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INTRODUCTION

The drug discovery process, before the advent of Computer-Aided 
Drug Design (CADD), was a lengthy, arduous and expensive 
endeavor. It often took decades and billions of dollars to bring a 
single drug to market. This traditional process relied heavily on 
serendipity, animal testing and trial and error, resulting in a low 
success rate and high attrition. The development of CADD in the 
mid-1970s revolutionized the drug discovery process, offering a 
more efficient and rational approach to identifying and developing 
new drugs. Drug repurposing, also known as drug repositioning, is 
another strategy that has gained traction in recent years. It involves 
identifying new uses for existing drugs that have already been 
approved for other indications. The integration of CADD and 
drug repurposing strategies has significantly accelerated the drug 
discovery process, leading to the development of new and more 
effective therapies for various diseases.

LITERATURE REVIEW

Computer-aided drug designing

The process of drug development and design is not only resource-
intensive but also costly. To mitigate these challenges, computers are 
harnessed for drug design, a practice known as in silico drug design. 

Numerous tools and software applications have been created to 
conduct docking studies, utilizing parameters to fine-tune the drug 
and target structures for desired outcomes [1-4]. CADD represents an 
interdisciplinary domain that combines molecular biology, chemistry, 
biochemistry, immunology, pharmacology, nanotechnology, data 
science and informatics.

Drug repurposing

Drug repurposing, also known as drug repositioning, involves a 
mathematical approach to pinpointing established, archived or 
discontinued drugs, as well as those under clinical investigation, to 
offer treatment solutions for various diseases [5-7]. De novo strategy 
in drug discovery comes with prohibitive costs and time constraints. 
In contrast, drugs with established mechanisms of action and 
pharmacokinetics provide a valuable domain-specific knowledge 
base. Identifying the potential benefits of these known drugs, which 
are both effective and safe, eliminates the need to start from scratch. In 
such instances, drug repurposing incurs significantly reduced time and 
economic costs. Drug repositioning proves to be a valuable and efficient 
method, allowing the application of a drug approved for one medical 
condition to potentially treat another ailment, provided that there is a 
degree of structural, side chain or side effect similarity [8]. AI-supported 
drug repositioning further contributes to time and cost reduction.
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The databases, tools and their contributions to drug 
designing and repurposing

To date, numerous databases have been created, facilitating the 
repurposing of drugs and playing a pivotal role in this endeavor. 
Beyond these databases, tools have been developed, leveraging the 

data and are instrumental in the drug repurposing process. This 
discussion will delve into these tools, examining their features and 
contents. In this paper, we present data containing a comprehensive 
list of databases and tools utilized, their web links, brief descriptions 
and references (Table 1,2) [9-61].

Table 1: The investigated databases for the repurposing of drugs.

Databases Weblink Description Reference

Compound Muscle Action Potential 
(CMAP ) 

http://www.complement.us/cmap
CMAP includes experimental data 

curated by experts.
[9], [10]

Absorption, Distribution, Metabolism 
and Excretion (ADME)

https://www.fujitsu.com/global/
solutions/

An online database for pharmacokinetic 
information.

[42], [45]

Drug repurposing hub https://clue.io/repurposing
It has created a huge library including 

repurposed drugs, news, tools, etc.
[9], [11]

The Health Improvement Network 
(THIN)

https://www.ucl.ac.uk/
THIN has collected results related to 

drugs and diseases which are reported in 
different studies.

[9], [12] 

Protein Data Bank (PDB) https://www.rcsb.org/

The protein data bank archive provides 
information about the 3D structure 

of proteins, nucleic acids and complex 
assemblies.

[42], [50]

UniProt https://www.uniprot.org/
An open resource of protein sequences 

and functional information.
[42], [51]

Atom3D https://github.com/drorlab/atom3d
A benchmark of existing datasets of 3D 

molecules, spanning several types.
[42]

MoleculeNet https://moleculenet.org/
A benchmark of datasets for molecular 

machine learning.
[42], [52]

Drug Signatures Database (DSigDB) http://tanlab.ucdenver.edu/DSigDB
It has been developed to hold drugs or 

compounds and their gene targets. 
[9], [13] 

Drug2Gene http://www.drug2gene.com
Drug2Gene integrates drug-target 

information from 19 popular databases.
[9], [14] 

DrugBank https://www.drugbank.ca/

DrugBank provides a comprehensive 
database of drugs, their different targets, 
their 3D structure them and other useful 

information.

[9], [15] 

Drug-path http://www.cuilab.cn/drugpath
DPTH contains pathways that are 

induced by drugs.
[9], [16] 

ZINC https://zinc.docking.org/
An open resource for virtual screening of 

compounds.
[42], [43]

Binding Database
https://www.bindingdb.org/bind/

index.jsp
A database of measuring binding affinity 

between the target and the drug.
[42], [44]

GeneSet Database
http://genesetdb.auckland.ac.nz/

haeremai.html
GSDB is an integrated meta-database that 

interprets a list of genes.
[9], [17] 

Potential Drug Target Database (PDTD) http://www.dddc.ac.cn/pdtd/
PDTD is an integrated database for the 

identification of protein targets.
[9], [18]

Search Tool for Interactions of Chemicals 
(STITCH)

http://stitch.embl.de/
An integrated database of chemical-

protein interactions.
[42], [46]

Side Effect Resource (SIDER) http://sideeffects.embl.de 
SIDER contains the main targets of drugs 

and their side effects.
[9], [19] 

The Genomics of Drug Sensitivity in 
Cancer (GDSC)

https://www.cancerrxgene.org/
Drug response data and genomic 

biomarkers.
[42], [47]

Protein Data Bank Bind Database 
(PDBBind)

http://www.pdbbind.org.cn/
A comprehensive collection of binding 

affinities for the protein–ligand complexes 
in the Protein Data Bank (PDB).

[42], [48]
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CanSar https://cansarblack.icr.ac.uk/
Cancer translational research and drug 

discovery knowledgebase.
[42], [49]

Therapeutic target database
http://bidd.nus.edu.sg/group/ttd/ttd.

asp
It has been developed for drug discovery 

based on target information.
[9], [20] 

Tuberculosis drug resistance http://www.tbdb.org
For the repurposing applications, TBDB 
including gene expression data and their 

annotations has been extended.
[9], [21]

DRUGSURV http://www.bioprofiling.de/drugsurv
DRUGSURV holds information on 
experimentally repurposed drugs for 

oncology.
[9], [22]

HIVDB https://hivdb.stanford.edu/DR/
HIVDB covers information on the drug 
resistance of Human Immunodeficiency 

Virus (HIV).
[9], [23]

Ontario www.healthinfo.moh.gov.on.ca
Ontario Drug Benefit (ODB) involves 

described drugs and their claimed 
indications in Ontario.

[9], [24]

SuperCYP
http://bioinformatics.charite.de/

supercyp

Super CYP is a comprehensive database 
for Cytochrome P450 (CYP) along with 
a tool to predict drugs that can interact 

with CYP.

[9], [25]

Traditional Chinese Medicine (TCM) http://tcm.cmu.edu.tw/
TCM has been developed in Taiwan and 
consists of in-silicon drug screening of 

traditional medicine.
[9], [26]

Traditional Chinese Medicine Systems 
Pharmacology Database and Analysis 

Platform (TCMSP)

http://sm.nwsuaf.edu.cn/lsp/tcmsp.
php

TCMSP is a database for drug discovery 
from herbal medicine.

[9], [27]

Tropical Disease Research (TDR) Targets 
Database

http://tdrtargets.org
TDR comprises tropical disease 

information and can offer a list of genes 
for repositioning applications.

[9], [28]

Cancer HSP
http://lsp.nwsuaf.edu.cn/CancerHSP.

php

Anti-cancer herbs along with their 
molecular information are available in 

CHP.
[9], [29]

PubChem https://pubchem.ncbi.nlm.nih.gov/
The largest collection of freely accessible 
chemical and bio-activity information.

[9], [41]

CheMBL https://www.ebi.ac.uk/chembldb/
CheMBL consists of a large number of 
drug-like compounds for drug discovery 

applications.
[9], [30]

Drug-directionality Map (DMAP)
http://bio.informatics.iupui.edu/

cmaps
To obviate the data limitation of CMAP, 

DMAP has been designed.
[9], [31 ]

Swiss BIOisostere http://www.swissbioisostere.ch
Swiss BIOisostere incorporates 

information on molecular replacement 
and their biological effects.

[9], [33]

DRAR-CPI http://cpi.bio-x.cn/drar/
Using the adverse reaction of drugs on 

proteins, DRAR predicts their interaction 
based on the collection of drug molecules.

[9], [34]

DrugNet http://genome2.ugr.es/drugnet/
DrugNet integrates heterogeneous data 
and prioritizes the effects of drugs on 

diseases.
[9], [36]

e-Drug3D
http://chemoinfo.ipmc.cnrs.fr/e-

drug3d
It contains the 3D chemical structure of 
drugs and fragment-based information.

[9], [39]

NFFinder http://nffinder.cnb.csic.es
NNFIN searches similar transcriptome 

data in different contexts. 
[8], [9]
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Table 2: The investigated tools for the repurposing of drugs.

Tools Weblink Description Reference

Drug-Target Interactome 
(DTome)

http://bioinfo.mc.vanderbilt.edu/
DTome

It is a tool that helps to understand the 
molecular mechanism of drug bioactivities.

[9], [37]

KsRepo
http://github.com/adam-sam-brown/

ksRepo
KSRPO encompasses a tool for predicting drug-

target interactions at the gene level.
[9], [40]

Drug-Map Central (DMC) http://r2d2drug.org/DMC.aspx
DMC includes a tool that integrates multi data 

from various sources and proposes a list for drug 
repositioning studies.

[9], [35]

Database Technology Web (DT-
Web)

http://alpha.dmi.unict.it/dtweb
Based on DrugBank data, it provides a network-

based drug-target prediction tool.
[9], [38]

Assisted Model Building with 
Energy Refinement (AMBER)

https://ambermd.org/
It is a package for molecular dynamics 

simulation.
[42] 

Accelerated Molecular Dynamics 
(ACEMD)

https://www.acellera.com/
An accelerated platform for faster and longer 

bio-molecular simulations.
[42], [53]

AutoDock Vina https://vina.scripps.edu/ A program for molecular docking and screening. [42], [54]

DeePMD
https://github.com/deepmodeling/

deepmd-kit/
It is a deep-learning package for molecular 

docking simulation and energy representation.
[42], [55]

RBio3D http://thegrantlab.org/bio3d/
R package for the analysis of molecular docking 

trajectories.
[42], [56]

Pymol https://pymol.org/2/
An interactive platform for visualization of 

molecules.
[42], [57]

Rosetta Commons https://www.rosettacommons.org/ A tool for predicting the mutant structure. [42], [58]

Anni 2.0
https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2481428/
It interprets differentially expressed genes and 

literature-based knowledge discovery.
[1]

Balestra Web http://balestra.csb.pitt.edu/
Predicts small molecule binding affinity to 

proteins using a protein-ligand complex deep 
learning model.

[1]

DrugQuest
https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/
s12859-016-1041-6

It is a text-mining tool for knowledge discovery 
in order to find new associations between drugs.

[59]

DeepCodex https://deepcodex.org/
It detects correlation between small molecules 
functional similarity based on gene expression 

data.
[1]

HitPicK
https://doi.org/10.1093/

bioinformatics/btt303
Prediction of hits in High-Throughput Screening 

(HTS) and their targets.
[60]

PROMISCUOUS
http://bioinformatics.charite.de/

promiscuous/
PROMISCUOUS has gathered various drug 

repositioning drugs using text mining methods.
[9], [32]

PolySearch https://bio.tools/polysearch
Finds three-dimensional chemical structures 

based on similarity to a query structure.
[61]

SuperPred
https://prediction.charite.de/index.

php
Predicts the structure of proteins from their 

amino acid sequence.
[1]

Artificial intelligence and machine learning in drug 
repurposing

Artificial Intelligence (AI) and Machine Learning (ML) technologies 
play a pivotal role, particularly with the emergence of advanced 
deep learning and neural network algorithms. Machine learning 
algorithms can learn from data and replicate cognitive human 
behavior [62]. In contemporary times, biological researchers 
have incorporated machine learning into the processes of drug 
repurposing to enhance overall outcomes [63]. Machine learning 

helps drug design in two ways. Firstly, a statistical survey of the 
effectiveness of a group of existing drugs in a very focused way. 
Secondly, the design of repurposed drugs takes suitable feedback.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a machine learning algorithm 
that has found application in various domains, including drug 
repurposing. The data points closer to the hyperplane, influencing 
its position and orientation, are termed support vectors. Utilizing 
these vectors, the largest margin is established, dividing the dataset 
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are two distinct homogeneous models utilized for training the 
dataset. The Random forest method employs numerous decision 
trees as base classifiers in a parallel manner whereas the AdaBoost 
classifier amalgamates multiple weak classifiers to generate a robust 
classifier with a high level of accuracy [64].

Heterogeneous model

This diverse model integrates various base classifiers to achieve 
enhanced accuracy. The heterogeneous ensemble comprises five 
distinct types of base classifiers: K-NN, LR, SVM, RF and AdaBoost. 
Hard voting and soft voting techniques are applied to aggregate the 
results. The voting classifier receives training data from multiple 
machine learning models and predicts an output based on the class 
with the highest probability, combining the results from each base 
estimator [64].

Deep learning in drug repurposing

Deep learning, a subfield of machine learning, has revolutionized 
various fields, including drug discovery and repurposing. Its ability 
to extract meaningful patterns from large datasets makes it well-
suited for identifying novel therapeutic applications for existing 
drugs, potentially reducing the time and costs associated with 
traditional drug discovery processes.

DISCUSSION

One of the primary applications of deep learning in drug 
repurposing lies in predicting Drug-Target Interactions (DTIs). 
Deep learning models can analyze vast biological data, including 
protein sequences, gene expression profiles and drug structures, 
to uncover potential interactions between known drugs and 
novel targets. This capability enables researchers to explore 
new therapeutic opportunities for existing drugs that may have 
been overlooked using traditional methods [66]. Three different 
algorithms widely used in deep learning namely, Feedforward 
Neural Network (FNN), Convolutional Neural Network (CNN) 
and Recurrent Neural Network (RNN) (Figure 1). The FNN 
algorithm is applied for the vector representation of samples in 
the dataset. It is connected through artificial neurons layer-by-
layer from input variables to output targets [67-69]. Techniques 
such as CNNs are employed to analyze biological images, such 
as those from high-throughput screenings or medical imaging. 
This facilitates the identification of patterns indicative of drug 
efficacy or safety, contributing to the discovery of new therapeutic 
applications [70,71]. As per the RNN, its primary application lies 
in investigating features for drug repurposing within biological 
sequences. These models play a key role in producing extensive 
libraries of molecules for drug development, where each molecule 
is represented as a sequence using straightforward computational 
codes for molecular input line entry [71-74].

Deep learning also plays a crucial role in identifying drug 
combinations, where multiple drugs are used together to achieve 
enhanced therapeutic effects. By analyzing patterns in drug 
response data and patient outcomes, deep-learning models can 
predict synergistic drug interactions, leading to the development 
of more effective treatment regimens [75].

into two groups and determining the category to which new data 
belongs. The SVM kernel transforms the input space into higher 
dimensions, showcasing the distinction between the new data and 
the support vectors. The key element of SVM lies in identifying 
the optimal hyperplane to effectively partition the data into distinct 
clusters [64]. The performance of SVM in drug repurposing 
depends on the quality and representativeness of the training data, 
the choice of features and the specific characteristics of the problem 
at hand.

Random Forest (RF)

Random Forest (RF) is a frequently employed algorithm specifically 
crafted for extensive datasets with numerous features. It streamlines 
tasks by eliminating outliers, classifying data and assigning datasets 
based on relative features tailored for the specific algorithm. 
Typically trained for substantial inputs and variables, it gains 
accessibility through data collection from various databases. RF 
proves advantageous in various scenarios, including handling 
missing data, addressing outliers and estimating characteristics 
for classification [65]. In the realms of drug discovery and drug 
repurposing, RFs find primary applications in feature selection, 
classification or regression.

K- Nearest Neighbor (K-NN)

The K-NN algorithm involves storing all data points during 
the training phase and the classification of new data points is 
determined by their similarity to existing data. As new instances 
are introduced to the established categories, the K-NN algorithm 
assesses these new cases against previous instances and assigns them 
to the same category as the new data [64]. In the K-NN algorithm, 
the Minkowski Parameter (p) is a configurable parameter that 
influences the choice of distance metric. Choosing different values 
of p can impact the performance of the algorithm based on the 
characteristics of the dataset. Common choices include p=1 for 
Manhattan distance and p=2 for Euclidean distance. K-Nearest 
Neighbor offers a straightforward yet powerful approach in drug 
repurposing by leveraging the concept of similarity. Its capacity to 
identify drugs with analogous characteristics provides a valuable 
tool for predicting potential novel therapeutic uses for existing 
medications.

Logistic Regression (LR)

Logistic Regression finds application in drug repurposing as a 
predictive modeling tool. It is primarily employed for categorizing 
observations into discrete classes. This technique adjusts its output 
utilizing the logistic sigmoid function, converting probability values 
into at least two distinct classes [64].

Ensemble model

An ensemble strategy merges two or more base classifiers, elevating 
the outcomes of machine learning. It delivers superior predictive 
performance compared to a single model [64].

Homogeneous model

A homogeneous model integrates similar types of base classifiers, 
resulting in improved performance. Random Forest and AdaBoost 
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CONCLUSION

In conclusion, drug repurposing has emerged as a promising 
strategy to accelerate the discovery and development of new 
therapeutic agents. The availability of comprehensive databases 
and powerful artificial intelligence techniques has significantly 
enhanced the drug repurposing process by enabling researchers to 
identify new uses for existing drugs, predict drug-target interactions 
and optimize drug combinations. Databases such as DrugBank, 
BindingDB, PubChem, etc., provide valuable information on 
drug properties, targets and biological activities, facilitating the 
exploration of potential repurposing opportunities. Additionally, 
tools like DrugMap, DrugQuest, etc., offer computational 
methods for analyzing and interpreting drug-related data, further 
aiding in the identification of promising repurposing candidates. 
Artificial intelligence techniques, particularly deep learning, 
have revolutionized drug repurposing by enabling the extraction 
of complex patterns from large datasets. Deep learning models 
can predict drug-target interactions, identify synergistic drug 
combinations and optimize repurposing strategies, significantly 
accelerating the drug repurposing process. The integration of 
comprehensive databases and powerful artificial intelligence 
techniques has transformed drug repurposing into a data-driven 
and efficient approach for expanding the therapeutic landscape. 
By leveraging these tools, researchers can accelerate the discovery 
and development of new treatments, addressing unmet medical 
needs and improving patient outcomes. As drug repurposing 
continues to gain traction, the role of databases and artificial 
intelligence will only grow in importance, paving the way for a 
more efficient and effective drug discovery process.
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