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Introduction
Functional identification of proteins in a sequenced organism or 

natural community poses a critical challenge and has sparked great 
interest in high-throughput annotation approaches. Even for the well-
studied E. coli species, 34% of the proteome consists of functional 
ORFans (Hu et al., 2009), with either insignificant sequence similarity 
to any known proteins, or only low confidence, broad generic 
annotations (Fischer and Eisenberg, 1999). Novel proteins identified 
from environmental genomic and proteomic studies of communities 
that include uncultivated organisms are especially important in 
understanding microbial biology and evolution. Although difficult 
to study experimentally, environmental samples provide great 
insight into biochemical contributions to biodiversity and distinctive 
adaptation mechanisms to niches within ecosystems. Novel 
proteins from environmental samples provide a window into the 
physiology and ecology of these diverse and complex communities. 
Nevertheless, analysis of large-scale metagenomic projects including 
surface seawaters, whale falls, soil, and acid mine drainage locations 
has indicated that 27-48% of genes sampled have no known function 
based on automated sequence similarity methods (Harrington et al., 
2007). The novelty of these functionally unknown proteins makes 
them difficult to characterize, but underpins their key roles in 
distinctive aspects of adaptation and function in various ecosystems. 

Our interest in microbial communities has led us to examine ORFan 
proteins that are expressed in a natural, extremophilic microbial 
community collected from an acid mine drainage (AMD) environment. 

The community grows as floating biofilms in hot, sulfuric acid rich 
solutions (pH  1) with high heavy metal concentrations (Tyson et 
al., 2004). Extensive proteogenomic analyses of this AMD community 
found that 42% of the proteome consists of proteins of unknown 
function, or expressed ORFans (Ram et al., 2005). We use the term 
expressed ORFans throughout, to indicate proteins that are identified 
by mass spectrometry (MS)-based proteomic analysis but have limited 
or no statistical similarity to annotated protein sequences. Based on 
previous studies, many of the expressed ORFans are present in high 
concentrations in these biofilm communities, indicating important 
functions in survival and community fitness (Ram et al., 2005). 

Protein structure is a primary means of evolutionary selection. 
Thus, structure prediction is a powerful tool to assess function. 
Importantly, it is applicable well below sequence identity limits 
required by sequence alignment-based methods (Gough et al., 2001; 
Adams et al., 2007). Previous studies have explored the link between 
structural superfamilies and their functions, and show a strong tie 
between Structural Classification of Protein (SCOP) superfamilies and 
molecular functions (Adams et al., 2007; Malmström et al., 2007). 
Structural modeling has been performed previously on the genomic 

Abstract
Environmental genomics and proteomics data are heavily populated with proteins that are not homologous 

to experimentally characterized proteins. We approached this problematic area by investigating a natural microbial 
community from a highly constrained niche in which critical roles are likely carried out by proteins of unknown function 
(ORFans). Based on several criteria, these proteins were not statistically similar to any protein sequences in the SwissProt 
database. We selected a target set of 545 ORFans and weakly annotated proteins expressed by the dominant bacterial 
member of the community, Leptospirillum Group II, and used an automated modeling system (AS2TS) incorporated 
with other computational tools to predict structures. This generated 484 models, 89% of the target set. Structure-based 
superfamilies, general functional categorizations, and specifi c gene ontology (GO) functions were predicted for 424, 
386, and 117 ORFans, respectively. Structural predictions and classifi cations were integrated into a manually curated 
database, outlining in silico calculations and available proteomic data for each protein. This analysis facilitated the 
development of experimentally testable hypotheses for several enigmatic proteins, including confi dent predictions of 
copper transport proteins and cyclic diguanylate signaling proteins. As DNA sequencing of natural organisms rapidly 
expands, this computational structure-function approach can be applied to guide experimental testing of the structure 
and function of challenging ORFans.



Citation: Wheeler KE, Zemla A, Jiao Y, Aliaga Goltsman DS, Singer SW, et al. (2010) Functional Insights from Computational Modeling of Orphan 
Proteins Expressed in a Microbial Community. J Proteomics Bioinform 3: 266-274. doi:10.4172/jpb.1000150

J Proteomics Bioinform    
ISSN:0974-276X   JPB, an open access journal 

Volume 3(9) : 266-274 (2010) - 267 

scale with a few reports providing high-throughput functional insights 
(Huynen et al., 1998; Rychlewski et al., 1998; Sánchez and Sali, 1998; 
Bonneau et al., 2004; Zhang and Skolnick 2004). A recent study 
(Malmström et al. 2007) parsed proteins into domains and coupled 
large scale structure predictions with functional assignments by 
integration of SCOP superfamilies and gene ontology (GO) (Ashburner 
et al., 2000), providing insights into both structure and function on 
the domain level. 

Structural modeling and analysis methods described here have 
been used to guide studies on individual ORFans expressed by the 
AMD microbial community. For example, this approach provided 
basic functional assessment of an isocitrate dehydrogenase (Goltsman 
et al., 2009) and facilitated the experimental design and testing of a 
highly expressed and novel cytochrome (Singer et al., 2008). Here, 
we expanded our approach to include over 500 expressed ORFan 
and weakly annotated proteins from the dominant bacterium of the 
AMD community, Leptospirillum Group II (Tyson et al., 2004), and 
to integrate structural predictions with expression data (Ram et al., 
2005; Goltsman et al., 2009). For 422 (77%) of the proteins analyzed, 
no functional annotation was available through sequence alignment 
programs such as iterative PSI-BLAST.These ORFan proteins were not 
homologous to any proteins in the SwissProt database, as inferred 
by sequence identities below 30% and other conventional statistical 
measures of similarity. In our study we explored the structural 
predictions, structural relationships, and expression data to aid in 
development of experimentally testable hypotheses for the roles of 
specific proteins within this extremely acidic, metal rich environment.

Materials and Methods
Expressed ORFan protein dataset

Leptospirillum environmental Group II ORFan protein sequences 
were chosen from metagenomic datasets (Tyson et al., 2004; Goltsman 
et al., 2009) that fit two criteria: 1) Sequence-based approaches gave 
little or no indication of protein function; and 2) Proteomic datasets 
from AMD community studies indicated relatively high expression. 
Automatic annotations of Leptospirillum Group II were run as 
described previously (Ram et al., 2005) and these were manually 
curated (Goltsman et al. 2009). In prior studies of these AMD biofilm 
communities (Tyson et al., 2004; Ram et al., 2005; Goltsman et al., 
2009), the term “protein of unknown function” was used when a 
hypothetical gene product (<30% sequence identity) was identified as 
an expressed protein. “Probable” was added to functional descriptions 
for predicted proteins with a sequence identity between 30% and 70% 
(irrespective of the alignment length) to homologous proteins in the 
SwissProt database, but which lacked certain functional elements or 
domains. For these cases, BLAST matches in the NCBI non-redundant 
(nr) protein sequence database (http://blast.ncbi.nlm.nih.gov/) were 
also considered. Using all of these criteria, a total of 545 proteins 
were designated as expressed ORFan proteins from Leptospirillum 
Group II (Ram et al., 2005; Goltsman et al., 2009). Of these, 317 (58%) 
are unique proteins of unknown function, 110 (20%) are conserved 
proteins of unknown function, and 118 (22%) are weakly annotated 
proteins, previously described with a probable function (Goltsman 
et al., 2009). Signal peptides, which most likely lack any relevance 
to the overall structure and function of proteins in their designated 
cellular locations, were predicted using SignalP 3.0 (Bendtsen et al., 
2004) and truncated from the full length protein sequences, where 
appropriate. Based on the sequence without the signal peptide, each 
protein’s molecular weight and isoelectric point (pI) were calculated 
using Compute pI/Mw (Gasteiger et al., 2005). Protein expression 

based on MSproteomic data was estimated using the normalized 
MS spectral counts (Zybailov et al., 2006) as previously reported 
(Goltsman et al., 2009).

Whole protein structural modeling

Comparative structural modeling techniques were chosen due to 
their high reliability and low computational demands (Moult et al., 
2007). For the best results in identification of structural templates 
for modeling, several different techniques were combined (Ginalski 
et al., 2005) with AS2TS, as previously described (Zemla et al., 
2005). In addition, AS2TS iteratively generated local libraries to 
support multiple sequence alignments and created local databases 
of intermediate models to aid in structural template selection. 
These steps were repeated for each protein until no new libraries or 
intermediate models were generated. In the case of long sequences, 
multiple runs were performed using fragmentation of the query 
sequence into 700 residue segments. Structural alignments between 
all templates identified and preliminary models were calculated 
with LGA (Zemla, 2003), and secondary structure predictions were 
calculated with PSIPRED (Jones, 1999). All of these results were used 
for the final selection of structural templates and to further guide the 
process of 3D model construction. Regions of insertiondeletion or 
uncertain sequence-structure alignments were built as loops using 
LGA by grafting in suitable fragments from related structures in 
the Protein Data Bank (PDB). Finally, models were completed using 
SCWRL (Bower et al., 1997) to predict coordinates for missing side 
chain atoms. 

After protein models were created, they were classified by 
standard grouping criteria (Table 1). It is expected that above 45% 
sequence identity the model is as close to the correct structure as to 
the template (Baker and Sali, 2001); thus, we placed these models in 
the best, or ‘A’, category (our criteria for similarity to the templates 
from PDB or to intermediate AS2TS models: sequence identity >45% 
and alignment overlap >75%). Category ‘B’ (sequence identity >20% 
and alignment overlap >75%) models overlap with the twilight zone of 
20-35% sequence similarity and the required structural completeness 
of the model. In our classification, category C1 (sequence identity 
>15% and alignment overlap >50%) models gave an overall structure 
that would either be roughly correct or contain only single domains 
of the whole protein. In the final two categories, C2 models retained 
very little similarity to the template structure, resulting in only a small 
fraction of the overall protein modeled. The C3 proteins retained so 
little similarity to structures in the PDB (or to intermediate AS2TS 
models) that no structural model could be confidently constructed. 
From multiple possible models, we considered the top seven models 
constructed for each protein based upon the quality of alignment 
with the identified structural templates, according to the best: 
e-value; sequence identity; sequence coverage (alignment overlap); 
alignment compactness (minimal number of gaps); alignment overlap 
at the Nterminus; and alignment overlap at the C-terminus. The final 
model, which we indicated as the categorically best (CAT) model, 
ranked highest in each of the following three categories: evalue, 
sequence identity, and sequence coverage (Table S1). The quality of 
all automatically created structural models was evaluated using the 
Procheck package (Laskowski et al., 1993). For Category A models 
an average percent of residues in disallowed regions was only 0.54% 
with a median of 0.15%; for Category B models, 0.95% and 0.85%; for 
Category C1, 1.18% and 1.00%; and for Category C2, 1.52% and 1.30%. 
More detailed evaluation of the local quality of the created structures 
was not included for the function annotation approach described 
here. Further improvements of evaluation procedures and possible 
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refinements of automatically created models were not critical for 
the current data processing since we mostly concentrated on the 
accuracy of calculated alignments, PDB template identification, 
template selection, and structure comparison-based assignments 
of the created models to proper SCOP folds and Superfamilies. 
In particular, the results from the analysis of calculated multiple 
structure alignments enhance our confidence in the identified 
critical residues and Superfamily assignments. For each protein, we 
performed structural comparisons between the models created and 
the identified structural templates. Results are available through our 
protein model website at http://proteinmodel.org/AS2TS/research/M_
Thelen/FUN_545/. Examples of analysis and comparison plots are 
provided here (Figure 4B) with similar summary results (comparison 
plots) provided on the web for each modeled protein.

Structural and functional assessment

The CAT models created were compared to the structural 
domains from the SCOP (Murzin et al., 1995) database (release 1.73, 
Sept. 2007) using LGA, and clustered to ASTRAL_95 (Brenner et al., 
2000; Chandonia et al., 2004). Clustering was based on structural 
alignments performed by LGA (distance cutoff set at 4 Å). Positive 
matches to SCOP domains were constrained by the following criteria: 
(1) LGA_S >35%, used as a scoring function to evaluate the overall
level of structure similarity (local and global), calculated relative
to the modeled protein; (2) LGA_M >50%, used to avoid matches
to only short fragments from SCOP domains, so the model should
cover a larger portion of the domain and with a structure similarity
score of at least 50% relative to the SCOP domain; and, (3) tight local
superposition of C-alphas, where at least 10 residues from continuous 
segments were within a local RMSD cut-off <0.5 Å (Zemla et al.,
2007). Each domain hit that passed our structure similarity criteria,
up to a total of ten, was scored (Table S2).

General and specific functions were assigned to proteins 
annotated by SCOP Superfamily using the SUPERFAMILY database 
(Vogel et al., 2004; Vogel and Chothia, 2006). When available, specific 
GO functions (Ashburner et al., 2000) were added as provided by the 
SUPERFAMILY2GO database (Gough et al., 2001), which compiled 
abstracts from InterPro (Hunter et al., 2009) to correlate SCOP 
superfamilies with GO functions.

Results and Discussion
Structural modeling

It has been demonstrated that protein modeling by comparison is 
the most reliable method for structural predictions (Moult et al., 2009; 
Venclovas et al., 2003). Therefore, in this study we applied the AS2TS 
modeling system (Zemla et al., 2005). AS2TS is primarily focused on 
the modeling at the domain level; however, we utilized a set of all 
identified alternative templates, which may cover different domains, 
enabling prediction of whole protein structure and providing data 
for insights into multidomain protein function. AS2TS accesses a set 
of tools for structure similarity assessment (http://proteinmodel.org) 
that facilitates structural predictions, refines the models created, and 
aids functional prediction (Cosman et al., 2008; Zemla and Zhou, 2008; 
Anisimov et al., 2010; Chakicherla et al., 2009). For each modeled 
protein these structure comparison and analysis tools can be applied 
to the set of identified templates, providing possible insights into 
evolutionary relationships based upon structure. For identification 
of SCOP superfamilies, we avoided domain parsing applications used 
in previous studies (Bonneau et al., 2004; Malmström et al., 2007) 
and simplified the approach by identifying SCOP superfamilies using 
structural features within the best models constructed by AS2TS. This 

straightforward approach reduced computational time and avoided 
the introduction of additional errors from parsing techniques 
(Holland et al., 2006). 

MS proteomics analysis indicates that 545 ORFans or weakly 
annotated proteins are expressed by the dominant organism, 
Leptospirillum Group II (Ram et al., 2005). Using AS2TS in conjunction 
with other molecular structure tools, structural models (complete 
or fragmented) were predicted for 484 (89%). Models were grouped 
into categories A, B, C1 and C2 (Table 1) according to quality and 
confidence. A total of 125 models (23%) were high confidence, with 
sequence coverage greater than 75% and sequence identity greater 
than 20% when compared to templates (A or B quality, Figure 1). For 
the majority of the highest quality proteins modelled (73% of category 
A proteins), the best PSI-BLAST search result was a match to another 
protein of unknown function from different genus (Table S1a). This 
emphasized that an approach comparing structural models was 
capable of providing information beyond what is available through 
basic sequence comparison tools.

The 210 lower quality models in the C1 quality category did not 
meet a sufficient level of sequence identity or coverage (Sánchez and 
Sali, 1998), but may still provide insights into structure that could 
guide experimental approaches. Even when single structural templates 
and alignments did not cover the entire query protein sequence, PDB 
structure searches were often able to identify alternative templates 
that could be combined to enable more complete modelling and, 
in many cases, provide some insights for functional hypotheses. 
Similarity in predicted structures derived from multiple templates 
imparts additional confidence in a compiled structure and in eventual 
functional hypotheses.

In an analysis of modeling efforts, we looked for biases in model 
quality based upon physicochemical properties of the polypeptides 
or a bias towards certain kinds of structural templates. Leptospirillum 
Group II, an acidophilic bacterium living at pH ~1, has an average pI 
for the entire proteome of approximately one pH unit higher than 
common neutrophilic microbes (Ram et al., 2005). The high average 
pI is a result of a change in the proportion of charged amino acids, 
making correct functional annotations more difficult when based 
on sequence similarities alone (Figure S1). Although many proteins 
of Leptospirillum Group II have unusually high calculated pI values 
(Ram et al., 2005), we found that the quality of structural modeling 
was independent of pI (data not shown). Not surprisingly, however, 
molecular weight was inversely correlated with model quality: Larger 
proteins were generally more difficult to model over the entire 
sequence and resulted in models of lower confidence (Table 2).

Many of the high quality models relied upon modeling templates 
from structural genomics projects, indicating the significant role 
of these projects in diversifying the available protein structures to 
enhance homology modeling. To emphasize the utility of structural 
genomics, 241 expressed ORFans (44%) were modeled using at least 
one template from a structural genomics project. Those templates 
were particularly useful in generating high quality models, 68% of 
which fell within category A or B. There were also 21 proteins within 

Category Sequence Identity Coverage
A >45% >75%
B >20% >75%
C1 >15% >50%
C2 very low or no homology
Not Modeled (C3) no homology

Table 1: Model quality assessment criteria.
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our dataset for which the construction of structural models relied 
solely upon structural genomics templates.

SCOP Superfamily and functional assessment

To assess general functional categories and verify the quality 
of structural modeling, SCOP Superfamily domains were matched 
to 78% of the 484 expressed ORFans modeled by searching for 
structural domains within each of the seven models produced (Table 
S1). Top Superfamily assignments for the Category A models are 

shown in Figure 1. The SUPERFAMILY database was used to obtain 
a distribution profile of the general functional assignments to each 
SCOP Superfamily (Figure 2), and indicated that most of them predict 
metabolic functions. More detailed functional predictions were 
obtained for 24% of the modeled proteins with specific GO functions 
(Table S1). 

Because of the abundance of small proteins (<40kDa) in our 
dataset, the majority were found to be single domain proteins 
associated with only one SCOP Superfamily (Table S1). Strong 

Figure 1: Category A quality models with top SCOP Superfamily assignments. For each protein model: cartoon plots colored blue to red from the N- to C- termini, 
followed by gene identifi cation number, information about close structural templates from PDB, and SCOP Superfamily assignment (text from top to bottom).

Molecular weight (kDa) Structural Genomics Template
Model category Total proteins Maximum / Minimum Median In the top 7 models In the CAT model

A 16 37 / 6.7 17 15 (94%) 10 (62%)
B 109 59 / 6.8 18 70 (64%) 50 (46%)

C1 210 107 / 7.7 25 93 (44%) 30 (14%)
C2 149 81 / 7.9 30 62 (45%) 31 (21%)
C3 67 62 / 2.9 18 - -

Table 2: Analysis of structural models by category. Distribution of model quality, molecular weight and structural genomics templates utilized are categorized for each 
created model.
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matches to a SCOP superfamily were obtained for 35%, or 167 protein 
models, with a structural alignment (LGA_S) score greater than 75%. 
Additionally, we found an inverse correlation between the quality 
of model and the number of different SCOP Superfamilies identified 
for each protein, which suggested that lower quality models have a 
higher propensity for false positives. Of the models with five or more 
identified SCOP Superfamilies, 75% were C1 or C2 quality. These low 
quality models are often fragmented and align well to multiple SCOP 
Superfamilies.

 To assess the accuracy of structural modeling in providing 
functional insights, sequence-based functional assignments for a 
small set of weakly annotated proteins were included in our dataset 
(Goltsman et al., 2009) and compared to functional information 
extracted from structural modeling and SCOP Superfamily 
assessment. A total of 86 SCOP Superfamily identifications confirmed 
previous low-confidence, or ‘probable’, sequence-based functional 
annotations (Table 3). In the final 15%, the structure based approach 
was inadequate to provide a domain-based function; in large part, 
this was due to the inability to cluster models to any known SCOP 
Superfamily, either because of the low quality of the models created, 
or simply because the SCOP database is not as current as the PDB.

Predicted protein functions related to AMD

By structural prediction and Superfamily assignment, functional 
predictions were considered in the context of their relationship 

to potential adaptations to the AMD environment and microbial 
community life style. For example, harsh conditions may necessitate 
the prevalence of ORFan proteins that have predicted DNA binding 
and repair functions, including five restriction endonuclease-like 
SCOP superfamilies and four lambda repressor-like DNA-binding 
domains (Table S1a). The best PSI-BLAST match to all but one of 
these nine proteins was to another hypothetical protein, and five of 
these nine are conserved ORFans. Experimental validation of these 
proteins would therefore provide annotation across several genera. 
Moreover, we hypothesize that three of the proteins identified here 
with thioredoxin-like SCOP superfamily domains may be involved 
in sulfur metabolism, including genes 11389_17, 11233_42 and 
11238_7. Sulfur metabolism is expected to be important in the AMD 
community as both defense against sulfur-containing radicals, and as 
disulfide isomerases to aid in protein folding (Pott and Dahl, 1998).

Energy metabolism functions are also considered crucial under 
the AMD conditions. Five of the ORFan proteins modeled were 
matched to DsrEFH-like domains, a group of energy-related SCOP 
domains found in DsrEFH-like proteins (Table S1a). DsrEFH-like 
domains, although poorly characterized, have been experimentally 
linked to sulfur metabolism for energy generation (Pott and Dahl, 
1998; Galvagnion et al., 2009). Along with a previously identified 
siroheme-like enzyme, a rhodanese-like protein and sulfide quinine 
reductase (Goltsman et al. 2009), DsrEFH-like proteins are thought 
to be involved in sulfur oxidation, which may be important to energy 
metabolism given the abundance of sulfur present as pyrite (FeS2) in 
the AMD environment. 

Other energy related proteins include eight c-type cytochromes 
and nine thioredoxin-like proteins. These were structurally 
modeled, and six have been identified here as new cytochromes 
and thioredoxin-like proteins based upon their predicted SCOP 
Superfamily domains (Table S1a). These proteins may be involved 
in Fe(II) oxidation, an energy source and process that contributes 
to the highly acidic mine drainage (Tyson et al., 2004; Ram et al., 
2005). Two small proteins have been modeled to contain possible 
monoheme cytochrome domains (genes 11077_47 and 11077_6). 
Both are assigned GO terms for iron ion binding, electron carrier 
activity, and heme binding. The gene encoding one of the proteins 
(11077_6) is within an operon consisting of eight genes, two of which 
were previously annotated to encode probable cytochrome oxidases 
and in close proximity to a mono-heme subunit of cytochrome C 
oxidase and a probable iron-sulfur protein (Goltsman et al., 2009). 
Interestingly, the best structural template for protein 11077_47 
was a p-cresol methylhydroxylase (PDB 1wve). Based on reports that 
p-cresol methylhydroxylase degrades the toxic phenol p-cresol in the
protocatechuate metabolic pathway of other bacteria (Cunane et al.,
2000), the protein encoded by 11077_47 could be involved in the
degradation of aromatic compounds.

Cell wall proteins and stress-induced proteins are also important 
for microbial survival in the AMD environment. One protein predicted 
to have a PGBD-like SCOP Superfamily domain and a peptidoglycan-
binding motif was gene 11276_107. This Superfamily has been 
shown to function in catalyzing the hydrolysis of the link between 
N-acetylmuramoyl residues and Lamino acid residues in certain
bacterial cell-wall glycopeptides, essential to cell adhesion and
bacterial cell wall biosynthesis (Foster, 1991). A stress inducible YceI
protein, gene 11391_14, was predicted by structural modeling and
was determined to be highly expressed in the proteomics dataset
(Ram et al., 2005). In E. coli this is an alkaline pH induced periplasmic
protein and is conserved in many bacteria and archaea (Stancik et

Figure 2: Overview of the SUPERFAMILY general functions for the primary 
SCOP superfamilies identifi ed within the structural models.

A. Weakly annotated proteins No. of proteins
SCOP Superfamily functions in agreement
with sequence-based annotations 88

Functional predictions with discrepancies 12
Models with no SCOP Superfamily match 15
Proteins not modeled 3
Total 118

B. Expressed ORFans conserved unique
New functional predictions based upon
assigned SCOP Superfamilies 89 231

Modeled proteins with no SCOP Superfamily 9 55
Proteins not modeled 12 31
Total 110 317

Table 3: Summary of SCOP Superfamily assignments and predicted general 
functions. (A.) Weakly annotated proteins are compared to previously published 
sequence-based annotations and (B.) expressed ORFans are separated by 
their sequence-based annotation as “conserved” or “unique proteins of unknown 
function.” Functional insights into conserved ORFans have implications beyond the 
biochemistry of the AMD community.
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Figure 3: Domain fusion model created for proteins 11276_155 and 11276_154, compared with T. thermophilus isocitrate dehydrogenase. (A) Structure of 
T. thermophilus isocitrate dehydrogenase (PDB 2d1c) is colored by its correspondence to the Leptospirillum Group II isocitrate dehydrogenase proteins: 11276_155, 
royal blue; 11276_154, cyan; N-terminal and linker regions with no corresponding residues in 11276_155, grey; and, linker region with very poor alignment to N-terminal 
region of 11276_154, red. (B) Sequence alignments calculated between PDB template 2d1c chain A and proteins: 11276_155 (top), and 11276_154 (bottom).

Figure 4: Structural superposition of the model for protein 11238_88 and coppertranslocating P-type ATPases (CopA). (A.) Left, structural comparison of 
the model with CopA from Bacillus subtilis, PDB: 1kqk; 1st bar in (B). Right, structural comparison of the model with MerP from Cupriavidus metallidurans, PDB: 
1osd; 3rd bar in (B). Positions of the key amino acids: G, C, and Y are shown in cyan rectangles as observed in PDB templates and the model constructed. (B.) Bar 
representation of structural deviations between four CopA proteins using created model of 11238_88 as a frame of reference. The location of the GxxCxxC motif is 
highlighted in cyan. The colors of the bars indicate the distance deviation between superimposed corresponding residues using the following color scheme: deviation 
<2Å, green; <4Å, yellow; <6Å, orange; <8Å, brown; >8Å or not aligned, red; not aligned and terminal residues not aligned, grey.
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al., 2002). Compared with YceI proteins from E. coli and Thermus 
thermophilus (Handa et al., 2005), the Leptospirillum Group II YceI 
has a calculated pI of 9.9, over four pH units higher than its known 
counterparts. This large shift in pI is due to a higher number of 
arginines and lysines and is a common feature in other proteins of 
Leptospirillum Group II, noted above as a likely result of selection 
within the extremely acidic environment. 

Insights into enzymes involved in central metabolism were also 
provided thruough structural predictions. As reported previously, 
genomic analysis indicates that Leptospirillum Group II has an 
incomplete TCA cycle, also known as a TCA horseshoe (Goltsman 
et al., 2009) that requires two adjacent isocitrate dehydrogenase 
genes, 11276_154 and 11276_155. Structure prediction showed 
that these genes are an example of a domain fusion protein. The 
analysis reported here indicated that both proteins were modeled 

upon different structural domains within the same template, T. 
thermophilus isocitrate dehydrogenase (PDB ID 2D1C, Figure 
3A) (Lokanath and Kunishima, 2005). The predicted structure of 
11276_155 overlaps the first ~350 amino acids at the N-terminus 
(top alignment in Figure 3B), while 11276_154 overlaps the final 
~110 amino acids at the C-terminus (bottom alignment in Figure 
3B). Twenty amino acid residues close to the N-terminal region of 
11276_154 (red in Figure 3A) are not modeled as it did not align well 
to any region of the structural template. Interestingly, 11276_155 
was found to contain the binding sites for both nicotinamide adenine 
dinucleotide and citric acid, while no clear functional role can yet 
be defined for 11276_154 (Miyazaki et al., 1994; Ohzeki et al., 
1995; Steen et al., 2001). Nevertheless, structural data provided a 
suggestion of evolutionary linkage between 11276_154, 11276_155, 
and isocitrate dehydrogenases from other organisms (see Figure S1 
for a phylogenetic tree).

Figure 5: Structural superpositions between protein 10961_61 and diguanylate cyclases. (A.) The structures of the model constructed for protein 10961_61 
(backbone thickened) and diguanylate cyclase from Pseudomonas aeruginosa pao1 (backbone thinned, PDB: 3bre chain B) are superimposed and colored by the 
distance deviation of the corresponding C-alpha atoms (2nd bar in (B)). The 108-EPGLF-112 sequence from protein 10961_61, which corresponds to the GGEEF 
sequence motif of the active site from 3bre is colored in blue. Positions that correspond to selected residues from the allosteric inhibitory site (I-site) in 3bre (De et 
al. 2008) are indicated by violet spheres. (B.) Structure-based sequence alignment (top; fragment: 29-VRDD...ERIL-131), and bar representation of deviations in 
structural alignment (bottom) of protein 10961_61 with diguanylate cyclases from Caulobacter vibrioides (PDB: 1w25), Pseudomonas aeruginosa pao1 (PDB: 3bre), 
and Geobacter sulfurreducens (PDB: 3ezu). Distance deviations are calculated using model of 10961_61 as a frame of reference. Distance deviations between 
superimposed corresponding residues are indicated using the same color scheme as in Figure 4B.
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Novel function predictions available by structure modeling 
and analysis

Part of our approach involved generating a network of local 
libraries of multiple sequence alignments and a database of 
intermediate structural models. Because of this, in several cases 
structure-based homology detection resulted in protein fold 
predictions and functional insights for proteins for which sequence 
analysis methods alone, such as PSI-BLAST (5 iterations), showed 
especially weak alignments (E values  0.1). 

One such example is for the protein encoded by gene 11238_88. 
The best template for this structure was a copper translocating P-type 
ATPase (CopA) (Boal and Rosenzweig 2009) from Bacillus subtilis. 
Alignment of the modeled structure for gene 11238_88 and the 
N-terminal region of the CopA protein from B. subtilis resulted in a 
high quality category B model (Figure 4). The Cu(I) binding region, with 
a N-terminal conserved sequence GxxCxxC motif, is well conserved in 
all CopA proteins (Boal and Rosenzweig 2009). Alignment of CopA 
proteins with gene 11238_88 suggested a slightly modified motif of 
GxxCxxY, which would result in copper ligation via a cysteine and 
tyrosine. Experimental testing is necessary to confirm copper ligation. 
Although it is not a favored residue for copper ligation, tyrosine can 
be the ligand in some previously identified proteins, such as amine 
oxidase, galactose oxidase, and when copper is (mis)incorporated 
into the iron transport protein transferrin (Fontecave and Eklund,
1995). Close homologs to CopA were found in Enterococcus hirae, 
Helicobacter pylori, E. coli andSynechococcus (Figure 4). Also, CopA 
can catalyze copper extrusion in E. coli (Rensing et al., 2000). Based 
on these several lines of evidence, we predicted that 11238_88 has a 
copper export function, which would be an important if not essential 
function in the AMD environment where copper and other heavy 
metals are abundant.

The predicted structure for the protein encoded by gene 
10961_61, a C1 quality model, aligned well to the SCOP superfamily 
of diguanylate cyclases (Figure 5). Indeed, the best structural 
templates are signalling proteins from Caulobacter vibrioides (PDB 
1w25) and Pseudomonas aeruginosa (PDB 3BRE) with a diguanylate 
cyclase SCOP Superfamily domain. Although prokaryotes generally do 
not use cGMP for signalling, c-diGMP has been shown to regulate 
cell surface-associated traits and community behavior such as biofilm 
formation in a number of bacterial species (Chan et al., 2004). Further 
experiments are necessary to verify the role of 10961_61 in biofilm 
formation.

Conclusions
In this study a collection of 545 ORFan proteins produced by an 

extreme niche-adapted microbial community were selected for in 
silico structural analysis. These proteins represented a dataset for 
which sequence analysis tools provided low confidence or no insights 
for functional annotation. Homology modeling was performed, 
resulting in high confidence structural models for 125 proteins. The 
structural models were compared to known functional domains to 
provide additional confidence in the models and potential SCOP 
Superfamily classification. General hypotheses for function were 
assigned via the SUPERFAMILY database based upon SCOP Superfamily 
classifications, and potential GO functions were assessed for a small 
subset. This analysis, in combination with previously published 
proteomic data and physicochemical characterizations, provided a 
database from which hypotheses were drawn about the roles of these 
unusual proteins within the extremophilic microbial community. This 

approach will be useful for future experimental structural elucidation 
and experimentally derived functional assessment.

Additional data fi les

A comprehensive spreadsheet containing integrated data on each of the 545 
expressed ORFan proteins is given in Table S1. Lists of proteins highlighted here, 
along with associated in silico data, are extracted from Table S1 and presented in 
Table S1a, including data on all category A models, and proteins with the following 
SCOP Superfamily domains: lambda repressor-like DNA binding domains, 
restriction endonuclease-like domains, c-type cytochromes, and thioredoxin-like 
domains. SCOP superfamilies for each model, along with designated functions, 
can be found in Table S2. Additionally, detailed results from AS2TS homology 
modeling are available at: http://proteinmodel.org/AS2TS/research/M_Thelen/
FUN_545/.
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