
J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

Journal of Physical Chemistry & Biophysics
Research Article

Correspondence to: Peter Farag, Independent Researcher, New York, United States, E-mail: peterfarag12@gmail.com

Received: 16-Nov-2023, Manuscript No. JPCB-23-28037; Editor assigned: 20-Nov-2023, PreQC No. JPCB-23-28037 (PQ); Reviewed: 04-Dec-2023,
QC No. JPCB-23-28037; Revised: 11-Dec-2023, Manuscript No. JPCB-23-28037 (R); Published: 18-Dec-2023, DOI: 10.35248/2161-0398.23.14.369.

Citation: Farag P

Copyright: © 2023 Farag P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1

INTRODUCTION

To prove the validity of our concepts, we rely on the fundamental
principles and laws of quantum physics, which are detailed in
“Physics behind”. Furthermore, a mathematical perspective is
presented in “Math and Simulations”, where we cover all the
key concepts. The general idea of our quantum device revolves
around putting photons into a superposition state, altering their
wavelengths and, consequently, modifying the probabilities of their
interaction with right and left photo-resistors. By extracting values
from the photo-resistors, we compute expectation values, which
serve as outputs for the quantum linear layer of our neural network.

Of course, the quality of the materials we used is not the highest, but
this did not prevent us from conducting quality experiments and
proving the effectiveness of the devices. In the section “Hardware”
you will be able to read about all the materials for building our
devices, and in addition, you can find a scheme of the quantum
device and information about connecting it to a classical computer.
We have ideas on how to improve quality and you can read about it
in “The Future of the Projects and Further Devices”.

In the section “Neural Network”, deals with the classical levels of
the neural network, as well as in detail with the quantum linear
level. In addition, there are examples of pictures from the data-set
we used. For this project, we wrote a simulator of our quantum

device so in this section, you will be able to familiarize yourself with
how to use the simulator and a real device with a code.

In addition to the 1-qubit device, we also collected a 2-qubit device.
All aspects such as: Schemes, the code for the neural network,
the training and the results are discussed in “2-Qubit Quantum
Device”.

MATERIALS AND METHODS

The physics behind

This whole project relies on photons, so it is essential to study
polarization and optical properties.

Polarization

Photons have a unique property known as polarization. Light can be
polarized or randomly polarized (unpolarized light), which means
it vibrates in every direction. However, we can obtain polarized
light by using a polarizing lens, such as sunglasses. Polarized light
can be vertically or horizontally polarized, or a superposition of
both. To measure the polarization of light, we can use a polarizing
beam-splitter. This device reflects the vertically polarized light and
transmits horizontally polarized light [1]. However, since our goal is to
build an affordable quantum computer, we will use the Brewster angle.

The Brewster angle: In 1815, Sir David Brewster discovered

ABSTRACT
Current quantum computers are expensive and require professional equipment for their construction. The price
of such computers varies depending on the number of qubits, with an average cost of $10,000 for a 2-qubit device.
Therefore, the goal of this paper is to propose an affordable approach for building an optical quantum computer
and demonstrate its utility by using the device as a quantum layer in a neural network for image analysis. The
article outlines the construction of two devices: One with 1 qubit and another with 2 qubits. These devices were
constructed using easily accessible materials that can be found in any shop. Furthermore, a library named WavePlate
was developed for this project, which is publicly available for widespread use.

Keywords: Quantum; Quantum computer; Neural network; Photons; Optics; Quantum machine learning; WavePlate

Custom Quantum Devices and their Use in a Neural Network at a Quantum
Level
Peter Farag*

Independent Researcher, New York, United States

 (2023) Custom Quantum Devices and their Use in a Neural Network at a Quantum Level. J Phys Chem Biophys. 14:369.

2J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available onlineFarag P

that when light strikes a refractive material at a specific angle,
the reflected light becomes fully vertically polarized, while the
transmitted light becomes horizontally polarized. This angle can be
calculated using the formula:

1 2tan
1

n
n

θ − =
 ……… (1)

Where, n1 and n2 are the refractive indices of the two media. For
glass, the Brewster angle is approximately 56.3°. This is exactly
what we will use to measure the polarization of light (Figure 1) [2].

Figure 1: Illustration of the Brewster angle.

Reflection and refraction

Photons possess both wave and particle properties (wave-particle
duality). Let’s examine some particle properties such as reflection
and refraction.

Reflection: Reflection is the throwing back by a surface without
absorbing it. The best way to get light reflections is mirrors. Given
a mirror place at an angle of θm and light at an angle of incident θi,
the angle of reflection can be calculated using the formula.

r m iθ θ θ= − ……… (2)

Where, θr is the angle of reflection

For example given a mirror placed at an angle of 56.3° and a light
with an angle of incidence of 0 the angle of reflection will be 56.3° [3].

Refraction: Refraction is a property that refractive materials
have like glass and water where particles become deflected with
a different angle through the interface between one medium and
another the angle of refraction can be calculated using Snell’s law.

1 21 sin() 2 sin()n nθ θ⋅ = ⋅ ……… (3)

Where, n1 and n2 are the refractive indices for the two media and
θ

1
 is the angle of incident and θ

2
 is the angle of refraction.

The science behind CDs as half wave plates

When it comes to the interaction of light with materials, certain

objects, like Compact Discs (CDs) have interesting optical
properties. One of these properties is their ability to function as
half-wave plates, which can manipulate the polarization of light. To
understand this phenomenon, we can delve into the principles of
wave optics.

Half wave plates: Polarization refers to the orientation of the
oscillation of light waves as we mentioned above. When light
interacts with a surface or material, its polarization state can
change. Half-wave plates are optical devices that can modify the
polarization of incident light (Figure 2).

Figure 2: How a half wave plate works.

When light enter a half-wave plate, it splits into two perpendicular
components: One travels along the fast axis and another along the
slow axis when this two components combine again, the phase
difference between them will be half a wavelength and the
polarization direction will rotate by angle θ

new
 and i can be

calculated by

2nθ θ φ= + ……… (4)

Where θ is the current polarization direction and ϕ is the angle the
half-wave plate is rotated with. But half wave plates are so expensive
which lead us to our next point [4].

Birefringence: Birefringence occurs because the microscopic
grooves on the surface material creates two distinct paths for the
polarized components of light. One component is delayed relative
to the other, resulting in a something called phase shift [5]. As a
result of birefringence, a CD can effectively function as a half-wave
plate. This capability allows it to convert incident linearly polarized
light into light with a polarization direction corresponding to that
of the CD. It’s noteworthy that we can freely rotate the CD over a
360° angle.

Applications: The ability of CDs to act as half-wave plates has
practical applications, especially in optical experiments and devices
where polarization control is essential. Researchers and hobbyists
can use CDs as cost-effective tools for manipulating polarized light
and that’s exactly what we’ll be using.

Two photon interference

In order to implement 2 qubit gates we had to achieve a
phenomenon called 2-photon interference. This phenomenon is
an important step to enable quantum operations. We can achieve
this by using the Hong-Ou-Mandel effect.

The Hong-Ou Mandel effect: This effect is a quantum interference

3J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

 first = math.cos(theta)**2 - math.sin(theta)**2

 second = 2 * math.cos(theta) * math.sin(theta)

 third = math.sin(theta)**2 - math.cos(theta)**2

 fourth = 2 * (-math.sin(theta)) * math.cos(theta)

 self.hwpmatrix = np.array([

 [first, second, 0, 0, 0, 0, 0, 0],

 [second, third, 0, 0, 0, 0, 0, 0],

 [0, 0, third, fourth, 0, 0, 0, 0],

 [0, 0, fourth, third, 0, 0, 0, 0],

 [0, 0, 0, 0, first, fourth, 0, 0],

 [0, 0, 0, 0, fourth, third, 0, 0],

 [0, 0, 0, 0, 0, 0, third, second],

 [0, 0, 0, 0, 0, 0, second, first]

])

 result = self.multiply(self.state, self.hwpmatrix)

 return result

Simulations

To perform simulations, we require classical computers. We chose
Python as our preferred programming language and created a
class called PhotonicCircuit(). This class starts with an initial state
of |Right H> (which can be changed). As of now, this class can
simulate four optical elements: Mirrors, beam splitters, polarizing
beam splitters, and half-wave plates. We are actively exploring
opportunities to expand its capabilities further. After performing
simulations, you can obtain counts from the circuit. Additionally,
after some careful consideration, we found out a method to
measure the Z expectation value [7].

Testing: We conducted tests on simple algorithms and protocols
such as the Deutsch-Jozsa or the BB84 protocol using 1 and 2-bit
strings. The simulations were successful. You can access the tutorials
and documentation via the following Link (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials).

Quantum layer simulation

Back to our main mission (a quantum layer for our neural network)
we used half wave plates to get the trainable parameters and a
polarizing beam splitter to get measurements notably, we opted not
to use beam-splitters due to the fact that this is a 1-qubit quantum
device, which we intend to expand later on the paper.

We used the parameter-shift rule to calculate our gradients [8,9]:

2 2()
2

F F
F

π πθ θ
θ

 + − −
 ∇ =

 ……… (5)

Analytic gradients Formula (https://learn.qiskit.org/course/
machine-learning/training-quantum-circuits - training-19-0) and to
calculate the loss we used 2 loss function for the 1 and 2 qubit
devices respectively [10]

phenomenon that arise when 2 photons are incident upon a beam-
splitter. This effect result in the photons becoming entangled in
such a way that they exit the beam-splitter entangled [6]. Now we can
apply quantum optical gates like a half wave plate for the photons
after they exit the beam-splitter by this way we can get multi-qubit
gates. These gates play an important role in the manipulation and
processing of quantum information so we can fully harness the
potential of quantum computing (Figure 3).

Figure 3: The Hong-Ou Mandel effect.

Maths and simulations

Prior to constructing the physical hardware, one essential step was to
keep track of the mathematics involved and do some simulations to
validate the functionality of the hardware. As a result, we embarked
on a comprehensive study of the mathematics and developed our
Python library for simulating optical hardware.

Light as vectors

We started by representing the light beam as 1 × 8 vector where
each element represents both the direction and polarization of
the light. The vector is structured as follows, with ’H’ indicating
horizontal polarization and ‘V’ indicating vertical polarization:

[RightH, RightV, LeftH, LeftV, UpH, UpV, DownH, DownV]

Optical elements as matrices

For optical elements such as beam-splitters or half-wave plates, they
are represented by an 8 × 8 matrix, which we will discussing further
in the code. Operations are performed by multiplying the current
state with the optical matrix.

The research: After conducting some research in an effort to make
the optical element matrices as precise as possible, we arrived at
a solution utilizing trigonometric functions for amplitude and
Euler’s number for phase. Resulting in an expression that looks
like this: cos θ ∗ ei∗π

Optical elements examples: For example this is the matrix
representing the half wave plate in Python since the half wave
plate have a phase shift of ei∗π which is -1 so required values will be
multiplied by -1 (Listing 1).

Listing 1: Code for simulating half-wave plate.

def HWP(self, theta):

 theta = math.radians(theta)

Farag P

4J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

Half-Wave Plate (HWP): To generate all possible rotations of
rotation gates, we decided to use a transparent refractive CD as
HWP and micro servos to change angle of the CD thereby altering
the wavelength of photons and subsequently modifying the
probabilities [11].

Mirror: It is important to use mirrors without a glass layer (because
it will make unwanted interference) so we used dental mirrors.

Beam splitter: The cheapest thing that gives the closest result to a
non-polarizing beam-splitter is a piece of glass.

Photoresistor: The photoresistors were used along with a resistor
of 10 k Ohm.

Arduino

To control the quantum computer we have to build two types
of connections: From Classical computer to Quantum (C-to-Q)
and from Quantum computer to Classical (Q-to-C). For both
connections we used an Arduino.

C-to-Q: Our goal is to get the data from neural network so we can
interpret input numbers as angles for rotation of HWP. To make
such rotation we used Micro Servo.

Q-to-C: To get output from quantum computers we used
photoresistors. We are measuring the values from the photoresistors
and then counting expectation values after making measurements
several times.

Required Arduino equipment: The required Arduino equipment
is: Wires (mainly male-male and male-female), 2 Micro Servos, 2
photoresistors, 2 resistors (10 k Ohm) and a breadboard (Figure 7).

1

ˆlog
M

i i
i

L y y
=

= −∑
 ……… (6)

The NLL loss where ŷ is the probability distribution and y is the
target

1

ˆ
n

i
i

L y y
=

= − −∑
 ……… (7)

The L1 loss also known as Absolute Error You can fine all loss
functions h and the quantum parameters are updated by:

(())new current L Fθ θ α θ= − ⋅ ⋅∇ ……… (8)

Where α is the learning rate, L is the loss, ∇F(θ) is the gradients

Final simulation result: By adding the quantum layer to our
classical neural network which we will mention below the training
process proceeded successfully. Full tutorial is here: (https://
github.com/QVLabs/WavePlate)

Hardware

We started by creating a scheme of the 1-qubit device. The device
have to contain laser, polarizer, Half-Wave Plates (HWP), mirror,
Beam-Splitter (BS) and photoresistors (Figure 4).

Parts of the quantum computer

We have to specify some details about all parts of the device (Figures
5 and 6).

Laser: We are using a red laser with a wavelength of 650 nm.

Polarizer: As a polarizer we used sunglasses.

Figure 4: Scheme of 1-qubit device. Where the mirror is placed at an angle of 56.3° and the beam splitter at an angle of 0°. Note: () Polarizer, ()
Beam splitter, () Mirror, () Half wave plate, () Detector.

Farag P

5J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

Figure 5: Laser, polarizer and HWP.

Figure 6: Mirror, beam-splitter and photoresistor.

Figure 7: Scheme of all connections to Arduino chip.

Farag P

6J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

of the NN is analyse picture and say is it an ant or a bee in a given
picture (Figure 9) [12].

Figure 9: Examples of data.

Classical part

To create the NN we used the PyTorch library. The classical part
contains 6 layers: 2 convolutional and 4 linear. Also we added a
dropout function to prevent the risk of the model overfitting. In
the Figure 9 you can see classical layers in the __init__ (or the
main) function of the NN [7] (Listing 3).

Listing 3: Part of the code with classical layers in the main function.

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 super(Net, self).__init__()

 self.conv1 = nn.Conv2d(3, 16, 3)

 self.pool = nn.MaxPool2d(2, 2)

 self.dropout1 = nn.Dropout2d(0.25)

 self.conv2 = nn.Conv2d(16, 32, 3)

 self.fc1 = nn.Linear(32 * 54 * 54, 1200)

 self.fc2 = nn.Linear(1200, 120)

 self.fc3 = nn.Linear(120, 84)

 self.fc4 = nn.Linear(84, 1)

In the forward function of the NN we used ReLu as an activation
function for our classical layers (Listing 4).

Listing 4: Part of the code with classical layers in the forward
function.

def forward(self, x):

 x = self.pool(torch.relu(self.conv1(x)))

 x = self.dropout1(x)

 x = self.pool(torch.relu(self.conv2(x)))

 x = x.view(-1, 32 * 54 * 54)

 x = torch.relu(self.fc1(x))

 x = torch.relu(self.fc2(x))

 x = torch.relu(self.fc3(x))

 x = self.fc4(x)

Quantum part

Simulation: We created a custom layer using our own library we

Code for Arduino

The main loop function for Arduino takes input angles for Micro
Servos from the Python NN. Then measure the values from
photoresistors and then send the output back to the NN.

You can find full code here (https://github.com/QVLabs/
WavePlate/tree/main/Tutorials/Actual%20Hardware/1%20
Qubit/QuantumLayer) (Listing 2).

Listing 2: Code for Arduino with 2 microservos and 2 photoresistors.

void loop() {

//put your main code here, to run repeatedly:

while(Serial.available() >= 2){

 for(int i = 0; i < 2, i++){

 incoming[i] = Serial.read()

 }

 if(incoming[1] == 0){

 servo1.write(incoming[0]); //qubit 0 first gate

 }

 else if(incoming[1] == 1){

 servo2.write(incoming[0]); //qubit 0 second gate

 }

 }

 delay(1000);

 int value1 = analogRead(A0); //qubit 0 state 0

 int value2 = analogRead(A1); //qubit 0 state 1

 Serial.println(value1);

 Serial.println(value2);

}

Building the device

To build the quantum device we used the scheme, all required
parts, connected everything to the Arduino and then test it using
the NN (Figure 8).

Figure 8: Upper view of the quantum device.

Neural Network (NN)

We created the Neural Network (NN) in the Python programming
language that contains classical layers and the quantum layer. The
dataset that we used contains pictures of ants and bees. The goal

Farag P

7J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

OPEN ACCESS Freely available online

ser = serial.Serial(‘COM8’, 9600)

def send_to_arduino(ser, values):

 ser.write(struct.pack(‘>BB’, *values))

def receive():

 if ser.in_waiting > 0:

 data = ser.readline().decode(‘utf-8’).rstrip()

 return data

Please note that when connecting Serial, you must ensure that
the Arduino is connected to the correct port. In our case, it was
COM8.

Listing 9: The quantum layer with Arduino.

def quantum_layer(q_input_features, q_weights_flat):

 value1,value2 = None,None

 q_weights = q_weights_flat.reshape(q_depth, n_qubits)

 for idx, angle in enumerate(q_input_features):

 ang = angle

 while ang < 0:

 ang += math.pi/2

 an = int(((ang*2)*180/math.pi))

 send_to_arduino(ser,[an,idx])

 for layer in range(q_depth):

 for idx, angle in enumerate(q_weights[layer]):

 ang = angle

 while ang < 0:

 ang += math.pi/2

 an = int(((ang*2)*180/math.pi))

 send_to_arduino(ser,[an,idx+1])

 time.sleep(2)

 while value1 == None:

 value1 = receive()

 while value2 == None:

 value2 = receive()

 print(f’value 1 is {value1} and value2 is {value2}’)

 return get_exp(value1,value2)

Listing 10: Gradients function with Arduino.

def apply_gradient(input,params):

 input,params = input.tolist(), params.tolist()

 s = np.pi/2

 gradient = []

 for k in params:

 k_plus = k + s

 k_minus = k - s

mentioned above, with the simulation of the actual quantum
device. We implemented three functions: A function for the
quantum layer, a function for getting gradients, and a function
for running the circuit for gradients [13,14]. Here are the codes
respectively (Listings 5-7).

Listing 5: The quantum layer.

def quantum_layer(q_input_features, q_weights_flat):

 q_weights = q_weights_flat.reshape(q_depth, n_qubits)

 qc = PhtotonicCircuit()

 qc.HWP(22.5)

 for idx, angle in enumerate(q_input_features):

 qc.HWP(angle, idx)

 for layer in range(q_depth):

 for idx, angle in enumerate(q_weights[layer]):

 qc.HWP(angle, idx)

 return qc.Z_expectation(shots=20)[2]

Listing 6: Function for running the gradients.

def run(q_weights):

 qc = PhtotonicCircuit()

 qc.HWP(22.5)

 for idx, angle in enumerate(q_weights):

 qc.HWP(angle, idx)

 return qc.Z_expectation(shots=20)[2]

Listing 7: Gradients function.

def apply_gradient(params):

 params = params.tolist()

 s = np.pi/2

 gradient = []

 for k in params:

 k_plus = k + s

 k_minus = k - s

 exp_plus = run([k_plus])

 exp_minus = run([k_minus])

 gr = (exp_plus - exp_minus) / 2

 gradient.append(gr)

 return torch.tensor(gradient,dtype=torch.float32)

Actual quantum device: We created a custom layer using the
serial library for sending input values to Arduino and receiving
the output.

We implemented the same three functions as the simulation but
with different methods to get and send data to the real quantum
device (Listings 8-10).

Listing 8: Functions for sending and receiving data from the
Arduino.

Farag P

8J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

Farag P OPEN ACCESS Freely available online

 target = target.to(device)

 target_list.append(target.item())

 optimizer.zero_grad()

 output = network(data)

 loss = F.nll_loss(output, target)

 loss.backward()

 optimizer.step()

#update quantum parameters

 gradient = apply_gradient(output,network.q_params)

 outlist = output.tolist()[0]

 out = (1-outlist[0]) if outlist[0] > outlist[1] else outlist[1]

 new_params = nn.Parameter(network.q_params - (0.001 * (out-
target.item()) * gradient))

 network.q_params = new_params

 total_loss.append(loss.item())

 loss_list.append(sum(total_loss) / len(total_loss))

 print(‘Loss = {:.2f} after epoch #{:2d}’.format(loss_list[-1], epoch + 1))

After completing the training, you will observe continuous
improvement in the loss function. This concludes the discussion
of the neural network.

Link for the full simulation tutorial here (https://github.com/
QVLabs/WavePlate/blob/main/Tutorials/QuantumLayer_
Simulation.ipynb), and Hardware tutorial here (https://github.
com/QVLabs/WavePlate/tree/main/Tutorials/Actual%20
Hardware/1%20Qubit/QuantumLayer).

RESULTS AND DISCUSSION

The two-qubits quantum device

We also implemented the 2-qubits quantum device so we can use
entangling gates and explore other projects as well as enhance the
quality of the quantum layer of our NN.

The scheme of the device

We also started by drawing a scheme of what the device should
look like Figure 10.

Figure 10: The scheme of the 2 qubit device, where first beam-splitters
are placed at an angle of 45°, 90°, 0° respectively and the mirrors are
placed at an angle of 56.3°. Note: Note: () Polarizer, () Beam splitter,
() Mirror, () Half wave plate, () Detector.

 exp_plus = run(input,[k_plus])

 exp_minus = run(input,[k_minus])

 gr = (exp_plus - exp_minus) / 2

 gradient.append(gr)

 return torch.tensor(gradient,dtype=torch.float32)

You can find the full implementation here (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials).

Training

Now comes the training part with used the SGD optimizer and the
cross entropy loss for our training function of course after inserting
the quantum layer in the neural network’s forward function
(Listings 11-13).

Using the quantum layer

Listing 11: Quantum parameters in the main function in the NN
where qdelta and qdepth are constants.

self.q_params = torch.nn.Parameter(q_delta * torch.randn(q_
depth,dtype=torch.float32))

Listing 12: The quantum layer in the forward function.

q_out = None

 for elem in x:

 # print(elem)

 q_out_elem = quantum_layer(elem, self.q_params)

 if q_out == None:

 q_out = torch.tensor([[q_out_elem]])

 else:

 q_out = torch.add(q_out, torch.tensor([[q_out_elem]]))

 q_out = (q_out+1)/2

 q_out = torch.cat((q_out, 1-q_out), -1)

 q_out = q_out.requires_grad_()

 return q_out

Training the NN

Listing 13: The training loop.

network = Net()

optimizer = optim.SGD(network.parameters(), lr=0.001,
momentum=0.9)

epochs = 10

criterion = nn.CrossEntropyLoss()

loss_list = []

for epoch in range(epochs):

 total_loss = []

 target_list = []

 for data, target in dataloaders[‘train’]:

 data = data.to(device)

9J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

Farag P OPEN ACCESS Freely available online

in the code above. In essence, we measure the control qubit and,
based on that measurement, adjust the orientation of the half-wave
plate on the target qubit before measuring the target qubit.

You’ll find the Python and Arduino code here (https://github.
com/QVLabs/WavePlate).

Connections: For the 2-qubit device, we used 4 micro servo motors,
4 photo-resistors and 4 10Kohm resistors for measurements, a
PCA9685 chip to power and optimize everything, a 9V battery,
and of course, an Arduino Uno (Figure 11).

Figure 11: The Arduino connections.

Neural network with 2-qubit device

We implemented the same neural network but with a new quantum
layer and expectation value function that can process the data from
and to the 2-qubit device (Figure 12).

Figure 12: The 2 qubit device.

It’s noteworthy that we replace the NLL loss with the L1 loss in the
2 qubit device.

Code: Here is the code of quantum layer with 2 qubits (Listings
15 and 16).

Listing 15: Python code for Quantum layer.

def quantum_layer(q_input_features, q_weights_flat):

 value1, value2, value3,value4 = None, None,None,None

The simulation

We implemented a code using our library to simulate the scheme we
designed. In this code, we developed a quantum layer that accepts
input features and weights and returns the expectation value.

Link for the 2 qubit simulation tutorials here (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials) (Listing 14).

Listing 14: 2 qubit device quantum layer simulation.

import numpy as np

VS=[‘|RH>’, ‘|RV>’, ‘|UH>’, ‘|UV>’, ‘|LH>’, ‘|LV>’, ‘|DH>’,
‘|DV>’]

n_qubits, n_layers = 2, 1

weights = np.random.random([n_layers, n_qubits])

def 2qubitlayer(inputs, weights):

 qc = PhotonicCircuit()

 qc.BS(135)

H layers

 for i in range(n_qubits):

 qc.HWP(22.5, i)

INPUT features

 for idx, i in enumerate(inputs):

 qc.HWP(math.degrees(i), idx)

WEIGHTS

 for _ in range(n_layers):

 for idx, i in weights:

 qc.HWP(math.degrees(i), idx)

#--CNOT--

 for i in range(n_qubits):

 if i % 2 == 0:

 probs = qc.measure_probs()

 try:

 if VS[(2**i) - 1] in probs and VS[2**i] in probs:

 qc.HWP(22.5, i + 1)

 elif probs[VS[2**i]] >= 50:

 qc.HWP(45, i + 1)

 except: pass

return qc.Z_expectation(shot=100)

You can find the full tutorial here (https://github.com/
QVLabs/WavePlate/blob/main/Tutorials/QuantumLayer_
Simulation_2qubits.ipynb).

The actual hardware

CNot implementation: We used conditional operations based on
the polarization properties of photons to implement the CNot gate
in the simulation. Details about how this is achieved can be found

10J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

Farag P OPEN ACCESS Freely available online

 }

 else if(incoming[1] == 1){

 servo3.write(incoming[0]); //qubit 1 first gate

 }

 else if(incoming[1] == 2){

 servo2.write(incoming[0]); //qubit 0 second gate

 }

 else if(incoming[1] == 2){

 servo4.write(incoming[0]); //qubit 1 second gate

 }

 }

 delay(1000);

 int value1 = analogRead(A0); // qubit 0 state 0

 int value2 = analogRead(A1); // qubit 0 state 1

 int value3 = analogRead(A2); // qubit 1 state 0

 int value4 = analogRead(A3); // qubit 1 state 1

 Serial.println(value1);

 Serial.println(value2);

 Serial.println(value3);

 Serial.println(value4);

}

You can find the full tutorial code for the 2 qubit device here
(https://github.com/QVLabs/WavePlate/tree/main/Tutorials/
Actual Hardware/2 Qubit/QuantumLayer).

We trained the neural network and after 40 epochs we got such
results: AS you can see the Neural Network started with a loss of
0.78 and ended the training with a loss of 0.067 after 40 epochs
which is 30% better compared to the 1 qubit device, and using the
testing dataset the NN got 148 samples correct out of 153 which
gives an accuracy 96.7% (Figures 13 and 14).

Figure 13: Loss for every epoch and accuracy of the neural network
for the 2 qubit device.

 q_weights = q_weights_flat.reshape(q_depth, n_qubits)

 for idx, angle in enumerate(q_input_features):

 ang = angle.item()

 while ang < 0:

 ang += math.pi/2

 an = int(math.degrees(ang))

 #print(an)

 send_to_arduino(ser,[an,idx])

 for layer in range(q_depth):

 for idx, angle in enumerate(q_weights[layer]):

 ang = angle.item()

 while ang < 0:

 ang += math.pi/2

 an = int(math.degrees(ang))

 #print(an)

 send_to_arduino(ser,[an,idx+2])

 #time.sleep(1)

 #print(‘Started layer’)

 while value1 == None:

 try: value1 = int(receive())

 except: pass

 while value2 == None:

 try: value2 = int(receive())

 except: pass

 while value3 == None:

 try: value3 = int(receive())

 except: pass

 while value4 == None:

 try: value4 = int(receive())

 except: pass {value3} and {value4}’)

return get_exp(value1,value2,value3,value4)

And this is main loop function for Arduino:

Listing 16: Code for Arduino with 4 micro servos and 4
photoresistors.

void loop() {

 while(Serial.available() >= 2){

 for(int i = 0; i < 2, i++){

 incoming[i] = Serial.read()

 }

 if(incoming[1] == 0){

 servo1.write(incoming[0]); //qubit 0 first gate

11J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

Farag P OPEN ACCESS Freely available online

The total cost of the 1 quit device is around 50 dollars and the 2
qubit one is around 65 dollars what is very cheap compared to other
quantum computers.

The Future of the project and further devices

The project has many prospects.

• One of them is find a faster way of C-to-Q and Q-to-C
connections.

• We can find a pattern in the increase of the number of qubits
and their entanglement.

• We can find ways to overcome the limitations we currently have
like in gates implementation for example.

• In the near future we plan to make a device with 3-4 qubits and
in the future 7 and 8 qubits.

• We plan to try out different entanglement methods like the
nonlinear sign-shift gate.

• Also we have ideas and plans to achieve and try more projects
with the quantum devices by getting new components like a
precise 50:50 and a polarizing beam-splitter, etc. and improving
the quality of the exiting ones.

• In order to get a better 50:50 beam splitter we can use a window
tint on the glass that has a 50% Visible Light Transmission
(VLT) so we can get more better results.

• Moreover, the price of such a device will be hundreds of times
cheaper than modern quantum devices, which will be perfect
for learning and processing purposes.

• Also, by receiving financial support and collaborating with
universities, we can improve the quality of the quantum
computer accordingly, increase the accuracy of calculations.

• It is likely that in the future it will be possible to create a device
with 15 qubits, the computing power of which, in theory, will
be equal to the computing power of a classical computer.

REFERENCES
1. Nag N, Sasidharan S, Saudagar P, Tripathi T. Fundamentals of

spectroscopy for biomolecular structure and dynamics. In Advanced
Spectroscopic Methods to Study Biomolecular Structure and Dynamics.
Academic Press. 2023:1-35.

2. Emery W, Camps A. Basic Electromagnetic Concepts and Applications
to Optical Sensors. In Introduction to satellite remote sensing. Elsevier.
2017.

3. Chryssikos GD. Modern infrared and Raman instrumentation
and sampling methods. In Developments in Clay Science. Elsevier.
2017;8:34-63.

4. Zeghdoudi T, Kebci Z, Mezeghrane A, Belkhir A, Baida FI. Half-wave
plate based on a birefringent metamaterial in the visible range. Optics
Communications. 2021;487:126804.

5. Rajan MS. Photonic crystal fibers for various sensing applications. In
Industrial Applications of Nanocrystals. Elsevier. 2022:3-21.

6. Brańczyk AM. Hong-ou-mandel interference. arXiv preprint. 2017.

7. Liu J, Lim KH, Wood KL, Huang W, Guo C, Huang HL. Hybrid
quantum-classical convolutional neural networks. Sci China Phys Mech
Astron. 2021;64(9):290311.

Figure 14: Different VLT window firm’s illustration.

CONCLUSION

By running the neural network with the 1 qubit and 2 qubit devices
we have made some conclusions:

• The mean value of the loss for the 1 qubit device is -0.42, the
highest value is -0.70 and the lowest value is -0.21.

• The mean value of the loss for the 2 qubit device is 0.39, the
highest value is 0.78 and the lowest value is 0.067.

• There is a clear pattern that the loss exponentially go down
while maintaining the same number of epochs by increasing
the number of qubits.

• By training the same NN without the quantum layer with the
same number of epochs we noticed a significant difference in
the final performance.

• In order to get the best results from the photo-resistors the
quantum computer had to operate at a total dark room.

• The simulation and math has shown that the device is fully
capable of other quantum projects as well.

• There is an optical implementation for almost every quantum
gate, which will enable the quantum computer to achieve its
full potential.

• By increasing the quality of the components and getting new
ones we can achieve much better results.

• For this moment the speed of the quantum layer is not high
because of the C-to-Q connection.

• Devices similar to those can be differently interpreted. The
example of this is shown in this article. We used the same
dataset for both cases and the outputs supposed to give the
answer (an ant or a bee). With 1 qubit device probabilities of
getting 0 or 1 were used and with 2 qubit device expectation
values were used.

https://www.sciencedirect.com/science/article/abs/pii/B9780323991278000027
https://www.sciencedirect.com/science/article/abs/pii/B9780323991278000027
https://www.sciencedirect.com/science/article/abs/pii/B9780128092545000026
https://www.sciencedirect.com/science/article/abs/pii/B9780128092545000026
https://www.sciencedirect.com/science/article/abs/pii/B9780081003558000035
https://www.sciencedirect.com/science/article/abs/pii/B9780081003558000035
https://www.sciencedirect.com/science/article/abs/pii/S0030401821000547
https://www.sciencedirect.com/science/article/abs/pii/S0030401821000547
https://www.sciencedirect.com/science/article/abs/pii/B9780128240243000178
https://arxiv.org/abs/1711.00080
https://link.springer.com/article/10.1007/s11433-021-1734-3
https://link.springer.com/article/10.1007/s11433-021-1734-3

12J Phys Chem Biophys, Vol.14 Iss.1 No:1000369

Farag P OPEN ACCESS Freely available online

12. Mari A, Bromley TR, Izaac J, Schuld M, Killoran N. Transfer learning
in hybrid classical-quantum neural networks. Quantum. 2020;4:340.

13. Kwak Y, Yun WJ, Jung S, Kim J. Quantum neural networks: Concepts,
applications, and challenges. In 2021 Twelfth International Conference
on Ubiquitous and Future Networks (ICUFN). IEEE. 2021:413-416.

14. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S. The
power of quantum neural networks. Nat Comput Sci. 2021;1(6):403-
409.

8. He GP. Computing the gradients with respect to all parameters of a
quantum neural network using a single circuit. arXiv preprint. 2023.

9. Crooks GE. Gradients of parameterized quantum gates using the
parameter-shift rule and gate decomposition. arXiv preprint. 2019.

10. Ciampiconi L, Elwood A, Leonardi M, Mohamed A, Rozza A. A survey
and taxonomy of loss functions in machine learning. arXiv preprint.
2023.

11. Steinbrecher GR, Olson JP, Englund D, Carolan J. Quantum optical
neural networks. npj Quantum Inf. 2019;5(1):60.

https://quantum-journal.org/papers/q-2020-10-09-340/
https://quantum-journal.org/papers/q-2020-10-09-340/
https://ieeexplore.ieee.org/abstract/document/9528698
https://ieeexplore.ieee.org/abstract/document/9528698
https://www.nature.com/articles/s43588-021-00084-1
https://www.nature.com/articles/s43588-021-00084-1
https://arxiv.org/abs/2307.08167
https://arxiv.org/abs/2307.08167
https://arxiv.org/abs/1905.13311
https://arxiv.org/abs/1905.13311
https://arxiv.org/abs/2301.05579
https://arxiv.org/abs/2301.05579
https://www.nature.com/articles/s41534-019-0174-7
https://www.nature.com/articles/s41534-019-0174-7

