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Introduction 
Recently, transition-metal (TM) catalyzed carbon-carbon and 

carbon-hetero bond forming reactions have received paramount 
attention because of their manifold industrial applications [1-6]. 
Historically, the metal-mediated C-C bond forming reaction was 
developed by Glaser [7] about 150 years back, which includes the 
oxidative dimerization of terminal acetylenes in the presence of 
stoichiometric amount of copper. At the beginning of 20th century 
(1901), Ullmann [8] discovered the copper-mediated synthesis of 
biaryls from the coupling of activated aryl bromides. Later, the scope 
of this method has been extended to carbon-hetero bond forming 
reactions in the presence of stoichiometric amounts of copper salt 
at high reaction temperature. The synthesis of acetaldehydes by 
palladium-catalyzed Wacker oxidation of ethylene, discovered in 1956,
probably is the first Pd-catalyzed reaction [9] that revolutionized the 
chemical synthesis. Then after, numerous carbon-carbon and carbon-
hetero coupling reactions were developed. Undoubtedly, these coupling 
reactions boost a new direction for the synthesis of complex molecules 
from simple molecules with the aid of transition metals. In spite of 
having wide scope and excellent compatibility with many functional 
groups, these protocols, often suffer from the limitations resulting from 
(i) the high cost of the palladium precursors, (ii) the need for ancillary
ligands rendering the catalysts sufficiently reactive, (iii) concerns about 
the toxicity of these metal salts, and (iv) the extended reaction time
necessary in many cases. Considering the cost and environmental
factors, the use of Cu- and Fe-based catalysts for various coupling
reactions is more attractive from industrial perspectives [10-13]. 

Indeed, copper-mediated synthesis of diarylacetylenes from the cross-
coupling aryl acetylene and aryl halides at relatively lower temperature
(under refluxing pyridine) was well reported earlier by Castro and
Stephens [14]. Later, Sonogashira observed that the coupling between
terminal alkynes with aryl halides in the presence of catalytic amount of 
palladium and copper [15]. Buchwald and Taillefer also independently 
made a significant breakthrough on Cu-catalyzed cross-coupling
reactions by introducing chelating ligands [16-18]. Use of ligands in
such processes not only accelerates the rate of coupling reaction, but
also softens the reaction conditions aiming to widen the substrate
scope. In this review a systematic progress of copper/iron-catalyzed
carbon-carbon and carbon-hetero (C-N, C-O, C-S and C-Se) cross-
coupling reactions, and synthesis of bioactive molecules using these
techniques have been presented.

C-C cross-coupling Reactions
During the last five decades, dramatic progress has been

made on transition-metal-catalyzed C-C bond forming reactions. 
Numerous research groups stretch their research objective towards 
the development of new catalytic systems with wide substrate scope 
under mild reaction conditions. As a result of which vast number of 
methodologies for several types of C-C bonds (viz, C(sp)-C(sp), C(sp2)-
C(sp2), C(sp)-C(sp2), C(sp3)-C(sp3), C(sp2)-C(sp3)) forming reactions 
have been explored [19-21].

C(sp)-C(sp) bond formations

The copper promoted acetylenic coupling is found its application 
in the synthesis of natural products as well as functional materials [22-
23]. Glaser, in 1869 first reported the copper-mediated dimerization 
of terminal alkynes to generate diacetylenes through the C(sp)-C(sp) 
bond forming reaction. In this reaction, stoichiometric amount of 
copper salt was expended to form copper acetylene intermediate, which 
subsequently oxidized in the presence of air or O2 to give symmetrical 
diynes (Scheme 1a) [7]. The advantages of this C(sp)-C(sp) bond 
forming reaction was adopted by the synthetic community during the 
following decades by exploring a number of synthetic variations to 
the Glaser coupling. These variants differ from the original coupling 
reaction with respect to the oxidants, substrates and the amount of 
copper catalyst. For instance, Hay dimerized the terminal alkynes at 
room temperature by using catalytic amount of CuCl in pyridine [24].
Terminally silicon substituted alkynes, such as alkynyl silanes were 
also employed for Glaser homocoupling reactions by Mori et al. using 
catalytic amount of CuCl in DMF (Scheme 1b) [25]. Later, Nishihara 
reported [26] the similar homocoupling reactions by choosing 
alkynylboronates as coupling partner in the presence of stoichiometric 
amount of copper acetate (Scheme 1c). Yadav et al. [27] made an 
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improvement by conducting the ligand-assisted copper-catalyzed 
dimerization of terminal alkynes in the presence of ionic liquid (e.g. 
[bmim]PF6) (Scheme 1d).

C(sp2)-C(sp2) bond formations

Following the conceptual development on C(sp)-C(sp) 
homocoupling reaction by Glaser, similar Cu-mediated method 
was adopted by Ullmann in 1901, for the construction of C(sp2)-
C(sp2) bond between aryl halides [8]. He reported the dimerization 
of 2-bromo- and 2-chloronitrobenzene in the presence of super 
stoichiometric amount of copper sources at high temperature (≈220°C) 
(Scheme 2a). In spite of the harsh reaction conditions and requirement 
of excess copper salt, Ullmann reaction was followed by the organic 
community for a long time to achieve biaryls. Since last six decades, 
numerous efforts have been made to extend the substrate scope as 
well as to soften the reaction conditions intending to the formation of 
less amount of waste by converting the coupling process to a catalytic 
one. A modified methodology [28] which includes the use of DMF as 
solvent, permits the coupling reaction to occur at lower temperature. 
Sessler et al. [29] utilized activated Cu(0) obtained from the reduction 
of CuI with potassium, for the synthesis of substituted 2,2’-bipyrrole 1 
at relatively lower temperature (110°C) (Scheme 2b). Further decrease 
in temperature was observed by Liebeskind et al. [30] by applying 
copper(I)-thiophene-2-carboxylate (CuTC) in NMP (Scheme 2c). 

The modified Ullmann coupling reactions were found applications in 
total synthesis of natural and non-natural products. For instance, 3, 
an intermediate for (+)-isoschizandrin 4, was readily accessed by the 
copper-mediated Ullmann coupling of the corresponding haloaldehyde 
2 (Scheme 3) [31].

Copper-mediated intramolecular coupling of vinyl tin derivatives 
with vinyl iodide leading to conjugated diens through C(sp2)-C(sp2) 
bond formation was reported by Piers et al. (Scheme 4a). This reaction 
might be a Cu-catalyzed analogue of Stille coupling reaction [32]. 
Intermolecular coupling of organostannanes with the aryl, heteroaryl 
and vinyl iodides to furnish 1,3-dienes in the presence of stoichiometric 
amount of copper(I)-thiophene carboxylate (CuTC) was also reported 
(Scheme 4b) [33].

Furthermore, the copper-promoted catalytic version of the former 
coupling reaction was developed by Kang et al. [34]. They described the 

cross-coupling between organostannanes with aryl iodides employing 
catalytic amount of CuI in NMP (Scheme 5a) albeit stoichiometric 
amount of sodium chloride is needed to obtain the optimum yield of 
conjugated alkene. Li et al. [35] developed the ligand-assisted Cu2O 
nanoparticles-mediated coupling of aryl halides with organotins 
derivatives in the presence of TBAB. This nanocatalyst was reported to 
be recyclable up to five consecutive runs for aryl iodides and activated 
aryl bromides. However, in case of deactivated aryl bromides the 
efficiency of the catalyst was limited to single run only (Scheme 5b).
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Copper-catalyzed cross-coupling between organotin derivatives 
with vinyl iodide has been exploited for the total synthesis of complex 
natural products. For example, Peterson et al. [36] performed the total 
synthesis of Concanamycin 8 in which the intermediate 7 was prepared 
by the copper-mediated coupling between vinyl iodide derivatives 
5 and vinyl stannane derivatives 6 (Scheme 6). The cross-coupling 
of arylboronic acid with aryl and vinyl halides has been emerged as 
a potential method for the formation of C(sp2)-C(sp2) bond. This 
method has several advantages including the use of commercially 
available starting materials, generation of non-toxic by-products, 
negligible steric consideration and wide functional group tolerance. 
In 1996, Kang et al. [37] reported the CuI catalyzed coupling between 
boronic acid derivatives and iodonium salts in aqueous DME to access 
biaryls (Scheme 7).

Later, the ligand-assisted copper-catalyzed coupling between 
arylboronic acids with vinyl halides and aryl halides to form C(sp2)-
C(sp2) bond was also developed (Scheme 8). Li et al. [38] found that 
CuI-catalyzes the coupling of aryl boronic acid with vinyl halides or 
aryl halides the presence of TBAB to afford diarylethenes and biaryls 
respectively in moderate to good yield.

The copper-catalyzed coupling of aryl and vinyl halides with the 

olefins to form C(sp2)-C(sp2) bond was also precedent in literature. 
In 1997, Iyer reported the synthesis of aryl-alkenes and conjugated 
alkenes by coupling between olefins with aryl and vinyl iodides using 
stoichiometric amount of copper iodide in N-methylpyrrolidone 
(NMP) (Scheme 9) [39]. Use of DABCO as a ligand in such coupling 
reaction was also reported [40].

Besides, the significant developments on copper-based 
homogeneous catalytic systems for C(sp2)-C(sp2) coupling reactions, 
the use of heterogeneous catalytic system also found to be interesting. 
Mao et al. [41] applied the readily available copper powder for the 
coupling between aryl iodides with boronic acids in PEG-400. Using 
iodine as additive, the coupling between aryl bromides and chlorides 
with boronic acids was found to be successful. Rothenberg et al. [42] 
applied the copper nanocluster for the coupling between aryl halides 
and arylboronic acids (Scheme 10). Di- and trimetallic clusters showed 
enhanced reactivity in the coupling of arylboronic acids with activated 
aryl bromides and aryl chlorides.

With emerge of nanotechnology; copper nanoparticles were also 
employed for the coupling of aryl iodides and butyl acrylates [43]. In 
such cases copper nanoparticles were produced in-situ by reduction of 
copper bronze and promoted the Heck coupling reaction to produce 
the internal alkene (Scheme 11).
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Owing to the wide abundance and low cost, iron catalysts were 
successfully employed for C(sp2)-C(sp2) bond forming reactions. Iron 
catalyzed homocoupling of aryl Grignard reagent was first reported by 
Kharasch and Field in 1941 to produce symmetrical biaryls (Scheme 
12a) [44]. Subsequently a series of C-C bond forming reactions were 
also developed. Notably, the scope of Fe-catalyzed C(sp2)-C(sp2) 
bond forming reactions was expanded by Cahiez et al. [45,46] in the 
beginning of 21st century to produce wide varieties of substituted 
biaryls (Scheme 12b).

Nakamura et al. [47] also exploited the catalytic efficiency of Fe-
catalyst in cross-coupling reaction to produce unsymmetrical biaryls 
in good yield (Scheme 13). Notably, homocoupling of the Grignard 
reagent is effectively reduced when FeF3 is employed in combination 
with an N-heterocyclic carbene ligand. The specific effect of fluoride 
was demonstrated by the addition of KF to FeCl3 catalyst precursor, 
which otherwise provides predominately homocoupling product. 
Vogel et al. [48] reported the iron-catalyzed coupling of styrenes with 
aromatic and heteroaromatic iodides using picolinic acid as chelating 
agent and potassium tert-butoxide as base.

In an interesting report [49], synthetic potential of iron/copper 
cooperative catalyst was illustrated by the preparation of 17-arylestrene 
derivatives (Figure 1) related to abiraterone acetate (Zytiga, CYP17 
inhibitor), a new drug currently used in the treatment of metastatic 
prostate cancer [50]. 

C(sp)-C(sp2) bond formations

The coupling between alkynes with aryl or vinyl halides resulted 
the formation of C(sp)-C(sp2) bond. In 1993, Miura et al. reported 
ligand-assisted copper-catalyzed synthesis of aryl-alkynes and vinyl-
alkynes by coupling terminal alkynes with aryl halides and vinyl halides 
respectively (Scheme 14) [51]. Under similar catalytic conditions, Li et 
al. prepared the aryl-alkynes in the presence of DABCO which act as a 
chelating ligand [38].

Later, Venkataraman et al. [52] observed that if the solubility of the 
copper salts would be increased, the reaction would occur under mild 
reaction conditions. Thus, they prepared a soluble copper complex (C1) 
and conducted the C(sp)-C(sp2) coupling between phenyl acetylenes 
and aryl iodides in toluene at its boiling point (Scheme 15) .

Although copper-catalyzed sp-sp2 coupling reactions were well 
reported, the development of iron-catalyzed C-C coupling reactions 
was also encouraging, owing to the cheap and environmental friendly 
nature of iron. In this regard, coupling of terminal alkynes with alkenyl 
iodides in the presence of FeCl3 and 1,10-phenanthroline (Scheme 

16a) was reported [53]. Use of other ligands such as DMEDA and 
2,2ˊ-bipyridine was also found to be effective for the coupling aryl and 
heteroaryl iodides with terminal alkynes to form C(sp)-C(sp2) bond 
[54,55]. An iron catalyzed sonogashira coupling followed by cyclization 
produces the 2-arylbenzofuran (Scheme 16b). 

Recently heterogeneous, recyclable Fe3O4 nanoparticles-mediated 
coupling between terminal alkynes with aryl and heteroaryl halides in 
ethylene glycol were reported by Firouzabadi et al. (Scheme 17) [56]. 

Although these Fe-catalyzed C-C bond forming reactions are 
interesting, but it is limited to long reaction time (e.g. 72 h) and 
narrower substrate scope. For example, FeCl3/DMEDA condition 
reported by Bolm [54] was unsuccessful with aliphatic terminal alkynes. 
In order to expand the substrate scope and efficiency, development of 
more sustainable catalytic system is promising. The use of cheap and 
environmental benign iron salts in combination with copper would 
be noteworthy. In this line, Liu et al. [57] described a ligand-assisted 
Cu-Fe co-catalytic method for the C(sp)-C(sp2) coupling reactions. 
They found that Fe2O3 in combination with Cu(acac)2 was suitable for 
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the cross-coupling between terminal alkynes with aryl and heteroaryl 
halides using TMEDA as the ligand (Scheme 18a). Later, Vogel et al. 
[58] reported CuI/Fe(acac)3 catalyzed arylation of both terminal alkyl 
and aryl alkynes at 140°C in NMP (Scheme 18b). In this context we 
have also developed magnetic copper ferrite nanoparticle-mediated 
cross-coupling reactions between terminal alkynes with aryl halides 
(Scheme 18c) [59]. Magnetic nature of the catalyst helps to recover the 
catalyst quantitatively and reused for three consecutive cycles without 
any range in catalytic activity. 

C(sp2)-C(sp3) bond formations

The first example on copper-mediated coupling of the 
1,3-dicarbonyl compounds with 2-bromobenzoic acid in the presence 
of strong base (ca KOH) at 160°C was reported by Hurtly in 1929 [60]. 
This reaction proceeds through the copper-carboxylate intermediate, 
that polarized the C-X bond, which subsequently attacked by the 
carbanion of 1,3-dicarbonyl compound to form the C(sp2)-C(sp3) 
bond. Later, extensive efforts have been made to soften reaction 
conditions. For instance, Miura et al. [61] reported a copper-mediated 
sp2-sp3 coupling between active methylene compounds and aryl iodides 

in the presence of K2CO3 in DMSO at 120°C (Scheme 19a). Then, 

ligand-assisted copper-promoted coupling reactions were developed 
which requires lower temperature (Scheme 19b). Evidently, Buchwald 
et al. [62] reported that 2-phenylphenol L1 which acts as an efficient 
ligand for the coupling 1,3-dicarbonyl compounds with aryl iodide 
at 70°C in THF. Subsequently, other ligands such as L-proline L2 [63] 

and 2-picolinic acid L3 [64] were employed to promote such coupling 
reaction between 1,3-diketones with aryl iodides and bromides.

Heterogeneous copper nanoparticles were also employed for 
C(sp2)-C(sp3) coupling reactions aiming to the reusability of the catalyst. 
For instance, Kidwai et al. reported the recyclable CuO nanoparticle-
mediated coupling between 1,3-diketones with aryl iodides in DMSO 
(Scheme 20) [65].

Besides, iron-catalyzed such coupling reactions were also well 
reported. For example, in 1971, Kochi [66] first exploited the iron 
catalyst (e.g. FeCl3) for the cross-coupling between organomagnesium 
reagents with alkynyl bromides (Scheme 21). Cahiez and Avedissian 
found that an excess amount of NMP is beneficial for iron-catalyzed 
cross-coupling of alkenyl halides with alkyl magnesium reagents [67]. 

Fürstner et al. [68,69] observed that the iron-catalyzed cross-
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coupling reactions proceed most efficiently with chloride substrates, 
which is in contrast to the aryl iodides or bromides usually required 
for palladium cross-coupling reactions (Scheme 22a,b). Interestingly, 
Grignard reagents undergo cross-coupling faster than they react 
with other electrophilic sites in the substrate. For example, ketones, 
aldehydes, esters, ethers, nitriles, and even trimethylsilyl groups in the 
electrophilic halide partner are unaffected under such iron-catalyzed 
cross-coupling conditions. Nakamura et al. [70] have shown that iron 
catalysts are capable of inserting into both primary and secondary 
sp3-hybridized carbon-halide bonds to affect cross-coupling (Scheme 
22b). A mild protocol for the stereoselective sp2-sp3 couplings were 
also demonstrated by Cahiez et al. [71]. They used similar catalyst in 
the presence of chelating ligands, like TMEDA and HMTA for the 
coupling of vinyl Grignard with alkyl halides (Scheme 22c). Fürstner et 
al. [72] also exploited the high reactivity of iron catalyst in the coupling 
of alkenyl electrophiles with organomagnesium reagents without 
affecting the ester group and alkynes. This reaction has been employed 
as a key step in the synthesis of latrunculin B (Scheme 22d). Other 
natural products such as muscopyridine [73], cubene, ambhidinolide 
Y, etc. were also synthesized using Fe-catalyzed coupling reaction as a 
key reaction (Figure 2).

Early studies on the coupling of alkyl and alkenyl bromides with 
alkylmagnesium reagents by Kochi [66] comprise the involvement of 
Fe(I) and Fe(III) species through a sequence of oxidative addition, 
transmetalation, and final reductive elimination step. Although Fe(I) 
was depicted as the active species in the original paper, the equivalent 
process involving Fe(0) was considered equally feasible (Figure 3) [66]. 

The active component in this reaction is metastable and loses it catalytic 
efficiency rapidly in the absence of substrate. Studies on similar coupling 
reaction of Grignard reagents containing β-hydrogens with halides in 
the presence of stoichiometric amount of FeCl2 suggest that an overall 
four-electron reduction of iron salt by Grignard reagent takes place, 
leading to an bimetallic species with formal constitution [Fe(MgCl)2]
n, which likely consists of small clusters incorporating magnesium and 
iron centres that are connected via fairly covalent intermetallic bonds 
[74]. The catalytic cycle expected to involve the typical sequence of 
oxidative addition, transmetalation, and reductive elimination steps 
(although the catalyst alternates between the 0 and -2 oxidation states). 
Reactions employing radical probes and labeled substrates also suggest 
the involvement of radicals in iron-catalyzed cross-coupling reactions 
[75]. Radicals may be generated from Fe(II) complexes that “cross-
over” into the Fe(I)/Fe(III) catalytic cycle via homolytic cleavage of an 
iron-carbon bond. Possible involvement of different oxidation states of 
iron to catalyze the cross-coupling is presented below (see Figure 3).

C(sp3)-C(sp3) bond formations

The C(sp3)-C(sp3) coupling reactions between alkyl derivatives 
were less reported as compared to other types of C-C coupling reactions 

discussed earlier. This is may be due to the alkyl metal intermediate 
generated in situ in the catalytic cycle undergoes β-hydride elimination 
reaction. Moreover, this intermediate also participates in other 
undesired reactions [76-79]. In 1997, Burns et al. reported a copper-
catalyzed sp3-sp3 coupling reaction between alkyl Grignard reagents 
with alkyl pseudohalides (Scheme 23a) [80]. Later, Kambe et al. [81-
83] reported the Cu(II)-catalyzed coupling between octyl fluorides 
and alkyl Grignard reagents (Scheme 23b). The same group further 
also used 1-phenylpropyne [82] and 1,3-butadiene [83] separately as 
additives to broaden the substrate scope of the sp3-sp3 bond forming 
reaction (Scheme 23c,d).

Recently, copper-mediated C(sp3)-C(sp3) cross-coupling between 
non-activated secondary alkyl halides and pseudo halides with 
secondary Grignard reagents were reported by Liu et al. [84]. They 
explored the C-C bond formation by using CuI as catalyst and TMEDA 
as additive (Scheme 24). 

 

Cl

O

+ n-BuMgCl
Fe(acac)3 (1 mol%)

THF/NMP
(-5 to 00C)

Bu-n

O

Br R MgBr RFeCl3 (0.25 mol%)

Kochi et al.THF, 250C

Cahiez et al.

Scheme 21: Fe-catalyzed C(sp2)-C(sp3) coupling.

 (a)

(b)

(c)

R1 MgBr R1

R2
Cl

R2

Fe(acac)3 (5 mol%)

THF/NMP, rt

MgBr
R1

R X
Fe(acac)3 (5 mol%)

Et2O, reflux
R

R1

R
MgBr R1 X R

R1
Fe(acac)3/TMEDA
/HMTA

THF, 0 oC

Furstner et al.

Hayashi et al.

Cahiez et al.

O

OEt

TfO MgBr

Fe(acac)3 (10 mol%)
THF, -300C

O

OEt

CH3
O

O

N
S

H

O

OH

Latrunculin B

(d)

Scheme 22: Fe-catalyzed C(sp2)-C(sp3) coupling.

 

(R)-(+)-muscopyridine

Me H
Me

Me

Me

H

(-)cubene

HO

O O

O

O
HO

H

H

ambhidinolide Y

N

Figure 2: Natural products synthesized from Fe-catalyzed coupling 
reactions.

 

FeAr
R

L
L FeAr

X

L
LFeAr

L
LFeAr

Ar

L
X

FeAr
Ar

L
R

FeAr
MgX

L
L

[Fe0]

[Fe-2(MgX)2]

FeAr
MgX

R
MgX

FeXn

2 RMgX
2 RMgX

RMgX

ArX

Ar-R

ArX

ArX

Ar-R
Ar-R

+2 +2

0

0

Fe(-II)/Fe(0)

RMgX

Fe(0)/Fe(II)Fe(I)/Fe(III) R
+1

+3

RMgX
+3

Figure 3: Putative Mechanism for iron-catalyzed cross-coupling reactions.



Citation: Panda N, Jena AK (2015) Cu/Fe-Catalyzed Carbon-Carbon and Carbon-Heteroatom Cross-Coupling Reactions. Organic Chem Curr Res 
4:130. doi:10.4172/2161-0401.1000130

Page 7 of 21

Volume 4 • Issue 1 • 1000130
Organic Chem Curr Res
ISSN:2161-0401 OCCR an open access journal

C-N Cross-Coupling Reactions
TM-mediated C-N cross-coupling reactions constitute a powerful 

strategy for the synthesis of numerous fine chemicals as well as 
compounds of biological importance [85]. Since 1903, copper catalyzed 
Ullmann cross-coupling is used traditionally for the C-N bond forming 
reactions [8]. The classic Ullmann reaction normally requires harsh 
conditions, such as high temperature (200°C), stoichiometric amounts 
of copper and selective halide substrates, which is problematic for large 
scale use due to high cost and waste disposal. In order to circumvent 
such limitations considerable efforts have been made focusing on 
the development of cheap, eco-friendly catalytic systems under mild 
reaction conditions. In this regard, we wish to present the significant 
developments on Cu/Fe-catalyzed C-N cross-coupling reactions [10-
13]. Gratifyingly, after about 95 years of Ullmann C-N cross-coupling 
reaction, Chan et al. [86] and Lam et al. [87] independently illustrated 
the copper-catalyzed coupling of arylboronic acids with amines and 
NH-heterocycles (Scheme 25). However, the high cost and relative 
instability of boronic acids, and tedious purification procedure often 
limit their extensive application in laboratory as well as industrial 
scale.

Subsequently, Buchwald [88] and Hartwig [89] were independently 
employed palladium-based catalysts for the N-arylation of amines 
with aryl halides. However, toxicity and high cost of Pd catalysts 
are the obvious limitations associated with this method for large 
scale implementation. Thus, researchers have turned their attention 
toward the use of less expensive, less toxic and more efficient metals 
to replace Pd [10-13, 90,91]. Indeed, Buchwald [92] and Taillefer [93] 

independently made a significant breakthrough in the copper-catalyzed 
cross-coupling of NH-heterocycles with aryl halides in the presence of 
chelating ligands (Scheme 26). 

In due time, numerous N, O-containing ligands such as L-proline, 
N-methylglycine, N,N’-dimethylcyclohaxane-1,2-diamine, DPP, 
1,3-diketone, 4,7-dimethoxy-1,10-phen., 8-hydroxyquinoline, 
2-aminopyrimidine-4,6-diol, rac-BINOL, 4,7-dimethoxy-1,10-
phenanthroline, ninhydrin, picolinic acid etc. were employed by 
various researchers for the copper-mediated C-N coupling reactions 
[10-13,90,91].

Venkataraman et al. [52] prepared a soluble copper catalyst (C2) 
for the cross-coupling of diarylamines with aryl halides. They found 
that 10 mol% of the catalyst is sufficient in coupling of the diaryl 
amines with the aryl halides including the less reactive chlorobenzene 
in toluene at 110oC (Scheme 27).

Bao et al. [94] reported CuI/L-Proline catalytic systems for coupling 

the imidazoles with aryl and heteroaryl bromides in ionic liquids 
[Bmim]BF4. They found that 30 mol% of CuI with 60 mol% of L-Proline 
was effective for the coupling of imidazoles and benzimidazoles with 
aryl and heteroaryl bromides in the presence of [Bmim]BF4 (1 ml/mol). 
Interestingly, the catalytic system, CuI/L-Proline/[Bmim]BF4, found to 
be recyclable and reusable up to four consecutive runs. Zhou et al. [95] 
described the N-arylation of imidazoles and indoles with aryl bromides 
and iodides using the copper complex C3 in aqueous medium (Scheme 
28). 

On the other hand, the simple separation and regeneration of 
the catalyst from the reaction mixture are in strong demand for the 
cost-effective process of molecular synthesis. Thus, ligand-free cross-
coupling reactions attracted wide attention. The earliest contributions 
were made by Taillefer et al. [96]. They performed the coupling 
between iodo- and bromobenzene with nitrogen heterocycles using 
catalytic quantity of CuI in CH3CN (Scheme 29a). Later, Bolm et al. 
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[97] proposed Cu2O-mediated C-N coupling between azoles with aryl 
iodides and bromides in DMF under ligand-free conditions (Scheme 
29b). Same group also reported that the amination of halopyridines 
with nitrogen nucleophiles occurred under solvent and ligand-free 
conditions in the presence of microwave irradiation (Scheme 29c) [98]. 
Very recently, Fu et al. developed an efficient photo-induced protocol 
for C-N cross-coupling reaction at room temperature (Scheme 29d). 
The methodology was successful for coupling the NH-heterocycles 
with a wide range of arylhalides, heteroaryl halides and alkynyl halides 
in the presence of catalytic amount of CuI [99]. The reaction proceeds 
through the initial photo-excitation of the copper-azole complex 
followed by the electron transfer reactions with aryl halides, affording 
the N-arylated product in good yield. 

Numerous heterogeneous catalysts were also employed for the 
C-N cross-coupling reactions aiming to the simple purification and 
reusability of the catalyst. One of the interesting examples was reported 
by Choudary et al, [100] in which the supported copper fluoroapatite 
(CuFAP) was used for the N-arylation of N-containing heterocycles 
even with less reactive aryl chlorides and aryl fluorides (Scheme 30). 

Kantam et al. [101] demonstrated a ligand-free, reusable cellulose-
supported Cu(0)-catalyzed N-arylation of NH-heterocycles with aryl 
bromides and iodides in DMSO (Scheme 31).

Copper (I) oxide in PEG support were also efficiently used as a 
recyclable catalyst for the C-N cross-coupling reactions. Lamaty et al. 
[102] reported microwave assisted Cu2O-PEG for the coupling between 
benzimidazoles and indoles with aryl halides (Scheme 32).

Recently, Wan et al. [103] reported CuI/PSP (Polystyrene-
supported pyrrole-2-carbohydrazide) catalytic system for the C-N 
coupling between amines with aryl halides in aqueous medium 
(Scheme 33). They applied the methodology towards the synthesis of 
imidazo[1,2-a]quinoxaline. 

Reusable copper nanoparticles were also utilized for the C-N 
cross-coupling reactions exploiting the high surface area and low 
coordination sites of the catalyst. Evidently, Hyeon et al. [104] used 
Cu2O-coated Cu nanoparticles for the coupling between nitrogen 
nucleophiles with activated aryl chlorides (Scheme 34a). Later, CuO 
nanoparticles were successfully employed by Punniyamurthy et al. 
[105] for the N-arylation of various N-containing precursors (Scheme 
34b). Kantam et al. [106] were also exploited the high surface area 
and reactive morphology of the CuO nanoparticles for the C-N cross-
coupling reactions between NH-heterocycles with aryl chlorides and 
aryl fluorides (Scheme 34c). 

In parallel to Cu-catalyzed C-N cross-coupling reactions, the 
Fe-catalyzed reactions were also explored. The pioneering efforts on 
Fe-catalyzed C-N coupling reactions were made by the Bolm [97]. 
They showed the potential of FeCl3 in presence of DMEDA for the 
N-arylation of NH-heterocycles with differently substituted aryl 
iodides and bromides in refluxing toluene (Scheme 35).

Later, Rama Rao [107] prepared recyclable graphite supported iron 

catalyst and applied for the coupling between nitrogen heterocycles 
with aryl halides under ligand-free conditions (Scheme 36).

The Cu-Fe co-operative catalysts were also developed for the C-N 
cross-coupling reactions to extend the scope as well as to improve the 
yield. In 2006, Taillefer et al. [108] illustrated the first example on Cu/Fe 
co-catalyzed protocol for the N-arylation reaction of various nitrogen 
heterocycles with aryl halides including the less reactive activated aryl 
chlorides in DMF (Scheme 37a). It may be noted that neither Fe(acac)3 
nor CuO alone are suitable for the N-arylation of pyrrole. However, 
Cu/Fe-cooperated catalyst leads to the N-arylated heterocycles in good 
to excellent yield without affording by-products resulting from biaryl 
coupling or from the reduction of aryl halides [108]. In line this Fu et 
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al. [109] employed a mixture of FeCl3 and CuO in the presence of rac-
BINOL to promote the N-arylation of amines (Scheme 37b). Later, Liu 
et al. [110] reported microwave assisted ligand-free Cu(acac)2-Fe2O3 
mediated C-N coupling reactions in aqueous DMSO (Scheme 37c). In 
view to the Cu/Fe- cooperated catalysis reactions, it may be assumed 
that bimetallic Cu-Fe catalyst would be a economically competitive 
alternative to the usual copper-ligand combination. In line with this 
Panda et al. [111] developed a magnetically separable catalytic protocol 
for the N-arylation of nitrogen containing heterocycles. They prepared 
copper ferrite (CuFe2O4) nanoparticles and used for the N-arylation of 
varieties nitrogen containing heterocycles including pyrrole, imidazole, 
pyrazole, indole, benzimidazole, carbazole etc. Aryl halides including 
less reactive aryl chlorides coupled with NH-heterocycles, resulting the 
N-arylated product in moderate to excellent yield [111]. This method 
was also found to be tolerant to varieties of functional groups of aryl 

halides. The magnetic nature of CuFe2O4 nanoparticles is particularly 
advantageous for easy, quick, and quantitative separation of the catalyst 
for subsequent use. Negligible leaching of Cu and Fe to the reaction 
medium made the catalyst environment benign (Scheme 38). 

C-O Cross-Coupling Reactions
Diaryl ethers are found as an important structural motif that are 

of paramount importance in polymer and life-science industries [112-
114]. Indeed, many of the natural products containing diaryl ether 
bridge, such as antibiotic vancomycin [115] and anti-HIV chloropeptins 
[116] show significant physiological activities. Consequently, 
development of new and practical methods for the synthesis of diaryl 
ethers is of great synthetic value. Owing to their numerous applications 
in polymer and medicines, many efforts have been devoted for their 
direct and practical synthesis. The traditional approach involves 
the Ullmann C-O cross-coupling of alcohols with aryl halides. 
However, the inherent drawbacks such as high reaction temperature, 
stoichiometric amount of copper salts and low to moderate yield limit 
their large scale applications. During the last decade, transition-metals 
mainly palladium and copper have been utilized for the O-arylation 
reactions. Moreover, the use of toxic and expensive palladium metal 
reduce their attractiveness for industrial applications. Therefore, less 
toxic and less expensive metals such as copper and iron have been used 
for the C-O bond forming reactions [10-13]. In this regard, Buchwald 
et al.  [117] described the first case of Cu(OTf)-catalyzed biaryl ether 
synthesis from the reaction of phenol with unactivated aryl halides 
(Scheme 39a). The reaction occurs at 110°C using Cs2CO3 as the key 
reaction element. Later, Palomo et al. [118] employed CuBr for similar 
cross-coupling of phenol with aryl iodides using phosphazene P4-But 
as base to furnish biaryl ethers at 100°C (Scheme 39b). Subsequently, 
it has been reported that addition of certain additives, that act as a 
ligand to the copper catalysts enhance the reaction rate and proceed 
the coupling under mild conditions [119-121]. In 2003, research group 
of Ma employed N,N-dimethylglycine as ligand towards Cu-mediated 
C-O cross-coupling reactions between substituted phenols with aryl 
bromides and iodides in dioxane (Scheme 39c) [122]. Later, the same 
group carried out the O-arylation reactions at room temperature by 
exploiting the ortho effect of NHCOR group to facilitate the Ullmann 
type C-O coupling reactions under mild reaction conditions (Scheme 
39d) [123]. 
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Taillefer described the C-O cross-coupling of phenols with aryl 
iodides and bromides using catalytic amount of copper (I) oxide 
and ligand L6. This methodology effectively coupled the sterically 
hindered phenols with electron-rich aryl halides in acetonitrile 
(Scheme 40a) [124]. Later, Buchwald employed other ligand such as 
3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-Phen) (L7) to improve 
the substrate scope toward the O-arylation reactions. (Scheme 40b) 
[125]. 

Subsequently, Taillefer et al. synthesized the hybrid silica L8 and 
used it as a reusable chelating ligand for the Cu-mediated O-arylation 
reactions (Scheme 41a) [126]. Later, the same group also developed 
another heterogeneous ligand i.e. hybrid silica L9 which catalyses the 
O-arylation reaction in the presence of CuI and eco-friendly solvent 
MIBK (Scheme 41b) [127]. CuO on aluminium support was also 

found to be efficient to couple the aromatic and aliphatic alcohols with 
differently substituted aryl and heteroaryl halides. Catalyst recycling 
was possible up to 4 consecutive catalytic cycles [128]. 

The reusable copper catalysts were also employed for the C-O 
bond forming reactions. For instance, Wang et al.  [129] applied 
3-(2-aminoethylamino)propyl functionalized silica gel immobilized 
copper catalyst for the C-O cross-coupling reactions between phenols 
with aryl iodides and bromides in DMSO. The efficiency of the catalyst 
was found to be high due to the counter anion of the precursor of the 
catalyst. The silica-supported copper catalyst could recover by simple 
filtration and reused for successive 10 consecutive trials without 
significant loss in catalytic activity (Scheme 42). 

Although ligand-assisted copper catalysed O-arylation reactions 
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were successful, the development of ligand-free reactions was also 
interesting. In this context, recently Mulla et al. first reported a highly 
efficient and inexpensive method for the synthesis of diaryl ethers 
using reusable CuFAP as catalyst [130]. They showed that coupling 
of potassium salt of phenol derivatives with aryl halides including 
less reactive aryl chlorides and aryl fluorides could occur in NMP at 
120oC. The catalyst could recover by filtration and is reusable up to five 
consecutive cycles without changing the catalytic efficiency (Scheme 
43) [130]. 

Recently, nanocatalysts were also successfully applied for the 
C-O cross-coupling reactions due to their high surface area and low 
reduction potential. An interesting example in this line was first 
published by Kidwai et al. 98 They demonstrated the coupling of phenols 
with iodo- and bromo arenes using 10 mol% of Cu nanoparticle and 
Cs2CO3 in CH3CN (Scheme 44a) [131]. Punniyamurthy employed the 
CuO nanoparticles for the synthesis of diaryl ethers in DMSO [132]. 
Furthermore, CuI [133] as well as Cu2O [134] nanocubes were utilized 
for cross-coupling between phenols with less reactive aryl chlorides 
(Scheme 44b).

Besides, Fe-based catalysts were also utilized for C-O cross-
coupling reactions. For example, Bolm et al. [135] reported an elegant 
method for the diaryl ether synthesis employing catalytic amount of 
FeCl3 in the presence of chelating ligand such as 2,2,6,6-tetramethyl-
3,5-heptanedione (TMHD)(Scheme 45).

Cu/Fe-based catalytic systems were found to be effective towards 

the coupling of aromatic alcohols with aryl halides but failed towards 
the O-arylation of aliphatic alcohols. Furthermore, in many cases 
ligands are essential components to improve the catalytic efficiency of 
the method. Thus, there was a considerable scope for the development 
of bimetallic Cu/Fe-cocatalytic systems for the C-O bond forming 
reactions. In this line, Fu et al. reported CuO/FeCl3 catalytic system for 
the coupling of phenols with aryl iodides and bromides [109]. Similarly, 
Zhang et al.  developed an improved methodology for the coupling 
alcohols with aryl bromides [136]. Recently, Xu et al. reported CuFe2O4 
nanoparticle-mediated C-O cross-coupling between substituted 
phenols with aryl halides, employing TMHD as the ligand and Cs2CO3 
as the base in NMP at 135°C (Scheme 46a) [137]. Interestingly, such 
Cu/Fe catalytic system (ca. CuFe2O4 nanoparticles) found to be effective 
for the coupling of aliphatic alcohols with aryl halides in the presence 
of 1,10-Phenanthroline ligand at 110°C (Scheme 46b) [138]. 

Notably, modified Ullmann C-O cross-coupling reactions were 
applied for the synthesis of natural and non-natural products. For 
instance, Ma et al. applied CuI/N,N-dimethylglycine towards the 
synthesis of antitumor agent K-13. The intramolecular C-O cross-
coupling of 9 resulted the intermediate 10 which subsequently affords 
the K-13 (Scheme 47) [123].

Similarly, Cu-promoted C-O bond forming reactions was emerged 
as key step for the total synthesis of Paliurine F. The coupling of 11 with 
aryl iodides affords the intermediate 12 which on subsequent steps 
produces the target molecule Paliurine F (Scheme 48) [139]. 
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Moreau et al. [140] reported the total synthesis of aristocularine 
alkaloid aristoyagonine 14 by the intramolecular C-O bond formations 
from the acyclic precursor 13 using copper triflate as the catalyst in 
pyridine (Scheme 49). 

Recently, Cu-mediated etherification/aldol condensation 
strategy has been applied towards the one-pot synthesis of various 
aristoyagonine derivatives 15 (Scheme 50) [141].

Jones et al. [142] reported the asymmetric synthesis of Corsifuran 
A 17, by the intramolecular etherifications of 16 employing 5 mol% 
of CuCl in refluxing toluene. Interestingly, this copper-catalyzed 
methodology is found to be better than the similar Pd-catalyzed 
synthesis of Corsifuran A in terms of yield and enantiomeric excess 
(Scheme 51). 

C-S Cross-Coupling Reactions
The formation of C(aryl)-S bond is of great importance because of the 

prevalence of these bond in many molecules that are of pharmaceutical 
and material interest [143-145]. For example, biaryl sulfides have been 
found as a common structural motifs in many drug candidates and have 
been used for the treatment of various diseases such as Alzheimer’s 
and Parkinson’s diseases, [146,147] human immunodeficiency virus 
diseases, [148] and cancer [144] etc. Traditionally, the C(aryl)-S bonds 
are synthesized under harsh reaction conditions such as elevated 
temperature (200oC) in toxic, high boiling polar solvents like HMPA. 
Alternatively, these sulfides can be prepared by the reduction of aryl 
sulfones and sulfoxides using strong reducing agents like DIBAL-H or 
LiAlH4 [149,150]. To overcome aforementioned limitations, transition-
metal catalysts are employed for various C-S bond forming reactions 
[151,152]. Evidently, among the TM-catalyzed coupling reactions, 
C-S cross-coupling received less attention in comparison to C-N and 
C-O cross-coupling reactions, because: (i) thiols are prone to undergo 
oxidative S-S coupling reactions to undesired disulfides and (ii) strong 
coordinating properties of organic sulfur compounds, often make the 
catalyst ineffective (catalyst poison) [153]. Transition metals such as 
Pd, Ni etc. were extensively used for the C-S bond forming reactions. 
However, the cost and toxicity of the above metals limit their large scale 
applications particularly in pharmaceutical industry. Thus, cheap and 
less toxic Cu/Fe-based catalysts have been developed for the C-S cross-
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coupling reactions. Suzuki et al. first demonstrated the reaction between 
aryl thiols with aryl iodides using CuI in hexamethylphosphoramide 
(HMPA) to get moderate to good yield (60-77%) of corresponding aryl 
sulfides (Scheme 52a) [154]. When Schwesinger’s phosphazene base 
(P2Et) was used as a ligating agent, yield of aryl sulphide was increased 
substantially (Scheme 52b) [155].

Numerous other ligands were used by several researchers along 
with copper salt to expand the scope of C-S cross-coupling reactions. 
Evidently, Venkataraman et al. utilized bidentate ligands such as 
neocuprine [156] and 1,10-phenanthroline [157] along with copper 
salt for the cross-coupling of thiols with aryl halides and vinyl halides, 
respectively (Scheme 53). Vinyl sulfides were also synthesized using 
cis-1,2-cyclohexanediol as the ligand and CuI as the catalyst [158,159]. 

Buchwald et al. [160] developed CuI/ethylene glycol for the 
S-arylation of thiol derivatives at lower temperature (80°C) though 
excess of ethylene glycol were used (Scheme 54a). Later, they applied 
the above catalytic systems toward the cross-coupling of aryl thiols 
with 6-halogenoimidazo-[1,2]pyridines (Scheme 54b) [161]. 

Similarly, a tridentate oxygen containing ligand like 
1,1,1-tris(hydroxymethylethane) (L10) have been used for the C-S 
cross-coupling between thiols with aryl iodides in a mixture of DMF 
and dioxane (Scheme 55a) [162]. Scope of the coupling reactions was 
further expanded by choosing oxime-phosphine oxide (L11) as a 
ligand. A range of thiols including both aliphatic and aromatic thiols 
coupled with activated and unactivated aryl iodides to form the alkyl-
aryl and diaryl sulfides in good to excellent yield (Scheme 55b) [163]. 
Later, Verma et al. reported CuI/benzotriazole catalytic systems for 
coupling the thiols with less reactive aryl bromides (Scheme 55c) [164]. 
Subsequently, various amines including trans-1,2-diaminocyclohexane 
[165], BINAM [166,167] etc. have been utilized successfully as a ligand 
to promote the S-arylation reactions.

Additionally, ligand-free S-arylation reactions were also developed 
owing to the advantages over purification problem caused by the ligands. 
For instance, van Koten illustrated the C-S cross-coupling of thiols 
with aryl halides in the presence of CuI in NMP at 100°C (Scheme 56a) 
[168]. Vinyl sulfides were also prepared by Liu using decarboxylative 
C-S cross-coupling reaction between arylpropiolic acids with thiols 
(Scheme 56b) [169]. Punniyamurthy et al.  [170] reported a ligand-free 
copper-promoted S-arylation reactions for the synthesis of 2-(arylthio)
arylcyanamides from 2-(iodoaryl)thioureas and aryl iodides in DMSO 
(Scheme 56c). They also utilized CuO nanoparticles for the C-S cross-
coupling reaction between thiols with aryl iodides in DMSO at 90°C 
(Scheme 56d) [171]. Later, CuI nanoparticles were expended for the 
S-arylation reactions in water by Xu et al. (Scheme 56e) [172]. Recently, 
Fu and Peters developed a ligand-free photoinduced C-S coupling 
between thiols with aryl halides including less reactive aryl chlorides 
using catalytic amount of CuI under mild reaction conditions [173]. 

Recently, CuO nanoparticles have been employed for the 
synthesis of diaryl sulfides using thiourea [174] and ethyl potassium 
xanthogenate [175] as the sulfur surrogates. Use of thiourea resulted 

symmetrical sulfides whereas ethyl potassium xanthogenate produced 
the unsymmetrical diaryl sulfides in DMSO (Scheme 57).  A microwave-
assisted ligand-free copper nanoparticle-mediated S-arylation of thiols 
with aryl iodides have been reported by Ranu et al. (Scheme 58) [176]. 

As an alternative to Pd-catalyst, iron-catalysts were also extensively 
used for C-S cross-coupling reaction. The most significant advances 
in this direction were made by Bolm et al.  They found that the 
combination of FeCl3 and DMEDA served as an effective catalytic 
system for the coupling of numerous thiols with aryl iodides (Scheme 
59a) [177]. Moreover, in a competent report Buchwald and Bolm 
observed that reactions with FeCl3 in certain cases be significantly 
affected by trace quantities of other metals, particularly copper [178]. 
Tsai et al. [179] were also utilized ligand L12 to carry out the coupling 
reactions in aqueous medium (Scheme 59b).

The synergistic effects of Cu and Fe on C-S cross-coupling 
reactions were investigated considering the fact that iron has the 
ability to suppress the disulfide formations. Liu et al. [180] disclosed 
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ligand-assisted Cu(OAc)2-Fe2O3 co-catalytic system for the coupling 
the thiol derivatives with aryl and heteroaryl halides under microwave 
irradiations (Scheme 60a). Recently, Kovacs and Novak developed 
copper on iron as heterogeneous catalyst for the S-arylation of thiols 
with aryl iodides (Scheme 60b) [181].

In this line, Panda et al. [182] and Nageswar et al. [183] exploited 
the catalytic activity of magnetic copper ferrite nanoparticles in 
S-arylation reactions. Both aliphatic and aromatic thiols coupled with 
the aryl halides including less reactive aryl chlorides, leading to the 

corresponding aryl-alkyl and diaryl sulfides in good to excellent yield 
(Scheme 61) [184]. Advantages of using copper ferrite nanoparticle 
are: (i) this method is simple and results high yield of the S-arylated 
product; (ii) due to the magnetic nature of the catalyst, it can be 
separable quantitatively; (iii) the catalyst can be reusable for consecutive 
cycles (minimum three) without loss of efficiency; (iv) this catalytic 
system does not require any additional ligand to promote the coupling 
reaction and this method is tolerant to a wide varieties of functional 
groups attached to both thiols as well as halides. Furthermore Panda 
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et al. exploited the efficiency of developed catalytic system for the one-
pot synthesis of tricyclic dibenothiazepine derivatives by a tandem 
C-S/C-N bond forming reactions between 2-aminothiophenols with 
2-bromobenzaldehydes. (Scheme 61) [182]. It is worthy to mention 
that dibenzo-fused thiazepines having medium-ring (6-7-6) structures 
show pronounced therapeutic effect on the central nervous system 
and are particularly active as antidepressants, antiemetic, analgesics 
and sedatives. Successful examples include quetiapine and clothiapine, 
which are clinically used for the treatment of bipolar and psychiatric 
disorders (Figure 4) [184-187]. 

Cu/Fe-mediated C-S cross-coupling reactions were shown to 
be applied for the synthesis of a number of complex molecules. For 
example, Naus et al. [188] reported CuI/pyridine catalytic system 
for the synthesis of triazine substituted arylthioglycosides in MeCN. 
Ma et al. [189] developed a Cu-mediated synthesis of substituted 
phenothiazines by a cascade C-S and C-N bond forming reactions 
(Scheme 62a). This method has been employed successfully for the 
synthesis of promazine drugs like chlorpromazine, triflupromazine 

and acepromazine in good yield. Wennerberg et al. [190] prepared the 
anticancer agent thymatiq in large scale by copper-mediated coupling 
between halide and 4-mercaptopyridine (Scheme 62b). Bagley et al. 
reported a copper mediated methodology for the synthesis of P38α 
MAPK Clinical Candidate VX-745 by C-S coupling reaction (Scheme 
62c) [191]. 

C-Se Cross-Coupling Reactions
Organoselenium compounds act as a versatile reagent in organic 

synthesis and catalysis [192-195]. The biological properties of these 
compounds received increased attention due to their antioxidant, 
antitumor, antimicrobial, anticancer, and antiviral properties [196-
199]. As compared to other type of C-hetero bond forming reactions, 
C-Se cross-coupling reactions have been less reported. Venkataraman 
and Gujadhur [200] first disclosed a ligand-assisted copper-promoted 
methodology towards the coupling between phenyl selenols with 
electron rich aryl iodides in refluxing toluene (Scheme 63a). Later, 
Taniguchi [201] demonstrated the efficiency of Cu2O/bpy/Mg catalytic 
system for the C-Se bond forming reactions. A range of electron-
donating and –withdrawing aryl and heteroaryl iodides coupled with 
the diphenyldiselenides, affording the unsymmetrical diaryl selenides 
in good yield. However, the major drawback associated with the 
Taniguchi’s protocol was the extended reaction time (18-72 h) (Scheme 

 (a)

(b)

Ar X
H2N

S

NH2
Ar S Ar

KS

S

OEt
CuO nano (7 mol%)

KOH, DMSO
R'-X, 85 oC

Ar X
Ar S R'

CuO nano

DMSO, Cs2CO3
110 oC Nageswar et al.

Rama Rao et al.

Scheme 57: CuO nanoparticle catalyzed C-S cross-coupling.

 I

R1

R SH
S

R
R1

Cu nano

K2CO3, DMF
MW

Ranu et al.

Scheme 58: Microwave-assisted Cu nanoparticle-catalyzed C-S cross-
coupling.

 
(a)

(b)

R SH

R1

I

R1

FeCl3 (10 mol%)
DMEDA (20 mol%)

t-BuOK, toluene
135 oC

S
R

RSH
L12, KOH, H2O
Reflux,

R1

I

R1

S
RFeCl3.6H2O (10 mol%) NMe3 BrBr Me3N

L12

Bolm et al.

Tsai et al.

Scheme 59: Ligand-assisted Fe-catalyzed C-S cross-coupling.

 X

R1

R2 SH

X = I, Br, Cl

S

R1

R2Fe2O3, Cu(OAc)2

TMEDA, Cs2CO3
MW, 135 oC

R1

ISH

R DMA, K2CO3
100 oC

R
S

R1

Cu/Fe (5 mol%)

(a)

(b)

Liu et al.

Kovacs et al.

Scheme 60: Cu-Fe- co-catalyzed C-S cross-coupling.

 

SH

NH2

N
H

S

O

N

S

CO2Me

I

CHO

Br

S

NH2

CO2Me

CuFe2O4 nano

1,4-dioxane, tBuOK
reflux, 24 h

IR SH
S

R

Panda et al.R1

R1

dibenzothiazepines

dibenzothiazepinones

Scheme 61: Cu-Fe co-catalyzed C-S cross-coupling.

 

N
N

CN Cl

ClCl

SH

F

F

CuI (5 mol%)
OH

OH
L13

L13 (2 equiv.)

K2CO3, i-PrOH
MW

N
N

CN Cl

ClS
F

F

N
N

S
F

F O
ClCl

VX-745

I

NH2

HS

Br
R1

R2

CuI (20 mol%)

L-Proline (40 mol%)
2-methoxyethanol
90-110 oC

N
H

S
R2R1

Ma et al.

N

N

H

H2N

O Br
Me

N SH Cu2O
N

N

H

H2N

O S
Me

N

Thymitaq

(a)

(b)

(c)

Wenneberg et al.

NaOH, DMA

Bagley et al.

Scheme 62: Cu-catalyzed C-S coupling en Route to bioactive molecules.



Citation: Panda N, Jena AK (2015) Cu/Fe-Catalyzed Carbon-Carbon and Carbon-Heteroatom Cross-Coupling Reactions. Organic Chem Curr Res 
4:130. doi:10.4172/2161-0401.1000130

Page 16 of 21

Volume 4 • Issue 1 • 1000130
Organic Chem Curr Res
ISSN:2161-0401 OCCR an open access journal

63b). When the reaction was carried out in the presence of microwave 
rate of the reaction was accelerated [202]. 

Recently, nanoparticles were employed for the C-Se bond 
forming reactions. For example, Ranu et al. [203] reported the copper 
nanoparticle-mediated synthesis of aryl and vinyl selenides in aqueous 
medium. Coupling of diphenyldiselenides and E-vinyl bromides 
resulted (E)-vinyl selenides, whereas with Z-vinyl bromides, a mixture of 
(E-) and (Z)-isomers were obtained (Scheme 64a) [204]. Subsequently, 
Rama Rao et al. reported the CuO nanoparticle mediated C-Se coupling 
reactions [204]. Both electron-donating and -withdrawing aryl halides 
effectively coupled with the diphenyldiselenides, resulting aryl selenides 
in good to excellent yield. Later, they utilized the selenourea as a 
coupling partner for the synthesis of symmetrical selenides (Scheme 
64b) [205]. 

Subsequently, Li et al. [206] reported that the CuS catalyzed 
coupling reactions of aryl halides and diaryl diselenides were 
accelerated by the addition of Fe powder leading to diarylselenides 

in good to excellent yields. Notably, incorporation of iron not only 
prevents the agglomeration of catalyst but also reduce the CuS to more 
active Cu2S (Scheme 65). Very recently, Nageswar et al. [207] exploited 
the magnetic copper ferrite nanoparticles for the C-Se cross-coupling 
reactions by coupling the phenyl selenyl bromides and chlorides with 
aryl boronic acids in recyclable PEG-400 medium at 80°C (Scheme 
65b). 

Conclusion and Future Prospects
In this review, we have summarized copper/iron-mediated C-C, 

C-hetero cross-coupling reactions. A number of ligand-assisted as well 
as ligand-free catalytic systems have been described. The synergistic 
effects of copper and iron in cross-coupling reactions have also been 
exemplified. The catalytic systems showed good functional group 
tolerance with wide substrate scope and applied towards the synthesis 
of various natural and non-natural products of biological significance. 
Despite the significant development on Cu/Fe catalyzed cross-coupling 
reactions, the mechanism of the reaction is still little explored. More 
concern is needed to explore the exact pathway of the coupling reaction. 
Furthermore, development of catalyst which can promote the bond 
formation between the coupling partners in green solvent or in the 
absence of solvent to reduce the environmental hazard is promising. 
Besides, development of more efficient catalytic system is needed which 
can use less reactive aryl chlorides or sulfonates for coupling reactions 
to produce high yield of the product.
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