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Abstract

Aging is the main risk factor for Alzheimer’s disease (AD). With aging, inflammation has been recognized as
potential trigger for starting the neurodegenerative cascade leading to neuronal death. Before Aβ and tau
accumulation, evidence has put alterations of the cell cycle at the core of these processes.

Still, a number of features of the cell cycle re-entry phenotype have remained elusive to the role of ectopic protein
expression in the process of neuroinflammation and consequently neuronal cell death. Recently, a novel cyclin
dependent kinase CDK11 has been found to be involved in astrocyte mediated inflammatory response and
Alzheimer’s disease.

In this review, we aim to establish the missing part of the puzzle between neuroinflammation and APP / Aβ
deregulation in AD by evaluating the role of a cyclin, CDK11.

CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting
an intriguing novel function of the APP signaling pathway in AD.

Keywords: Neuroinflammation; Alzheimer’s disease; Inflammation;
CDK11

Introduction
Aging is an unavoidable process during the course of our lifetimes.

Among the most vulnerable cells affected by aging are our brain cells
[1]. Cells in the brain experience oxidative stress, accumulation of
damaged proteins, alterations in energy homeostasis, immunological
and inflammatory response [1] and this is characterized by impaired
function of signaling mechanisms and altered gene expression [2].
Still, these changes during aging are exacerbated in the vulnerable area
of the brain in which cells may fail to respond adaptively to changes
resulting in neurodegenerative disorders.

The most prominent type of dementia today is Alzheimer’s disease,
exceeding 5 million cases in US alone [3]. Two types of AD are
recognized, one that is less prevalent, the familial type or FAD which
comprises about 1 to 5% of all cases and the more prevalent or
sporadic form of AD (SAD) for which no certain etiological factors
can be named for the occurrence of the disease.

Neuroinflammation invariably accompanies aging and has been
shown to be a strong contributing factor of AD [4-6]. Pathological
markers of inflammation are enriched in brain areas affected by AD
[7,8]. When analyzed in individuals with high plaque content and no
sign of dementia investigators found also no trace of inflammation [9].

These two features made neuroinflammation an area of interest for
finding novel ways in developing a therapy for AD [10]. Cell cycle
cyclins should be taken into account when conceptualizing new
strategies for AD treatment [11]. Here in this mini review we will
elaborate the role of CDK11 in inflammation and its relevance to AD.

CDK 11
Post-mitotic neurons are typically terminally differentiated and in a

quiescent state. For some time there has been a notion that altered cell
cycle events in vulnerable neurons precede the occurrence of amyloid-
β (Aβ) and neurofibrillary tangles, the hallmarks of AD [1,12,13], and
lead to degeneration of selected neuronal populations in the
hippocampus and other cortical brain regions. Ectopic expression of a
number of mitosis-specific proteins has been reported in susceptible
neurons in AD leading to neuronal cell death in the G2/M phase of the
cell cycle [14-22]. Also, an interesting view has emerged based on new
data concerning APP signaling processing [23-25], i.e. Aβ in an
oligomeric form may push neuronal cells into the cell cycle, opening
the door to neurodegeneration and consequently cell death [24].
Except for CDK5 [26], CDK11 shows an altered expression in AD
vulnerable neurons which may be related to APP signaling processes
[27].

CDK11 is found to regulate the G2/M phase of the cell cycle by
interacting with cyclin D3 [28]. In humans, CDK11 is encoded by two
highly homologous genes; named Cdc2L1 and Cdc2L2 (cell division
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control 2 like). The CDK11 is also named PITSLRE for its conserved
motif in its kinase domain and involves major isoforms from a
number of splice variants (at least 10 CK11 isoforms have been cloned
in eukaryotic cells, with their molecular weight varying from 46 to 110
kDa [29]. Major isoforms are the CDK11 p110, CDK11 p58 [30,31],
and CDK11 p46 [32]. The largest CDK11, CDK11 p110 is a 779-
amino-acid containing protein, representing the whole gene, and is
ubiquitously expressed in all cell lines and constantly through the cell
cycle [30]. CDK11p110 localizes to both splicing factor compartments
(SFC-s) and to the nucleoplasm [33]. Recently Yokoyama et al. [34]
reported that CDK11 p110 is a Ran GTP-dependent microtubular
stabilization factor that has an essential role in spindle assembly
formation.

The smaller CDK11 p58 isoform is cell-cycle regulated, and its
synthesis occurs through internal ribosome entry site (IRES), which is
used only in the G2/M transition [35]. Although CDK11 p58 and
CDK11 p110 share many of the same sequences, including the kinase
domain, the two isoforms are involved in different regulatory
pathways in eukaryotic cells. CDK11 p58 is closely associated with cell
cycle arrest and apoptosis in a kinase dependent manner by caspase
cleavage, producing an apoptotic kinase regulator, CDK11 p46
[36-38]. Recent studies also revealed that CDK11 is implicated in
differentiation, neuronal physiology, androgen receptor attenuation
[39] centrosome maturation, bi-polar spindle formation, centromere
cohesion [34,38,40] and tumorogenesis [38,41,42] (Figure 1).

Figure 1: Diverse roles of CDK 11 and its isoforms.

CDK11 is ectopically expressed in AD [27]. By using a polyclonal
antibody for CDK11, Bajic et al. [27] found that CDK11 was only
expressed in the cytoplasm and cellular processes of the pyramidal
neurons in many cases of AD, yet in most controls CDK11 was
expressed specifically in the nuclei of post-mitotic neurons. CDK 11
has been found to be regulated by checkpoint kinase 2 (CHK2), a
kinase with DNA damage and DNA damage independent functions
[43].

This kinase has been also found to phosphorylate tau at an AD-
related site enhancing tau toxicity, suggesting a potential role of this
kinase in AD [44].

Inflammation, CDK 11 and AD
Astrocytes and microglia play an important role in the development

and progression of Alzheimer’s disease [8]. Astrocytes as neuronal

support cells have a role in regulation of brain homeostasis and
development thus providing metabolic and trophic support, promote
repair processes and mediate brain inflammatory response through
the secretion of various cytokines [45] and recently some cyclins such
as CDK11 [46-48]. Activation of astrocytes in central nervous system
inflammation leads to a disturbance of crosstalk between astrocytes
and neurons, and that this may contribute to the death of neurons.

Liu et al. [48] showed LPS stimulated astrocyte condition medium
causes PC 12 cells to upregulate CDK11 (p58) and consequently causes
neuronal apoptosis. CDK11 (p58) knockdown in PC12 cells represses
neuronal apoptosis. The AKT signaling pathway is involved in the
CDK11 (p58)-induced neuronal apoptosis process.

Also, there has been a strong relationship of inflammatory
responses due to astrocyte activation and neuronal death [46,47].
Astrocytes are the major glial subtype and are important effectors that
participate in the pathogenesis of numerous neural disorders,
including trauma, stroke, aging, development, genetic, idiopathic or
acquired neurodegenerative diseases. Liu et al. [46] has found a
correlation between the expression of CDK11 p58 in astrocytes that
where activated by lipopolysacharide or LPS and inflammation
markers. Knockdown of CDK11 p58 by small-interfering RNAs
(siRNAs) reduced the LPS-induced astrocyte inflammatory response,
while overexpression CDK11p58 enhanced the process. This process
was in part mediated by the p38 and JNK MAPK pathways [46].

Disturbance of homeostasis can lead to instability, where glial cells
that beneficially promote tissue repair and pathogen elimination in
excessive activity may also have detrimental effects.

Liu et al. [47] found that a key inflammatory mediator beta-1,4-
galactosyltransferase 1 (beta-1,4-GT 1) has been associated with
CDK11 p58 in LPS challenged rat primary astrocytes. This illustrates
that CDK11 (p58) astrocyte activation promotion depends on β-1,4-
GalT-I. Ji et al. [49] showed that CDK11 and its associated cyclin D3
are expressed in damaged spinal cord of the rat. The authors also
reported co-localization CDK 11 with β-1,4-GalT-I in the damaged
spinal cord suggesting an important role of CDK 11 in spinal cord
physiology. The other partner of CDK11, beta-1,4-
galactosyltransferase 1 (beta-1,4-GT 1) is regularly present in LPS
induced inflammation in astrocyte primary cultures of rats [49]
suggesting inflammation is key in the processes of neuronal cell death.

Schwann cell proliferation is also a sign of inflammation in the PNS.
Duan et al. [50] presented that Schwann cell proliferation could be
repressed by the complex CDK11 p58/cyclin D3, also leading to
apoptosis.

The identification of factors that regulate reactive astrogliosis is of
practical interest for the development of therapeutic strategies to
reduce neural damage and promote regeneration after CNS injuries
and decrease neuronal death in neurodegenerative disorders. It will be
interesting in the future to identify and characterize whether CDK11
p58 produced by astrocytes can regulate neuronal death during
pathological states in the CNS. Chronic inflammatory diseases and
conditions such as atherosclerosis, diabetes, obesity, CVD, depression
represent a risk factor leading to AD [51-54].

Concerning microglia, Hoozemans et al. [55] found that that there
is an inversion of microglial activity and the time that has passed
during process of the disease. Microglia cells go into senescence or
become dysfunctional as disease progresses, suggesting first that
neuroinflammation is an early, first hit in the process of
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neurodegeneration that may take decades. Impaired microglia cells
may act as nesting hot spots for non degraded and/or non cleared
degenerate neurites and consequently accumulating aggregation of
peptides that are aggregated further as plaques.

In regard to AD, stimulating the inflammatory response with LPS
or IL-1β, results in an increase of APP synthesis in primary cortical
neurons [56] in mice and rat brains [57].

Head injuries in mice models and humans are reported to be
accompanied by an increase of APP, Aβ and plaque deposition
[58-60]. Because of an appropriate response of the amyloid system in
head injuries, research has questioned the assumption that Aβ is the
sole toxic agent in its oligomeric form that accumulates
intraneuronally but that APP is the main substituent of neuron demise
[61].

The most promising hypothesis is that APP is accompanied by Aβ
species in swollen axons in patients that have been found to have high
levels of APP [8,62] and autophagy vacuoles that include PS 1 as well
as other lysosomal proteins. The process of autophagy has also been
linked to CDK 11 which is critically required for autophagic flux and
cargo digestion [63].

Aberrant APP processing by accompanying axonal leakage are in
agreement with the findings that Aβ plaques in AD contain not only
Aβ 40 and 42 but also a substantial amount of truncated APP [8].

CDK 11 and APP
Previous results of the in vitro studies using M 17 cells suggest a

new role of CDK11 in APP signal transduction processing as a
dependent receptor [27]. For instance, there is a γ-secretase
independent mechanism of signal transduction of APP, suggesting an
alternative mechanism for APP signal transduction.

Has and Yankner [64] reported that in presenilin-1/2-deficient cells
(PS-KO) APP retained the ability to activate Tip 60 suggesting that
APP is able to activate transcription independently of γ-secretase
cleavage. This is possible as Tip 60 is recruited to the membrane which
leads to its activation through a cyclin-dependent kinase mediated
phosphorylation process. This proposed mechanism would allow
signaling to be regulated in multiple ways through CDKs [64].

Cyclin B1 and cyclin D1 are elevated in PC12 cells with APPswe
mutation and this data has been substantiated in the brain tissues of
Tg2576 mice which harbor the APPswe mutation [65]. As elaborated,
PC12 cells when exposed to an inflammatory factor, LPS, upregulate
CDK11 (p58) consequently leading to apoptosis [48].

AβPP-BP1, an adaptor protein involved in the cleavage of APP, is
also a cell cycle protein that regulates mitotic transition from S to M
phase. Overexpression of AβPP-BP1 may therefore push neurons into
the S phase and cause DNA replication and expression of cell cycle
markers like cdc2 or cyclin B [66].

APP is known to be phosphorylated at threonine residue Thr668
in the intracellular domain by several kinases including CDK5, c-Jun-
terminal kinase 3 (JNK 3), and GSK3 β [67]. The growth promoting
activity of APP is mediated by the ability of soluble APPα to down
regulate CDK5 and inhibit tau phosphorylation [68]. Elevated levels of
p25 relative to p35 cause dysregulation of CDK5 activity that lead to
neuroinflammation and neurodegeneration [69].

Importantly, tau reduction prevents major Aβ-dependent cognitive
deficits in hAPP mice [70]. On the other hand, APP reduction is
associated with impaired neurite outgrowth and neuronal viability in
vitro and synaptic activity in vivo [71,72]. APP undergoes rapid
anterograde transport and is targeted to the synaptic sites [67], where
the levels of secreted APP coincide with synaptogenesis [72,73] and is
connected to toxic oligomeric forms of Aβ [74]. Thus, in our previous
study we showed that elevated CDK11 expression in cellular processes
may have an effect on APP, perhaps promoting cellular death [27].

Other critical associations of CDK11 and APP synaptic activity may
be associated with reports showing CDK11 regulates microtubule
stabilization in a Ran GTP (for RAs related nuclear protein) manner
during spindle formation [34]. The Ran family further regulates
nucleocytoplasmic transport [75].

The inappropriate localization of nuclear proteins in the cytoplasm
of neurons in AD may lead us to suspect a dysfunction in the
nucleoplasmatic transport mechanism of proteins, importins and
congruently the engine that enables proteins to be imported in and out
of the nuclei, the GTPase RAN.

In hippocampal neurons from AD patients, importin α is
abnormally located in Hirano bodies [76] indicating impairment of
transport. CDK11 localizes to spindle microtubules (MT) and
centrosomes, there it may bind to MT through an inter-reaction with
its substrate (not known). Moreover, we may hypothesize that CDK11
released from importins by RAN GTP-ase around chromosomes may
form a soluble gradient of active kinase congruent with free NLS
protein gradient. In the absence of CDK11, MT are shorter, whereas
spindle assembly takes a longer time to organize [34]. It may further
indicate a CDK11 non- amyloid β function, in which microtubule
impairment, i.e. transport underlies the loss of neuronal connectivity
and the basis of cognitive loss in AD. Cash et al. [77] showed that MT
impairment in AD is not related to tau abnormalities. Concurrent with
these findings, CDK11 in human brain is not co-localized to tangles or
plaques suggesting again its role in MT and APP processing [27].

Based on new findings that cell cycle regulators of the metaphase-
anaphase transition, such as cohesion proteins, have a role other than
tethering sister chromatids and centromeres together in postmitotic
neurons, and that Cdh-1/APC (anaphase promoting factor), a known
E3 ubiquitin ligase known for its fundamental role in cell proliferation
is a survival factor in neurons [78-80] we postulate that CDK11 is
impiously not only primarily connected to cohesion dynamics [38,81],
microtubule stabilization, centrosome dependent spindle assembly
[34] and spindle assembly checkpoint control (SAC) but that CDK11
may have a role in active maintenance of the quiescent status the
neuron probably through its role in RNA processing, in the regulation
of transcription and in pre-mRNA splicing [82,83]. Ectopic expression
of CDK11 in late phases of the AD disease and APPwt and APPswe
type M17 cells may show some regulatory networks involving a new
role of APP, as a dependence receptor that functions as a molecular
switch in synaptic element interdependence on various trophic factors
[84]. Our results strengthen the notion that Alzheimer’s disease is not
based on the toxic effects of Aβ [22] but on imbalanced signal
transduction [64,65,84,85] that mediate synaptic maintenance vs.
synaptic re-organization, mediated at least by APP.

Given the notion that CDK11 needs to be present in the nucleus
of neuronal cells [28], the increased levels of CDK11 we observed in
the cytoplasm in neurons may correlate to failed attempts of these
neurons to maintain a differentiated or quiescent state.
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Does CDK11 have a secondary role in post mitotic neurons in the
case of microtubule integrity, as we see ectopic accumulation of
CDK11 in cellular processes? One answer could come from the M17
cells showing that CDK11 in APPwt and APPswe mutant cells is
concentrated in nuclei, not in the cytoplasm as seen in our AD cases
[27]. Because insignificant changes in expression of CDK11 are found
between APPwt and APPswe mutant phenotype, it suggests the
changes in the AD brain are likely linked to APP signal transduction
pathways [84,85].

Taken together with the finding that Aβ25-35, applied in a manner
that does not cause cell death, resulted in increased CDK11 in a cell
model, suggests there is an interplay between APP overexpression,
APP processing, and cellular growth. Thus, the results of the present
study showing elevated CDK11 expression in cellular processes may
have an effect on APP perhaps promoting cellular death.

Results from the in vitro studies using M17 cells suggest a new role
of CDK11 in APP signal transduction processing as a dependence
receptor. Using M17 cells as a model, expression levels of CDK11 were
increased in the APPwt and APPswe mutant phenotype compared to
empty vector as control. The finding of increased expression of
CDK11 in cellular processes within the brain of AD cases may indicate
that CDK11 is linked to APP signal transduction processing in
neuronal synapses. A number of papers have proposed alternative
roles for APP in AD pathogenesis in which the Aβ fibril formation is
not the sole factor of neurodegeneration in AD [5,8,64,84,85].

These data, and the fact that in AD the neurons that display CDK11
in the cytoplasm remain viable, suggest that CDK11 may play a vital
role in cell cycle re-entry in AD neurons in an APP-dependent
manner.

Conclusion
The inflammation hypothesis proposed by Krstic and Knuesel [8]

and others [6,86-90] come about from the findings that genetic
etiology of FAD, such as mutations and their polymorphisms, in the
APP and gamma secretase showed no correlation to SAD. In SAD the
APOE 4 gene and genetic experiments found polymorphisms in genes
that regulate innate immunity and inflammation are implicated as
high risk factors for AD [91,92].

Inflammation mediators and the innate immune system in the
brain are etiologically linked to AD. In a review laid out by Krstic and
Knuesel [8] results are given in a line with the two hit hypothesis first
proposed by Zhu et al. [93], updated by Zhu et al. [94] and Fiebich et
al. [95]. Krstic et al. [5] showed that when animals where prenatally
challenged by Poly (I:C) (polyribocytidilic acid) an accelerated
deposition of aggregated proteins in brain of aged mice where found.
When these mice where challenged later or the second hit, in
adulthood, they found that mice had strikingly similarities and
changes in the brain as do AD patients.

These reports show a link of inflammation, to oxidative stress, cell
cycle re-entry and mitochondrial impairment (Figure 2).

Reactivation of the cell cycle, including DNA replication might play
a major role in AD. This research will in a broad sense show us more
precisely the specificity of the cell death trigger in AD, as all neuronal
cells that enter the cell cycle, die. So, in regard to CDK11 we may offer
an answer: is neurodegeneration a result of imbalance in physiological
signaling events such as those that mediate synaptic maintenance and
synaptic re-organization (APP, plus analogues what we have in

neoplasia) or, as more commonly suggested, the result of nonspecific
toxic effect of peptide or protein aggregate? Our work and that of
others show that evidence on both sides exists. CDK11 p58 and p46
are implicated in apoptosis. Also, it is a well-established fact that key
features of the Alzheimer’s phenotype, at least in the standard
transgenic mouse model, depend on the caspase cleavage site within
APP and this trigger is critically dependent on Aβ, suggesting that the
APP caspase site may lie downstream from Aβ accumulation. CDK11
p110 is expressed in processes of the AD brain and in M17 cells (swe
mut phenotype). Also, we have found that Aβ given to M17 cells
increases expression of CDK11, p110. Further experiment will tell us if
CDK11 p58 and p46 are also connected to APP and how this
implicates CDK-APP in neuronal cell death.

Figure 2: The complexity of the second hit-a possible role of CDK’s
in inflammation.

CDK11 may play a vital role in cell cycle re-entry in AD neurons
after/or as an inflammation insult in an APP-dependent manner, thus
presenting an intriguing novel function of the APP signaling pathway
in AD.
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