a variety of physiologically-active
substances, such as neurotrophic molecules [26]. To further
investigate the beneficial effects of cyclo (His-Pro) on the PQ-stressed
hSOD1G93A microglial cells, we determined the transcriptional
effects of the cyclic dipeptide on the expression of various
neurotrophins (Figure 5A). Although PQ treatment did not alter Bdnf
gene expression, the cyclic dipeptide caused a robust up-regulation of
the mRNA levels either alone or in combination with PQ. As a
functional read-out of the Bdnf up-regulation, we used neuroblastic
PC12 cells as a model of neurite outgrowth induced by neurotrophic
factors [27,28].

We analysed PC12 neuronal differentiation in the presence of
conditioned media obtained by cyclo (His-Pro)-treated hSOD1G93A
microglial cells (Figure 5B). Conditioned media obtained from
hSOD1G93A microglial cells treated with cyclo (His-Pro) alone caused
a drive towards neuronal differentiation in PC12 cells. In addition,
conditioned media from hSOD1G93A microglial cells treated with
cyclo (His-Pro) before PQ exposure were still able to drive, although at
a minor extent, PC12 towards neuronal differentiation.
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Figure 4: Cyclo (His-Pro) affects transcription factor activation leading to changes in gene expression. (A) and (B) Cells were treated as
described and, at each indicated time, cells were collected and nuclear/total extracts were subjected to Western Blotting with indicated
antibodies. Anti-Lamin B and anti-GAPDH antibodies were used as marker for nuclear and total extracts, respectively; (C) and (D) Cells,
treated as described, were used to determine changes in gene expression after a 6h PQ exposure. Gene expression values were normalised to
Gapdh and presented as 2-ΔΔCt. Relative mRNA gene abundance in untreated cells was assumed to be 1.0 (control). (Gclc-F3.59=22.12,
P=0.002; Gclm-F3.59=23.22, P=0.001; xCt-F3.59= 13.55, P=0.006; Nqo1-F3.59= 5.86, P=0.008; two-way ANOVA, n=3). Data represent mean
± S.D. *vs. untreated cells, # vs. PQ-treated cells. (E) 50 μM dicumarol (DC) and 500 μM apocynin (APO), were used as described in material
and methods. ROS generation was detected by DCFH-DA fluorescence after 24h PQ exposure. Fluorescence of PQ-treated cells (1.70 ± 0.08)
was assumed as 100%. (C-F6.61=27.21, P=0.007; Apo- F6.61= 7,98, P=0.04; one-way ANOVA, n=3). Data represent mean ± S.D. *vs.
respective PQ-treated cells.
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Figure 5: Cyclo (His-Pro) induces brain-derived neurotrophic
factor expression. (A) hSOD1G93A microglial cells, treated as
described, were used to determine changes in gene expression after
6h PQ exposure. Gene expression values were normalised to Gapdh
and presented as 2-ΔΔCt. Relative mRNA gene abundance in
untreated cells was assumed to be 1.0 (control). (Bdnf-F3.59= 54.01,
P<0.001 two-way ANOVA, n=3). Data represent mean ± S.D. *vs.
untreated cells. #vs. PQ-treated cells. (B) CCMs from hSOD1 G93A
treated for 24h with 25μM PQ, either in the presence or in the
absence of 50μM cyclo (His-Pro), were added to PC12 cells for 48h.
Cells were then stained with (TRITC)-labeled phalloidin and nuclei
counter-stained with DAPI. Magnification 20X. The images are
representative of one out of three separate experiments.

Discussion
Two major observations are reported in this study. First we showed

that, even in the presence of the hSOD1 mutation, cyclo (His-Pro) is
still able to act as an antioxidant agent. Second, the striking increase in
Bdnf expression induced by cyclo (His-Pro) might lead to the proposal
of cyclo (His-Pro) as a neurotrophic agent. A very complex
combination of environmental and genetic factors underlies the
pathophysiological origins of neurodegenerative disorders. However,
in many of these disorders, processes such as inflammation and
oxidative stress activate common final pathways leading to toxicity

and cellular death. High levels of oxidative damage within the brain
and the activation of neuroinflammatory factors are a prominent
feature in patients with Amyotrophic Lateral Sclerosis (ALS) [29,30].
Although the brain, isolated from the systemic circulation by the
protective blood-brain barrier has been long considered an immune
privileged organ [31], the relationship between neuroinflammation
and neurodegeneration is now well accepted [32-34]. Moreover, the
importance of glial cells in the progression of neurodegeneration has
also been recognised, since they migrate to the damaged cells where
they clear the dead cell debris. However, in the process, microglia
release Reactive Oxygen Species (ROS), pro-inflammatory cytokines,
complement factors, and neurotoxic molecules, exacerbating
inflammation and leading to further neuronal dysfunction and death
[35-42]. Many data from autoptic spinal cord and blood examinations
of ALS patients, as well as animal and cellular models, support a role
for the immune system in ALS pathogenesis [43]. Paraquat, a widely
used herbicide, has strong neurotoxic effects and is one of the major
environmental risk factors for Parkinson’s disease occurrence [44]. As
a redox cycling agent, PQ, by interfering with the electron transfer,
produces destructive ROS and oxidative stress with associated toxicity
[45-48]. Cyclo (His-Pro), originally discovered in the brain, is an
endogenous cyclic dipeptide structurally related to the hypothalamic
thyrotropin-releasing hormone [17]. The most intriguing function of
this cyclic dipeptide is related to its neuroprotective role, first reported
in traumatic injuries of the spinal cord [11], and then confirmed in an
in vivo model of LPS-induced reactive gliosis [12]. Nuclear factor-like
2 (Nrf2) is a transcription factor that regulates the constitutive and
inducible expression of antioxidant and phase 2 detoxification
enzymes via a cis-acting DNA element called electrophile responsive
element / antioxidant responsive element (EpRE/ARE) [49]. The
Nrf2–ARE pathway represents a physiological adaptation to oxidative
stress and its activation is the major mechanism in terminating the
NF-κB-driven immune response [13,24,25]. Here we found that the
treatment of hSOD1G93A microglial cells with cyclo (His-Pro)
markedly reduced PQ–induced ROS production. However, it is worth
noting that the production of ROS by hSOD1G93A microglial cells
appeared to be a slow process and, at early time points such as a 6h
PQ-exposure, only slight increases in ROS levels were observed. We
initially assumed that the slow ROS generation could be explained by
the fact that the SOD1 enzyme normally functions as a free radical
scavenger and many SOD1 ALS mutants have superoxide-scavenging
activity comparable with that of wild type SOD1 [50,51]. Moreover, we
speculated that the PQ concentration used in the study, although
incapable of causing apoptosis, was enough to trigger the antioxidant
response by activating the Nrf2 signalling. This process resulted in
significantly increased cellular GSH levels at each time-point thus
leading to a robust cellular ROS detoxification. In addition, the
observed up-regulation of the Nqo1 gene and the fact that cyclo (His-
Pro) acts mainly via augmented NQO1 activity to reduce the ROS load
might also contribute to the slow increase in ROS production. Data
from the literature show that ERK 1/2, JNK and AKT are central to
PQ-toxic effects while p-38 is minimally involved in cytotoxicity
[46,52-55]. Consistent with these data, we found that, at the signalling
level, the protective effects of cyclo (His-Pro) were achieved by
inhibiting ERK 1/2 activation and delaying the inactivation of the AKT
pathway. On the other hand, the PQ-mediated JNK activation was
only marginally altered by the cyclic dipeptide. The discrepancy of our
findings with data from other groups might reside in the fact that we
used a PQ–concentration which did not cause apoptosis since the
robust activation of JNK, which follows exposure to higher
concentrations of PQ, drives caspase-3 activation and apoptosis. Thus,
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the mutated glial cells used in the study might be responsible for the
lack of apoptosis even in the presence of marked early and transient
JNK activation. Finally, we showed that cyclo (His-Pro) markedly up-
regulated Bdnf expression in hSOD1G93A microglial cells and, in the
presence of PQ, the cyclic dipeptide could robustly up-regulate Bdnf
gene expression. The fact that cyclo (His-Pro) alone can induce such a
strong up-regulation of the Bdnf gene by hSOD1G93A microglia cells
might underpin a potentially beneficial use of the cyclic dipeptide in
the course of the ALS disease.

In conclusion, we showed: i) an exogenous oxidative stress on
hSOD1G93A microglial cells can worsen the known deleterious effects
of the mutated microglia cells; ii) the use of cyclo (His-Pro), by
diminishing the oxidative burden and triggering the defence response,
can, at least partially, attenuate PQ toxicity.
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