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INTRODUCTION

To prove the validity of our concepts, we rely on the fundamental 
principles and laws of quantum physics, which are detailed in 
“Physics behind”. Furthermore, a mathematical perspective is 
presented in “Math and Simulations”, where we cover all the 
key concepts. The general idea of our quantum device revolves 
around putting photons into a superposition state, altering their 
wavelengths and, consequently, modifying the probabilities of their 
interaction with right and left photo-resistors. By extracting values 
from the photo-resistors, we compute expectation values, which 
serve as outputs for the quantum linear layer of our neural network.

Of course, the quality of the materials we used is not the highest, but 
this did not prevent us from conducting quality experiments and 
proving the effectiveness of the devices. In the section “Hardware” 
you will be able to read about all the materials for building our 
devices, and in addition, you can find a scheme of the quantum 
device and information about connecting it to a classical computer. 
We have ideas on how to improve quality and you can read about it 
in “The Future of the Projects and Further Devices”.

In the section “Neural Network”, deals with the classical levels of 
the neural network, as well as in detail with the quantum linear 
level. In addition, there are examples of pictures from the data-set 
we used. For this project, we wrote a simulator of our quantum 

device so in this section, you will be able to familiarize yourself with 
how to use the simulator and a real device with a code.

In addition to the 1-qubit device, we also collected a 2-qubit device. 
All aspects such as: Schemes, the code for the neural network, 
the training and the results are discussed in “2-Qubit Quantum 
Device”.

MATERIALS AND METHODS

The physics behind

This whole project relies on photons, so it is essential to study 
polarization and optical properties.

Polarization

Photons have a unique property known as polarization. Light can be 
polarized or randomly polarized (unpolarized light), which means 
it vibrates in every direction. However, we can obtain polarized 
light by using a polarizing lens, such as sunglasses. Polarized light 
can be vertically or horizontally polarized, or a superposition of 
both. To measure the polarization of light, we can use a polarizing 
beam-splitter. This device reflects the vertically polarized light and 
transmits horizontally polarized light [1]. However, since our goal is to 
build an affordable quantum computer, we will use the Brewster angle.

The Brewster angle: In 1815, Sir David Brewster discovered 
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that when light strikes a refractive material at a specific angle, 
the reflected light becomes fully vertically polarized, while the 
transmitted light becomes horizontally polarized. This angle can be 
calculated using the formula:

1 2tan
1

n
n

θ −  =  
   ……… (1)

Where, n1 and n2 are the refractive indices of the two media. For 
glass, the Brewster angle is approximately 56.3°. This is exactly 
what we will use to measure the polarization of light (Figure 1) [2].

Figure 1: Illustration of the Brewster angle.

Reflection and refraction 

Photons possess both wave and particle properties (wave-particle 
duality). Let’s examine some particle properties such as reflection 
and refraction.

Reflection: Reflection is the throwing back by a surface without 
absorbing it. The best way to get light reflections is mirrors. Given 
a mirror place at an angle of θm and light at an angle of incident θi, 
the angle of reflection can be calculated using the formula.

r m iθ θ θ= −   ……… (2)

Where, θr is the angle of reflection

For example given a mirror placed at an angle of 56.3° and a light 
with an angle of incidence of 0 the angle of reflection will be 56.3° [3].

Refraction: Refraction is a property that refractive materials 
have like glass and water where particles become deflected with 
a different angle through the interface between one medium and 
another the angle of refraction can be calculated using Snell’s law.

1 21 sin( ) 2 sin( )n nθ θ⋅ = ⋅   ……… (3)

Where, n1 and n2 are the refractive indices for the two media and 
θ

1
 is the angle of incident and θ

2
 is the angle of refraction.

The science behind CDs as half wave plates

When it comes to the interaction of light with materials, certain 

objects, like Compact Discs (CDs) have interesting optical 
properties. One of these properties is their ability to function as 
half-wave plates, which can manipulate the polarization of light. To 
understand this phenomenon, we can delve into the principles of 
wave optics.

Half wave plates: Polarization refers to the orientation of the 
oscillation of light waves as we mentioned above. When light 
interacts with a surface or material, its polarization state can 
change. Half-wave plates are optical devices that can modify the 
polarization of incident light (Figure 2).

Figure 2: How a half wave plate works.

When light enter a half-wave plate, it splits into two perpendicular 
components: One travels along the fast axis and another along the 
slow axis when this two components combine again, the phase 
difference between them will be half a wavelength and the 
polarization direction will rotate by angle θ

new
 and i can be 

calculated by

2nθ θ φ= +   ……… (4)

Where θ is the current polarization direction and ϕ is the angle the 
half-wave plate is rotated with. But half wave plates are so expensive 
which lead us to our next point [4].

Birefringence: Birefringence occurs because the microscopic 
grooves on the surface material creates two distinct paths for the 
polarized components of light. One component is delayed relative 
to the other, resulting in a something called phase shift [5]. As a 
result of birefringence, a CD can effectively function as a half-wave 
plate. This capability allows it to convert incident linearly polarized 
light into light with a polarization direction corresponding to that 
of the CD. It’s noteworthy that we can freely rotate the CD over a 
360° angle.

Applications: The ability of CDs to act as half-wave plates has 
practical applications, especially in optical experiments and devices 
where polarization control is essential. Researchers and hobbyists 
can use CDs as cost-effective tools for manipulating polarized light 
and that’s exactly what we’ll be using.

Two photon interference

In order to implement 2 qubit gates we had to achieve a 
phenomenon called 2-photon interference. This phenomenon is 
an important step to enable quantum operations. We can achieve 
this by using the Hong-Ou-Mandel effect.

The Hong-Ou Mandel effect: This effect is a quantum interference 
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    first = math.cos(theta)**2 - math.sin(theta)**2

    second = 2 * math.cos(theta) * math.sin(theta)

    third = math.sin(theta)**2 - math.cos(theta)**2

    fourth = 2 * (-math.sin(theta)) * math.cos(theta)

    self.hwpmatrix = np.array([

      [first, second, 0, 0, 0, 0, 0, 0],

      [second, third, 0, 0, 0, 0, 0, 0],

      [0, 0, third, fourth, 0, 0, 0, 0],

      [0, 0, fourth, third, 0, 0, 0, 0],

      [0, 0, 0, 0, first, fourth, 0, 0],

      [0, 0, 0, 0, fourth, third, 0, 0],

      [0, 0, 0, 0, 0, 0, third, second],

      [0, 0, 0, 0, 0, 0, second, first]

    ])

    result = self.multiply(self.state, self.hwpmatrix)

    return result

Simulations

To perform simulations, we require classical computers. We chose 
Python as our preferred programming language and created a 
class called PhotonicCircuit(). This class starts with an initial state 
of |Right H> (which can be changed). As of now, this class can 
simulate four optical elements: Mirrors, beam splitters, polarizing 
beam splitters, and half-wave plates. We are actively exploring 
opportunities to expand its capabilities further. After performing 
simulations, you can obtain counts from the circuit. Additionally, 
after some careful consideration, we found out a method to 
measure the Z expectation value [7].

Testing: We conducted tests on simple algorithms and protocols 
such as the Deutsch-Jozsa or the BB84 protocol using 1 and 2-bit 
strings. The simulations were successful. You can access the tutorials 
and documentation via the following Link (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials).

Quantum layer simulation

Back to our main mission (a quantum layer for our neural network) 
we used half wave plates to get the trainable parameters and a 
polarizing beam splitter to get measurements notably, we opted not 
to use beam-splitters due to the fact that this is a 1-qubit quantum 
device, which we intend to expand later on the paper.

We used the parameter-shift rule to calculate our gradients [8,9]:
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θ

   + − −   
   ∇ =

  ……… (5)

Analytic gradients Formula (https://learn.qiskit.org/course/
machine-learning/training-quantum-circuits - training-19-0) and to 
calculate the loss we used 2 loss function for the 1 and 2 qubit 
devices respectively [10]

phenomenon that arise when 2 photons are incident upon a beam-
splitter. This effect result in the photons becoming entangled in 
such a way that they exit the beam-splitter entangled [6]. Now we can 
apply quantum optical gates like a half wave plate for the photons 
after they exit the beam-splitter by this way we can get multi-qubit 
gates. These gates play an important role in the manipulation and 
processing of quantum information so we can fully harness the 
potential of quantum computing (Figure 3).

Figure 3: The Hong-Ou Mandel effect.

Maths and simulations 

Prior to constructing the physical hardware, one essential step was to 
keep track of the mathematics involved and do some simulations to 
validate the functionality of the hardware. As a result, we embarked 
on a comprehensive study of the mathematics and developed our 
Python library for simulating optical hardware.

Light as vectors

We started by representing the light beam as 1 × 8 vector where 
each element represents both the direction and polarization of 
the light. The vector is structured as follows, with ’H’ indicating 
horizontal polarization and ‘V’ indicating vertical polarization:

[RightH, RightV, LeftH, LeftV, UpH, UpV, DownH, DownV]

Optical elements as matrices

For optical elements such as beam-splitters or half-wave plates, they 
are represented by an 8 × 8 matrix, which we will discussing further 
in the code. Operations are performed by multiplying the current 
state with the optical matrix.

The research: After conducting some research in an effort to make 
the optical element matrices as precise as possible, we arrived at 
a solution utilizing trigonometric functions for amplitude and 
Euler’s number for phase. Resulting in an expression that looks 
like this: cos θ ∗ ei∗π

Optical elements examples: For example this is the matrix 
representing the half wave plate in Python since the half wave 
plate have a phase shift of ei∗π which is -1 so required values will be 
multiplied by -1 (Listing 1).

Listing 1: Code for simulating half-wave plate.

def HWP(self, theta):

    theta = math.radians(theta)

Farag P
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Half-Wave Plate (HWP): To generate all possible rotations of 
rotation gates, we decided to use a transparent refractive CD as 
HWP and micro servos to change angle of the CD thereby altering 
the wavelength of photons and subsequently modifying the 
probabilities [11].

Mirror: It is important to use mirrors without a glass layer (because 
it will make unwanted interference) so we used dental mirrors. 

Beam splitter: The cheapest thing that gives the closest result to a 
non-polarizing beam-splitter is a piece of glass.

Photoresistor: The photoresistors were used along with a resistor 
of 10 k Ohm.

Arduino

To control the quantum computer we have to build two types 
of connections: From Classical computer to Quantum (C-to-Q) 
and from Quantum computer to Classical (Q-to-C). For both 
connections we used an Arduino.

C-to-Q: Our goal is to get the data from neural network so we can
interpret input numbers as angles for rotation of HWP. To make
such rotation we used Micro Servo.

Q-to-C: To get output from quantum computers we used
photoresistors. We are measuring the values from the photoresistors 
and then counting expectation values after making measurements
several times.

Required Arduino equipment: The required Arduino equipment 
is: Wires (mainly male-male and male-female), 2 Micro Servos, 2 
photoresistors, 2 resistors (10 k Ohm) and a breadboard (Figure 7).

1

ˆlog
M

i i
i

L y y
=

= −∑
  ……… (6)

The NLL loss where ŷ  is the probability distribution and y  is the 
target

1

ˆ
n

i
i
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=

= − −∑
 ……… (7)

The L1 loss also known as Absolute Error You can fine all loss 
functions h and the quantum parameters are updated by:

( ( ))new current L Fθ θ α θ= − ⋅ ⋅∇   ……… (8)

Where α is the learning rate, L is the loss, ∇F(θ) is the gradients

Final simulation result: By adding the quantum layer to our 
classical neural network which we will mention below the training 
process proceeded successfully. Full tutorial is here: (https://
github.com/QVLabs/WavePlate)

Hardware

We started by creating a scheme of the 1-qubit device. The device 
have to contain laser, polarizer, Half-Wave Plates (HWP), mirror, 
Beam-Splitter (BS) and photoresistors (Figure 4).

Parts of the quantum computer

We have to specify some details about all parts of the device (Figures 
5 and 6).

Laser: We are using a red laser with a wavelength of 650 nm. 

Polarizer: As a polarizer we used sunglasses. 

Figure 4: Scheme of 1-qubit device. Where the mirror is placed at an angle of 56.3° and the beam splitter at an angle of 0°. Note: ( ) Polarizer, ( ) 
Beam splitter, ( ) Mirror, ( ) Half wave plate, ( ) Detector.

Farag P
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Figure 5: Laser, polarizer and HWP.

Figure 6: Mirror, beam-splitter and photoresistor.

Figure 7: Scheme of all connections to Arduino chip.

Farag P
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of the NN is analyse picture and say is it an ant or a bee in a given 
picture (Figure 9) [12].

Figure 9: Examples of data.

Classical part

To create the NN we used the PyTorch library. The classical part 
contains 6 layers: 2 convolutional and 4 linear. Also we added a 
dropout function to prevent the risk of the model overfitting. In 
the Figure 9 you can see classical layers in the __init__ (or the 
main) function of the NN [7] (Listing 3).

Listing 3: Part of the code with classical layers in the main function.

class Net(nn.Module):

  def __init__(self):

    super(Net, self).__init__()

    super(Net, self).__init__()

    self.conv1 = nn.Conv2d(3, 16, 3)

    self.pool = nn.MaxPool2d(2, 2)

    self.dropout1 = nn.Dropout2d(0.25)

    self.conv2 = nn.Conv2d(16, 32, 3)

    self.fc1 = nn.Linear(32 * 54 * 54, 1200)

    self.fc2 = nn.Linear(1200, 120)

    self.fc3 = nn.Linear(120, 84)

    self.fc4 = nn.Linear(84, 1)

In the forward function of the NN we used ReLu as an activation 
function for our classical layers (Listing 4).

Listing 4: Part of the code with classical layers in the forward 
function.

def forward(self, x):

    x = self.pool(torch.relu(self.conv1(x)))

    x = self.dropout1(x)

    x = self.pool(torch.relu(self.conv2(x)))

    x = x.view(-1, 32 * 54 * 54)

    x = torch.relu(self.fc1(x))

    x = torch.relu(self.fc2(x))

    x = torch.relu(self.fc3(x))

    x = self.fc4(x)

Quantum part

Simulation: We created a custom layer using our own library we 

Code for Arduino

The main loop function for Arduino takes input angles for Micro 
Servos from the Python NN. Then measure the values from 
photoresistors and then send the output back to the NN.

You can find full code here (https://github.com/QVLabs/
WavePlate/tree/main/Tutorials/Actual%20Hardware/1%20
Qubit/QuantumLayer) (Listing 2).

Listing 2: Code for Arduino with 2 microservos and 2 photoresistors.

void loop() {

//put your main code here, to run repeatedly:

while(Serial.available() >= 2){

  for(int i = 0; i < 2, i++){

   incoming[i] = Serial.read()

  }

  if(incoming[1] == 0){

   servo1.write(incoming[0]); //qubit 0 first gate

  }

  else if(incoming[1] == 1){

   servo2.write(incoming[0]); //qubit 0 second gate

  }

 }

 delay(1000);

 int value1 = analogRead(A0); //qubit 0 state 0

 int value2 = analogRead(A1); //qubit 0 state 1

 Serial.println(value1);

 Serial.println(value2);

}

Building the device

To build the quantum device we used the scheme, all required 
parts, connected everything to the Arduino and then test it using 
the NN (Figure 8).

Figure 8: Upper view of the quantum device.

Neural Network (NN)

We created the Neural Network (NN) in the Python programming 
language that contains classical layers and the quantum layer. The 
dataset that we used contains pictures of ants and bees. The goal 

Farag P
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ser = serial.Serial(‘COM8’, 9600)

def send_to_arduino(ser, values):

  ser.write(struct.pack(‘>BB’, *values))

def receive():

  if ser.in_waiting > 0:

    data = ser.readline().decode(‘utf-8’).rstrip()

    return data

Please note that when connecting Serial, you must ensure that 
the Arduino is connected to the correct port. In our case, it was 
COM8.

Listing 9: The quantum layer with Arduino.

def quantum_layer(q_input_features, q_weights_flat):

  value1,value2 = None,None

  q_weights = q_weights_flat.reshape(q_depth, n_qubits)

  for idx, angle in enumerate(q_input_features):

    ang = angle

    while ang < 0:

     ang += math.pi/2

    an = int(((ang*2)*180/math.pi))

    send_to_arduino(ser,[an,idx])

  for layer in range(q_depth):

    for idx, angle in enumerate(q_weights[layer]):

     ang = angle

     while ang < 0:

      ang += math.pi/2

     an = int(((ang*2)*180/math.pi))

       send_to_arduino(ser,[an,idx+1])

  time.sleep(2)

  while value1 == None:

   value1 = receive()

  while value2 == None:

   value2 = receive()

  print(f’value 1 is {value1} and value2 is {value2}’)

  return get_exp(value1,value2)

Listing 10: Gradients function with Arduino.

def apply_gradient(input,params):

  input,params = input.tolist(), params.tolist()

  s = np.pi/2

  gradient = []

  for k in params:

    k_plus = k + s

    k_minus = k - s

mentioned above, with the simulation of the actual quantum 
device. We implemented three functions: A function for the 
quantum layer, a function for getting gradients, and a function 
for running the circuit for gradients [13,14]. Here are the codes 
respectively (Listings 5-7).

Listing 5: The quantum layer.

def quantum_layer(q_input_features, q_weights_flat):

  q_weights = q_weights_flat.reshape(q_depth, n_qubits)

  qc = PhtotonicCircuit()

  qc.HWP(22.5)

  for idx, angle in enumerate(q_input_features):

    qc.HWP(angle, idx)

  for layer in range(q_depth):

    for idx, angle in enumerate(q_weights[layer]):

      qc.HWP(angle, idx)

  return qc.Z_expectation(shots=20)[2]

Listing 6: Function for running the gradients.

def run(q_weights):

  qc = PhtotonicCircuit()

  qc.HWP(22.5)

  for idx, angle in enumerate(q_weights):

    qc.HWP(angle, idx)

  return qc.Z_expectation(shots=20)[2]

Listing 7: Gradients function.

def apply_gradient(params):

  params = params.tolist()

  s = np.pi/2

  gradient = []

  for k in params:

    k_plus = k + s

    k_minus = k - s

    exp_plus = run([k_plus])

    exp_minus = run([k_minus])

    gr = (exp_plus - exp_minus) / 2

    gradient.append(gr)

  return torch.tensor(gradient,dtype=torch.float32)

Actual quantum device: We created a custom layer using the 
serial library for sending input values to Arduino and receiving 
the output.

We implemented the same three functions as the simulation but 
with different methods to get and send data to the real quantum 
device (Listings 8-10).

Listing 8: Functions for sending and receiving data from the 
Arduino.

Farag P
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    target = target.to(device)

    target_list.append(target.item())

    optimizer.zero_grad()

    output = network(data)

    loss = F.nll_loss(output, target)

    loss.backward()

    optimizer.step()

#update quantum parameters

   gradient = apply_gradient(output,network.q_params)

    outlist = output.tolist()[0]

    out = (1-outlist[0]) if outlist[0] > outlist[1] else outlist[1]

    new_params = nn.Parameter(network.q_params - (0.001 * (out-
target.item()) * gradient))

    network.q_params = new_params

    total_loss.append(loss.item())

  loss_list.append(sum(total_loss) / len(total_loss))

 print(‘Loss = {:.2f} after epoch #{:2d}’.format(loss_list[-1], epoch + 1))

After completing the training, you will observe continuous 
improvement in the loss function. This concludes the discussion 
of the neural network.

Link for the full simulation tutorial here (https://github.com/
QVLabs/WavePlate/blob/main/Tutorials/QuantumLayer_
Simulation.ipynb), and Hardware tutorial here (https://github.
com/QVLabs/WavePlate/tree/main/Tutorials/Actual%20
Hardware/1%20Qubit/QuantumLayer).

RESULTS AND DISCUSSION

The two-qubits quantum device

We also implemented the 2-qubits quantum device so we can use 
entangling gates and explore other projects as well as enhance the 
quality of the quantum layer of our NN.

The scheme of the device

We also started by drawing a scheme of what the device should 
look like Figure 10.

Figure 10: The scheme of the 2 qubit device, where first beam-splitters 
are placed at an angle of 45°, 90°, 0° respectively and the mirrors are 
placed at an angle of 56.3°. Note: Note: ( ) Polarizer, ( ) Beam splitter, 
( ) Mirror, ( ) Half wave plate, ( ) Detector.

    exp_plus = run(input,[k_plus])

    exp_minus = run(input,[k_minus])

    gr = (exp_plus - exp_minus) / 2

    gradient.append(gr)

  return torch.tensor(gradient,dtype=torch.float32)

You can find the full implementation here (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials).

Training

Now comes the training part with used the SGD optimizer and the 
cross entropy loss for our training function of course after inserting 
the quantum layer in the neural network’s forward function 
(Listings 11-13).

Using the quantum layer

Listing 11: Quantum parameters in the main function in the NN 
where qdelta and qdepth are constants.

self.q_params = torch.nn.Parameter( q_delta * torch.randn(q_
depth,dtype=torch.float32))

Listing 12: The quantum layer in the forward function.

q_out = None

    for elem in x:

      # print(elem)

      q_out_elem = quantum_layer(elem, self.q_params)

      if q_out == None:

        q_out = torch.tensor([[q_out_elem]])

      else:

        q_out = torch.add(q_out, torch.tensor([[q_out_elem]]))

    q_out = (q_out+1)/2

    q_out = torch.cat((q_out, 1-q_out), -1)

    q_out = q_out.requires_grad_()

    return q_out

Training the NN

Listing 13: The training loop.

network = Net()

optimizer = optim.SGD(network.parameters(), lr=0.001, 
momentum=0.9)

epochs = 10

criterion = nn.CrossEntropyLoss()

loss_list = []

for epoch in range(epochs):

  total_loss = []

  target_list = []

  for data, target in dataloaders[‘train’]:

    data = data.to(device)
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in the code above. In essence, we measure the control qubit and, 
based on that measurement, adjust the orientation of the half-wave 
plate on the target qubit before measuring the target qubit.

You’ll find the Python and Arduino code here (https://github.
com/QVLabs/WavePlate).

Connections: For the 2-qubit device, we used 4 micro servo motors, 
4 photo-resistors and 4 10Kohm resistors for measurements, a 
PCA9685 chip to power and optimize everything, a 9V battery, 
and of course, an Arduino Uno (Figure 11).

Figure 11: The Arduino connections.

Neural network with 2-qubit device

We implemented the same neural network but with a new quantum 
layer and expectation value function that can process the data from 
and to the 2-qubit device (Figure 12).

Figure 12: The 2 qubit device.

It’s noteworthy that we replace the NLL loss with the L1 loss in the 
2 qubit device.

Code: Here is the code of quantum layer with 2 qubits (Listings 
15 and 16).

Listing 15: Python code for Quantum layer.

def quantum_layer(q_input_features, q_weights_flat):

  value1, value2, value3,value4 = None, None,None,None

The simulation

We implemented a code using our library to simulate the scheme we 
designed. In this code, we developed a quantum layer that accepts 
input features and weights and returns the expectation value.

Link for the 2 qubit simulation tutorials here (https://github.com/
QVLabs/WavePlate/tree/main/Tutorials) (Listing 14).

Listing 14: 2 qubit device quantum layer simulation.

import numpy as np

VS=[‘|RH>’, ‘|RV>’, ‘|UH>’, ‘|UV>’, ‘|LH>’, ‘|LV>’, ‘|DH>’, 
‘|DV>’]

n_qubits, n_layers = 2, 1

weights = np.random.random([n_layers, n_qubits])

def 2qubitlayer(inputs, weights):

  qc = PhotonicCircuit()

  qc.BS(135)

# H layers

 for i in range(n_qubits):

    qc.HWP(22.5, i)

# INPUT features

 for idx, i in enumerate(inputs):

    qc.HWP(math.degrees(i), idx)

# WEIGHTS

 for _ in range(n_layers):

    for idx, i in weights:

      qc.HWP(math.degrees(i), idx)

#--CNOT--

 for i in range(n_qubits):

    if i % 2 == 0:

      probs = qc.measure_probs()

      try:

        if VS[(2**i) - 1] in probs and VS[2**i] in probs:

          qc.HWP(22.5, i + 1)

        elif probs[VS[2**i]] >= 50:

          qc.HWP(45, i + 1)

      except: pass

return qc.Z_expectation(shot=100)

You can find the full tutorial here (https://github.com/
QVLabs/WavePlate/blob/main/Tutorials/QuantumLayer_
Simulation_2qubits.ipynb).

The actual hardware

CNot implementation: We used conditional operations based on 
the polarization properties of photons to implement the CNot gate 
in the simulation. Details about how this is achieved can be found 
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  }

  else if(incoming[1] == 1){

   servo3.write(incoming[0]); //qubit 1 first gate

  }

  else if(incoming[1] == 2){

   servo2.write(incoming[0]); //qubit 0 second gate

  }

  else if(incoming[1] == 2){

   servo4.write(incoming[0]); //qubit 1 second gate

  }

 }

 delay(1000);

 int value1 = analogRead(A0); // qubit 0 state 0

 int value2 = analogRead(A1); // qubit 0 state 1

 int value3 = analogRead(A2); // qubit 1 state 0

 int value4 = analogRead(A3); // qubit 1 state 1

 Serial.println(value1);

 Serial.println(value2);

 Serial.println(value3);

 Serial.println(value4);

}

You can find the full tutorial code for the 2 qubit device here 
(https://github.com/QVLabs/WavePlate/tree/main/Tutorials/
Actual Hardware/2 Qubit/QuantumLayer).

We trained the neural network and after 40 epochs we got such 
results: AS you can see the Neural Network started with a loss of 
0.78 and ended the training with a loss of 0.067 after 40 epochs 
which is 30% better compared to the 1 qubit device, and using the 
testing dataset the NN got 148 samples correct out of 153 which 
gives an accuracy 96.7% (Figures 13 and 14).

Figure 13: Loss for every epoch and accuracy of the neural network 
for the 2 qubit device.

  q_weights = q_weights_flat.reshape(q_depth, n_qubits)

  for idx, angle in enumerate(q_input_features):

    ang = angle.item()

    while ang < 0:

     ang += math.pi/2

    an = int(math.degrees(ang))

    #print(an)

    send_to_arduino(ser,[an,idx])

  for layer in range(q_depth):

    for idx, angle in enumerate(q_weights[layer]):

     ang = angle.item()

     while ang < 0:

      ang += math.pi/2

     an = int(math.degrees(ang))

     #print(an)

     send_to_arduino(ser,[an,idx+2])

  #time.sleep(1)

  #print(‘Started layer’)

  while value1 == None:

    try: value1 = int(receive())

    except: pass

  while value2 == None:    

    try: value2 = int(receive())

    except: pass

  while value3 == None:    

    try: value3 = int(receive())

    except: pass

  while value4 == None:

    try: value4 = int(receive())

    except: pass {value3} and {value4}’)

return get_exp(value1,value2,value3,value4)

And this is main loop function for Arduino:

Listing 16: Code for Arduino with 4 micro servos and 4 
photoresistors.

void loop() {

 while(Serial.available() >= 2){

  for(int i = 0; i < 2, i++){

   incoming[i] = Serial.read()

  }

 if(incoming[1] == 0){

   servo1.write(incoming[0]); //qubit 0 first gate
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The total cost of the 1 quit device is around 50 dollars and the 2 
qubit one is around 65 dollars what is very cheap compared to other 
quantum computers.

The Future of the project and further devices

The project has many prospects.

• One of them is find a faster way of C-to-Q and Q-to-C 
connections.

• We can find a pattern in the increase of the number of qubits 
and their entanglement.

• We can find ways to overcome the limitations we currently have 
like in gates implementation for example.

• In the near future we plan to make a device with 3-4 qubits and 
in the future 7 and 8 qubits.

• We plan to try out different entanglement methods like the 
nonlinear sign-shift gate.

• Also we have ideas and plans to achieve and try more projects 
with the quantum devices by getting new components like a 
precise 50:50 and a polarizing beam-splitter, etc. and improving 
the quality of the exiting ones.

• In order to get a better 50:50 beam splitter we can use a window 
tint on the glass that has a 50% Visible Light Transmission 
(VLT) so we can get more better results.

• Moreover, the price of such a device will be hundreds of times 
cheaper than modern quantum devices, which will be perfect 
for learning and processing purposes.

• Also, by receiving financial support and collaborating with 
universities, we can improve the quality of the quantum 
computer accordingly, increase the accuracy of calculations.

• It is likely that in the future it will be possible to create a device 
with 15 qubits, the computing power of which, in theory, will 
be equal to the computing power of a classical computer.
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