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Introduction
The original Sanger sequencing method [1,2] is referred to as a 

first-generation DNA sequencing technology. The next generation 
sequencing technologies (NGS) [3] include: (i) Second generation 
sequencing, the massive parallel sequencing of relatively short DNA 
fragments [4]; and (ii) Third generation sequencing, in which single 
DNA molecules hence much longer fragments are the subject of 
sequencing [5].

In this paper we will focus on second generation DNA sequencing, 
and will omit the term ‘second generation’ while mentioning NGS 
further.

The Sanger method differs from the NGS in, among other things 
that it works with relatively large fragments which simplifies assembling. 
Despite the fact that it is laborious, and therefore time consuming and 
expensive, the Sanger method is still respected as the most reliable 
technique and hence functions as the ‘gold standard’ [6].

This implies that in spite of its sophisticated and elaborated 
sequencing machinery, the much faster and cheaper NGS technologies 
are still prone to mistakes that may lead to incorrect conclusions. 
Artefacts generated during library preparation, in particular as side 
effects of the Polymerase Chain Reaction (PCR), introduce artificial 
mutations [7] and sequencing bias. The latter arises because the 
nucleotide composition of particular regions of the genome may 
make them less likely to be duplicated depending on the parameter 
setting of the cloning process. The consequence is that certain parts of 
the genome are better covered by fragments than others. Ideally, this 
coverage should be homogeneous, i.e., the counts of nucleotides (from 
copied fragments) should be uniformly distributed over the positions 
in the reference genome. Unfortunately, this is often not the case [8]: 
Particular areas of the genome might be underrepresented because of 
the sequence complexity and/or function, while other areas might be 
overrepresented, e.g. repetitive DNA.

Box 1: NGS library construction

Sequencing involves the shearing of DNA into numerous fragments. 
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Abstract
Next generation sequencing technologies produce an astronomical amount of useful data, but also artefacts 

and errors. Some of these errors may mimic true biological signals, such as mutations, and therefore may invalidate 
conclusions.

In next generation sequencing, two types of errors may occur: experimental and computational. Computational 
errors are those that stem from the digital post-processing of sequenced samples, and are the main subject of 
this paper. Post-processing involves procedures such as quality-scoring, aligning, assembling, variant calling, 
genotyping and error-correction of the data. This paper is about post-processing errors and computational methods 
to detect and correct them.

Originally, restriction enzymes were used to cut off specific parts that 
were stored in dedicated strains of bacteria or bacteriophages (as “BAC 
libraries”) so that they could be cloned, sorted and fragmented again. 
Although this is no longer done in current sequencing technology, 
the name “library” has stuck and is now used in a more general sense 
for the collection of DNA fragments that has undergone laboratory 
treatments (including cloning them into a large number of copies to 
boost the source material by means of the Polymerase Chain Reaction, 
PCR) to make them suitable for the actual sequencing on instruments 
specially devised for this purpose.

NGS technologies consist of shearing DNA molecules into collection 
of numerous small fragments, called a ‘library’, and their further 
extensive parallel sequencing. These sequenced overlapping fragments 
(their fixed length ends actually) are assembled into contiguous strings. 
The contiguous sequences are in turn further assembled into genomes 
for further scientific analysis.

DNA sequencing is essential for establishing similarities and 
spotting deviations (as in mutation screening) between the genomes 
of individuals and taxa. Hence, its results are used as well to compare 
genomes from forensic, ecological and evolutionary perspectives as to 
identify genetic aberrations that might be involved in the aetiology of 
certain diseases.

We refer to [9-17] for the classification and detailed characteristics 
of NGS platforms. In spite of sophisticated and elaborated experimental 
sequencing parts, it is accepted that, strikingly, one of the main 
challenges in NGS is the digital processing of the big data [3,18].
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The NGS data processing is arranged in a set of sequential steps, 
called a pipeline. A typical post-sequencing NGS pipeline [11,12] 
consists of:

1) Quality control of raw sequence reads;

2) Aligning to a reference genome/assembly;

3) Post-alignment quality control and re-calibration;

4) Identification of mutations (variant calling and genotyping);

5) Post-variant call/genotyping quality control;

6) Data storage and compression.

If no reference exists for the sequenced genome, step 2 may be 
substituted (or combined) by a de-novo genome assembly step [17]. 
Each step incorporates some error-correction procedures [10,19].

Box 2: Post-processing pipelines information

There are several good reviews about NGS computational post-
processing frameworks [4-12]. There are also good sources online 
[16,18,20] which can help researchers to create their own pipelines, 
monitor their data and chose a bioinformatics tools to do so. There 
are even ‘meta’ pipelines [13,14] that have been developed, which offer 
tools to build up customised pipelines.

For each of the first five steps above we will address: i) What they 
are and aim at; ii) How they work, and iii) The various ways they can 
be applied, their problems and best practices to solve them. We do 
this by providing a brief summary of the methodology, presenting an 
overview of the available tools and a brief assessment of their strengths 
and weaknesses. We will also review error models and NGS simulation 
in the section 6 of the paper.

Quality Control (QC) of raw sequence reads

For any platform, initial raw digital outputs of DNA sequencing are 
nucleotide base calls and their qualities. Base calls and their qualities 
are usually stored conventionally in the form of FASTQ [21], or BAM/
SAM [22] formatted files, and is the input for the majority of a post-
processing pipelines.

Box 3: Base calls, their qualities, and reads

The raw digital output of DNA sequencing consists of a series of 
assessed nucleotide identities (“base calls”) from a restricted part of the 
cloned fragments (e.g. the k first and last nucleotides, where k depends 
on the NGS technology) called reads and the qualities of those base 
calls. A base call quality (“Q”) corresponds to the probability that a base 
call deviates from the identity of the corresponding nucleotide in the 
reference genome [23].

The quality of a base-call may depend on the quality of the signal 
used in the recognition of a nucleotide, which typically involves the 
intensity of the identifying fluorescence released by reagents during the 
sequencing In Illumina, signal quality is measured by a combination of 
metrics, one of which (“purity”) captures the unambiguity of fluorescent 
intensities. Because sequencing in Illumina is done in cycles (in each cycle 
one base is called, thus the number of cycles is equal to the read length k) 
and reagents may lose their vigour over time, signal quality, and therefore 
base-call, quality could be affected by the duration of the run. The decrease 
of signal quality, and hence of base call quality, with increasing cycle 
number has been established by a number of studies [24].

The relationship between base-call quality and signal quality is, 

however, not always straight forward. For instance, although artificial 
mutations induced during library preparation will show up as 
discrepancies from the reference genome and by all means are miss-
identifications, they are not necessarily base calls of low signal quality.

Compared to Sanger sequencing, NGS technologies are challenged 
by shorter sequence read length, higher base call error rate, platform/
instrument/sample specific artefacts [25], and often low uneven 
coverage [26,27]. Short reads, in turn, result in limited ability to 
sequence repetitive DNA [28]. These features lower an accuracy of NGS 
downstream analysis (e.g. mutation detection and de-novo assembly) 
by introducing sequencing biases and errors that might lead to incorrect 
interpretation of data.

A quality control of raw sequence reads is an initial check of the 
soundness and usefulness of the input. Many of the artefacts brought 
about by flaws in library preparation and sequencing only become 
apparent at later stages of the pipeline, but some of them can be detected 
by QC of raw sequence reads. Therefore it is very important to QC raw 
sequence reads before further analysis.

The main metrics used in QC of raw sequence reads to characterise 
artefacts are shortly described below. These metrics reflect library 
preparation and sequencer’s performance, but not post-processing 
quality.

Total read count should be counted after PCR/optical duplicates 
removal, which might inflate count’s value. It reflects general library 
usefulness, and should be large enough for a statistical significance of 
results. The Q value distribution should be skewed towards high quality 
base calls (majority Q30+), as shown in the Figure 2. 

In the  Figure 1  one can  see an  example  of a  Q  distribution  for 
HiSeq v4 Illumina release, Phix spiked-in control, and one lane. There 
are only five quality bins in this release, so there are 5 vertical bars for 
Q 10,22,27,33 and 37. The reads here are 100 bp long. One can see that 
the majority of called bases are of higher quality here, S33+. Generally, 
to ensure that a data is useful, at least a half of it should be higher than 
Q30.

A low quality bases arise mostly because of sequencer’s biases and 
imperfections [29,30]. They can add unreliable sequences to the dataset, 
and lead to false interpretation of data.

Low quality reads or bases at the end of reads are trimmed [31,32], 
so low quality and possibly wrong called data will not confuse further 
analysis. However, there are special conditions on an error correction, 
namely it can be applied only to homogeneous and high-coverage data, 

Figure 1: Example of quality values decline per cycle, read length 150 bp, 
reverse read, Illumina HiSeq. From WTSI quality control web page.
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which is often not the case for NGS [26,27], especially for the Whole 
Genome Sequencing (WGS) and GC-extreme regions [8].

Quality per cycle distribution, see the Figure 1. To be sure of good 
sequencer performance one should not see random quality deeps 
or peaks per cycle. It should gradually decline with cycle because of 
declining signal-to-noise ratio, as one can see in the Figure 1.

Proportion of duplicate reads should be low, not more than around 
10%. Duplicate reads, arising due to PCR (when a library is of low 
complexity) and optical problems (at the stage of sequencing itself on 
machine), can bias data towards artificially frequent reads and lead to 
over-estimating a particular variant contribution in the data. Duplicate’s 
removal is also discussed [33,34].

Proportion if adaptors should be very low, less than 3% at least. 
Adapter parts might be erroneously sequenced in the beginning of a 
read, and thus may introduce artificial mutations [35-37]. There are a 
number of popular tools for adaptor removing from raw sequence reads 
[34,38-40].

Di-multiplexing, namely separating samples based on their tags, 
ideally should be even across tags. In pooled multiplex sequencing, the 
size of each pool is a critical issue [38,39]. Thus reasonably even di-
multiplexing [20,35,40] ensures less biased data.

There is a good metric for Illumina performance: proportion of 
purity-filtered data. High purity data is a high signal-to-noise data; see 
section 3.1 further for more explanations about purity and its filtering. 
It should be majority of the data, more than 80% in average.

There is also an option to QC check a library even before 
sequencing. Thus MiSeq QC [41] allows performing a QC run on 
libraries before deep-sequenced on a larger machine, HiSeq or HiSeqX.

Most sequencers [42,43] generate a QC reports, as part of their 
processing pipeline. These reports cover a general performance of the 
corresponding sequencer itself only. They usually do not consider any 
effects of library preparations and sample extraction.

An exception is FastQC [44]. It is designed to detect problems which 
originated either in sequencer or in the library preparation step. It is 
supported by visualising plots and warnings about uncertain results. 
It is one of the most popular raw sequence reads QC currently. It is a 
very rapid estimation of various metrics based on stratified sampling 
of the data.

In contrast, FaQCs [45] monitors errors in the complete bulk of 
the data, and removes low Q-value reads. Its interesting feature is a 

Figure 2: Q-value distribution of all called bases, Illumina HiSeq v4.  X-axis is 
for Q-values. Y-axis is amount of bases called with these values.

k-mer profiling (distribution), which might be of special use for further 
assembly.

The NGS QC Toolkit [46], besides performing a quality check and 
providing descriptive statistics, filters low Q data and trims low Q ends 
of reads. In addition, it allows the conversion between different file 
formats of NGS data from Illumina and Roche 454 platforms.

Problems and best practices to solve them in QC cleaning

We would recommend filtering in moderation in order not to raise 
false negative rate. However, any deviation from expected values for the 
QC metrics mentioned before might be a potential artefact.

Sequence-specific errors create an additional challenge for QC 
cleaning [47,48]. These are particular combinations of nucleotide, 
which are prone to signal to noise decline, and therefore are hard to 
be sequenced, e.g. ‘GGT’, ‘GGC’ patterns for Illumina [30,47,48]. The 
genome regions containing these errors can be covered very unevenly: 
they can be under-represented in the data, because their quality is 
usually low, and they are prone to be trimmed out. Moreover, they 
can be over-represented as well when error prone reads cluster in low 
complexity repetitive regions.

Aligning Reads to a Reference Genome and/or Assembly 
Reads

The next step is the matching of the reads to locations at the 
reference genome, so called mapping. This is done by aligning reads 
to stretches of the reference genome to which they are most similar in 
terms of nucleotide sequence. Mapping is the most time and computer 
memory consuming step [49,50]. It is also crucial: Any artefact in 
alignment will be subject to further processing and hence propagate 
errors to the subsequent stages of sequencing.

Because of NGS massive amount of short reads, it is too slow to use 
the well-known BLAST [51] algorithm, and therefore specific memory 
and time optimised aligning algorithms, NGS aligners, are developed.

Aligners for NGS vary with respect to their methods, computer 
resource usage and sensitivity [8,52]. Therefore they may result 
in different mapping results. It should be mentioned here that the 
mappability depends on the read length and varies across the genome 
depending on DNA complexity. Thus sensitivity might be advisable to 
compute for capture regions in target sequencing, when comparing 
aligners.

Aligning algorithms also differ in their ability to deal with particular 
sequencing platforms, protocols, quality of base, and in the handling of 
structural features of the DNA subject to sequencing (such as repeating 
motives, gaps, deletions and insertions of nucleotides).

For comparisons and benchmark tests for aligners see [53-57] and 
the excellent review [50]. The list of aligners is updated online [58].

Box 4: Brief description and classification of NGS aligners 
and assemblers

NGS alignment algorithms can be divided into two types on the 
basis of their main methods:

(i) Aligners using hash table indexing method [57]. Typical 
representatives are MAQ [22], SOAP [59], Novoalign [60], SSAHA [61] 
etc.;

(ii) Aligners using a Burrows-Wheeler Transform (BWT), such 
as BWA [62], Bowtie [63], SOAP2 [64] etc.). All aligners usually pre-
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with the number of sequential nucleotides identified within a read 
(“cycle-length”) so that errors accumulate at their 3’ ends because of 
error accumulation and molecule degradation [76]. Therefore accuracy 
of mapping the 3’ end of a read suffers. However, one should be careful 
in clipping the 3’ end: The alignment accuracy is affected when read 
length is short and significant number of bases are clipped [77,78].

Of the more specific shortcomings, we mention platform-
dependent issues, complications due to the functional- and structural 
complexity of the sample DNA and the type of protocol used (reflecting 
the specific aims of the sequencing endeavour).

Read length and error rates per platform: Depending on the 
sequencing platform read lengths range from 50-1000 bp [17]. For the 
main short read platforms the lengths and error rates are as following 
[17]: Illumina delivers read length 50-300 bp at the error rate 0.1% 
for end trimmed reads with overall Q30; SOLiD 50-75 bp, 0.1%; Ion 
Torrent PGM 200-400 bp, 1%; 454 delivers 400-1000 bp reads, 1% error 
rate.

If reads are short it is more difficult to match them unambiguously 
to a unique genomic location, because sub-sequences of base typically 
reoccur many times in a reference genome (this is called “genomic 
redundancy”). 

Certain sequencing platforms allow for larger read lengths than 
others (for example 200 bp by Ion Torrent and 700 bp by Roche’s 454 
compared to Illumina’s reads of 100-250 bp) which makes mapping 
easier. However, this advantage is outdone by their higher mismatch-
error rate; aligners automatically discard reads with too many 
mismatches on the basis of a pre-set mismatch error rate in a read. 
Unfortunately, this culling disregards the nature of the mismatch and 
thus may filter out natural variants.

Sequencing errors is a challenge for aligners [48,79-81]. Obviously, 
if a read contains more mismatches than allowed by aligner (e.g. 2 
per 30 bp seed), than it will not be aligned at all, even if it contains 
biological signal.

Platform-specific biases: The technology on which a platform is 
founded may bias it toward particular sequencing mistakes, in turn 
resulting in platform-specific error profiles.

Some of ‘light-based’ sequencing platforms, such as SOLiD, Illumina 
and Complete Genomics, utilise fluorescent dye’s labelling to measure 
signal strength for a corresponding sequencing cycle. These platforms 
are known to be affected by GC-bias, i.e. a low coverage of either GC-
rich or GC-poor (AT-rich) DNA regions [26,82]. It is probably brought 
about as artefacts of the fragmentation and cloning procedures during 
library preparation [79,83].

The SOLiD, Illumina and Complete Genomics platforms 
characteristically suffer from single nucleotide miss-identifications. 
The SOLiD platform is also known to have problems with sequencing 
palindromic sequences [84].

Ion Torrent’s Personal Genome Machine (PGM) utilises 
semiconductor sequencing technology that operates on acidity (pH) 
instead of light. Roche’s 454 [85] uses a pyro-sequencing technology. 
In contrast to the typical single nucleotide miss-identifications of the 
Illumina and SOLiD, the accuracy of both methods depends on the 
length of stretches of identical nucleotides, so called homo-polymers. 
Inaccurate flow-calls result in insertion/deletion (indel) errors, mostly 
homo-polymer-associated errors, when short homo-polymers are over-

process and index both reference and/or reads before actual search 
of matching read position in the reference genome. A hash table is a 
type of look up table with more advanced structure of indexing. BWT 
compresses data in a specific way (modification of a suffix array) before 
matching. Burrows-Wheeler Transform aligners are faster and use less 
memory than hash table methods, but are less sensitive [65].

Current assembling algorithms for NGS consist of two main types 
[66]: (i) Overlap-layout-consensus (OLC) methods; and (ii) Eulerian/
de Bruijn Graph (DBG) methods. Both types utilise a graph theory 
to represent NGS data, but OLC considers reads to be nodes, while 
DBG takes k-mer for a node. A graph’s edges are represented by nodes’ 
overlapping sequences for both classes.

Originally, OLC assemblers were used for longer read Sanger 
sequencing [67]. They were adopted for shorter reads, e.g. Newbler for 
454 and Ion Torrent. However, for larger amount of shorter reads, such 
as Illumina, SOLiD, DBG methods (Velvet, etc.) became more suitable.

A sequence assembly refers to aligning and merging short fragments 
from a DNA sequence in order to reconstruct the original sequence. 
Genome assembling is based on assumption that similar reads belong to 
the same genomic location [54], which enables to reconstruct genomes 
after sequencing.

If the genome of a species has not been sequenced before, the 
assembly of the reads results in the first version of its reference genome. 
This is called “de-novo assembly”. Sometimes a de-novo assembly is 
used in combination with alignment in order to reconstruct previously 
inadequately covered and unreliably sequenced genome regions. It is 
more expensive computationally compared just to reference-based 
aligning, but it significantly increases accuracy and completeness of the 
new assembly/reference [8,52].

Assembling algorithms are very dependent on data types [68], so 
they closely follow technological developments, and evolve very fast. 
For an extensive literature on assemblers consult [54,69-73]. The list of 
aligners is updated online [53].

A comparison/aligning genomes without assembling them is 
suggested by Patro and Kingsford [74]. There may be an advantage to 
do so, especially for de novo sequenced genomes. The authors suggested 
different statistics (based on k-mer distributions within reads) for this 
comparison. However, possible PCR biases in coverage (and other 
biases) are not considered at all.

It is not the scope of this paper to review all aligners and assemblers 
that are currently in use. Here we will concentrate on some of the 
problems troubling aligners and assemblers in general.

Problems and best practices to solve them: aligners and 
assemblers

A first stumbling block for somebody wanting to use aligners or 
assemblers is the sheer number of tools that are available. Thus what aligner 
or assembly methods to choose becomes not an easy question [68].

Reference errors: One should be aware that an alignment step 
is obviously dependent on a reference’s accuracy. In the case of bad 
reference, many reference mismatches are not distinguishable from 
high quality genuine variants. This is also true even in case of an overall 
well assembled reference (e.g. human) for regions with low mappability. 
Reference consortium [75] takes care of reliable references.

A bias common to most technologies is that their accuracy decreases 
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represented, while long are underrepresented [86,87], thus creating an 
accuracy dependence on a homo-polymer length. Most typical error for 
the pyrosequencing-type technologies is also indel.

Identifying indels from NGS is known to be very challenging [87], 
because ‘indel by itself interferes with accurate mapping’. To map indels 
accurately, Pair-End (PE) information is utilised [88]. It works for 
indels half a size of reads.

Longer deletions are detected by a split-read approach [89], where 
the information from unmapped reads, likely to contain insertion 
breakpoints, is utilised. For long insertions a combination with de-novo 
assembly of poorly covered regions is also required [87]. There is some 
inconsistency in ranging indel sizes. Here we define short indels are 
defined as having the size around 1-16 bp, large indels are scaled up to 
1 kb, while medium sized are around 16-50 bp [89].

Sequence-specific errors: For pyrosequencing platforms, a 
‘homopolymer-associated’ error leads to discarding repetitive DNA 
after aligning. There is an evidence of context-dependent indel errors as 
well. Thus, for Ion Torrent, GC-poor organisms have higher error rate 
and poorer coverage than GC-balanced [90]. 

Minoche et al. [80] have shown that for Illumina HiSeq some particular 
short sub-sequences in plant and virus genomes were accounted for 
disproportionally high contribution in the overall error rate, up to 
24%. This finding was supported by Abnizova et al. [81], where the 
authors found similar regions with similar motifs associated with high 
error rate. It was suggested that the origin of this artefact is the motif ’s 
vulnerability for Illumina HiSeq common error tendencies: Cross-talk, 
phasing inaccuracy and G-quenching. Both teams suggested employing 
a strand -specific quality metric to detect this artefact because of its 
strand asymmetric distribution.

DNA functionality causes aligning biases: Different parts of a 
genome are involved in different operations and this is reflected in the 
nucleotide composition of particular DNA regions. This significantly 
affects the fragmentation of sample DNA, especially for the whole 
genome sequencing (G/C splitting bias [91]) as well as the ease by 
which the fragments can be aligned and mapped.

A study of NGS biases [92], revealed that less complex sequences 
of introns are less covered with reads (mapped) than more complex 
sequences of exons. The authors also found that mappability peaks were 
correlated with biological features, such as intron-exon junction, splice 
sites, expression level and transcription length.

In line with the above, to confirm an existence of sequencing 
dependency on DNA functionality, the Auerbach et al. [93] have shown 
that regions proximal to promoters are prone for sonication breakage, 
and therefore are the subjects of regional bias. These regions are also 
responsible for a non-uniform read coverage, producing massive peaks 
of aligned reads. 

One possible solution would be to use UCSC HiSeq Depth tracks 
[94] where known high sequence depth regions are annotated.

Repetitive DNA causes assembly problem: A particular 
bothersome feature of the sequential structure of many (if not most) 
genomes are the presence of large stretches of repetitive DNA (so-called 
“repeats”): repetitive DNA is consistently overlooked, miss-aligned and 
miss-assembled by all platforms [28].

More than half of human genome of DNA consists of repetitive 
elements [95], the fraction of repetitive DNA is even larger for certain 
plant genomes [96]. Despite of functional importance of repetitive 

DNA, NGS sequencing often fails to sequence repeats accurately 
[97,98]. All current technologies are error-biased while dealing with 
repeats. 

But even if a repetitive DNA stretch is sequenced correctly, it might 
be confused by similar DNA in other genome location, and therefore 
mis-aligned. In addition, repetitive DNA is often a hot-spot of genuine 
mutations and structural variations [99]. 

On a positive side, a lot of the reference genome sequence repeats 
are already well-known and UCSC tracks [94] can be used to mask these 
regions. There is evidence [100,101] that single-molecule technologies 
are helpful in resolving repetitive DNA issues.

Except different repetitive DNA, short indels and segmental 
duplications are also hard to align [28] because of uncertainty at which 
location to put an identical DNA stretch.

Box 5: Alu repeat example: For example, a reconstruction of a long 
mobile elements, such as Alu [102] is still a challenge for a short-
read NGS [103]. The reason is that Alu repeats are known to be very 
abundant in a primate genomes [104]. Though an assemble approaches 
are successfully utilised for a task of discovery of novel Alu repeats 
[105,106], the variability of coverage across samples biases the Alu 
reconstruction towards common insertions.

Assembling is complicated by a repetitive DNA as well. The main 
assembling assumption (similar reads belong to the same location) 
is violated by different types of repeats and polymorphic sites. For 
genomes where the ratio of repeat length to read length is large [54], 
assembly becomes computationally not tractable. Apparently, if a 
whole long repetitive stretch were sequenced together with their flanks, 
it would be easier to locate it back into genome. With longer read 
technologies there is significant improvement in resolving of repetitive 
DNA assembly problem [107]. The 10XG linked read sequencing [108], 
Oxford Nanopore (ONT), PacBio and Illumina TruSeq [28] increased 
assembly capacities while dealing with repeats [109].

Disadvantage of excessive coverage of repetitive regions (many 
similar sequences are placed in the same location) can be used creatively. 
Thus, many software tools for genome mapping and assembly [110,111] 
uses coverage variability to distinguish unique regions from repetitive 
ones.

Protocol’s diversity: PE and MP usage: Sequencing protocols are 
very different depending on a researcher’s task: e.g. reads sequenced 
in pairs (pair end, PE and mate-pair, MP) [99,112,113] or singles (SE). 
PE are utilised by Illumina, and MP by Roche 454 platforms [113]. 
For Illumina, PE reads help to detect direction and distance between 
sequenced reads, so reads containing complex DNA can be mapped 
uniquely [64,114,115]. 

A special type of PE reads, the long inserts reads (up to 5-10 KB), 
commonly named as mate-pair libraries [116,117] are useful to link 
long repeats (including repetitive transposable elements, TEs) and 
structural variations, and to orient contigs (continues sequences). 

Box 6: Single-end, paired-end and mate-pair sequencing: In single-
end sequencing (SE), a DNA stretch is sequenced in one direction. In 
paired-end (PE) sequencing, a DNA stretch is sequenced from both 
directions. A fluctuation in the expected length between two ends of 
a PE read after genome alignment can point to a structural variation 
[118].

Mate-pair is different from PE in library preparation. In PE, the ends 
of a fragment in a library are sequenced. In contrast to PE, a library for 
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reads. Mapping is known [123] to be the main source of sequencing 
artefacts. Prior to the in-depth research analysis  it is recommended 
[124] that one checks the quality of mapped reads because some issues, 
such as low uneven coverage, homo-polymer biases or experimental 
artefacts only appear after the alignment. 

Problems and best practices to solve them: post-mapping 
statistics 

As one could have noticed from the previous section, there are a 
lot of challenges for aligners and assemblers. To ensure they worked 
reasonable, there is a magnitude of QC metrics to track an aligner’s 
performance [124-127]. An amount of post-mapping metrics is large, 
so we decided to mention several important and/or interesting metrics 
with brief descriptions, pitfalls and ways to resolve them.

Box 7: List of post-mapping QC tools: The majority of post-
mapping QC metrics one can obtain from popular packages such 
as SAMtools [123], Picard [125], GATK [126], QPLOT [127]. Nice 
visualization is provided by IGV [128] and GAP5 [129,130]. There are 
good visualization genome reviews [131,132].

Thus, a mapping quality score, Q-mapping, is designed to report a 
likelihood that a read is aligned correctly [22]. However, a standard 
output mapping scores of many alignment tools are poorly correlated 
with actual accuracy of mapping [133]. To solve this problem, a logistic 
regression method to recalibrate unreliable Q-mapping is suggested by 
Ruffalo et al. [134]. It is reported to reduce the FP of a downstream 
variant calling almost 10 times.

Important information on mapped and unmapped read properties 
is analysed in SAMStat [135]. QC metrics, such as: Mismatch and indel 
rates; Insert size distribution; Over-represented k-mers,-allow to analyse 
if unmapped read arrived just because of sequencing mistakes, or it 
contains an important biological signal, e.g splice junction or genomic 
region escaped from a reference genome.

Proportion of high/low bases and errors: cumulative/survival 
curves for base calls/errors vs Q-value, see example below:

In the Figure 3, the blue solid line represents cumulative proportion 
of all bases called with particular Q-value. One can see that there 
are 90% of bases with Q30+ at the left plot (forward read, R1). The 

fragment ends is created for MP first, and then these end fragments 
are sequenced. In MP sequencing,  much longer than for PE, 2-10 
kb,  fragments are sequenced from both ends. This gives information 
how far apart nucleotides are linked. 

Assembly and mapping problems can be resolved by a longer 
reads, when it is possible to detect a correct genomic location for 
a sequenced DNA. Thus, a new synthetic long reads [28] from the 
Illumina TruSeq are as long as third generation PacBio [100], and has 
much lower error rate, around 0.03% per base. These long reads are 
assembled from corresponding Illumina short reads, combining wet 
lab and computational efforts [119]. Note that the synthetic long reads 
are essentially single-ended (SE). These reads enable researchers to 
accurately assemble highly-repetitive TE sequences, such as of a fruit 
fly genome [119] with a high uniform coverage. However, there are still 
gaps in assembly reported, together with a low coverage for repetitive 
GC-low regions (GC-bias). 

Unfortunately, as soon as some problems are resolved, side effects of 
new methods arrive. Thus, the extra-long fragments of mate-pair reads 
allow discovery of structural variants and de novo assembly. The main 
problems are: (i) Especially complicated construction of their libraries, 
and (ii) Frequent mistakes of mapping: ‘inward facing’ reads instead of 
‘outward facing’, which leads to chimeric read’s mapping [41]. Among 
other problems are: smaller than expected insert sizes [116], AT-rich 
sequences are underrepresented [120], random spontaneous secondary 
fragmentation [121].

Assembler’s discordance: One more problem is assembler’s 
significant discordance [122]: Different assemblers produce very 
different amount of assembled data for the same data sets, especially for 
homologous genome regions.

On a positive side, the 10X Genomics [107] linked-read technology 
arrived recently, which is capable to assemble thousand Illumina 
reads into long haplotype phased mega-base blocks [108]. It helps to 
overcome main problem of short-read aligners and assemblies, namely 
it allows to locate repetitive regions uniquely. And happily, there is a 
post-aligning QC option.

Post-Mapping QC 
A post-mapping QC is referred to a checking of quality of mapped 

Figure 3: Survival curves for bases (blue) and errors (red). Left- forward read (R1), right-reverse read (R2) in PE. Coloured lines are individual 
substitution contributions. Illumina HX, Phix genome, sequenced for control at WTSI.
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red solid line shows cumulative proportion of all errors and their 
corresponding Q: there are 18% of error bases with Q30+. Though 
average error cumulative curves for forward and reverse reads look 
similar, the contribution of each substitution type is different for each 
read direction, indicating library preparation artefacts [136].

An interesting metrics is the Genome Mappability Score (GMS) 
[137]. While mapping score and Q values are assigned to an individual 
reads, GMS is applied to measure an overall composition of the whole 
genome. GMS is defined as a weighted probability that any read could 
be unambiguously mapped to a given location within genome. The 
measure is used per region, in order to define potentially low-mapped 
regions based on their complexity. As a result, there are already found 
large genomic regions, 5-14% of genome (human, mouse, fly, yeast) 
which are hard to analyse with short reads.

A sequencing coverage depth and evenness are crucial metrics for 
WGS, enabling accuracy of further analysis, e.g. determination of the 
confidence of variant calling. Normally, one expects even coverage 
along a genome, to avoid regional biases. However, coverage is known to 
be uneven along genome [80], depending on its composition [27], function 
of a DNA region, and many other features. An excellent paper about 
theoretical and practical aspects of NGS coverage by Sims et al. [8].

Note that average depth is not very stable metric, it can be easily 
biased towards overly deep covered regions [10]. These regions (usually 
repetitive) can be mistakenly pointed for many misaligned repeats. 
GATK best practices recommend excluding overly deep regions [126]. 
Median is known to be a more stable measure for coverage because it is 
less biased towards extreme values.

o	 Contaminated sequences may introduce artificial mutations 
[138] when a sample from the same organism are cross-contaminated, 
for more details read further subsections 5.1.1 and 5.1.2.

o	 Insert size distribution is a metric of extreme importance for 
a further data analysis, including variant detection. If it is too different 
from what was expected by library preparation (for example, too long) 
it might mean that reads are overlapping, and might introduce FP 
variant calls [127].

Capture efficiency (the percent of all mapped reads that overlap the 
targeted regions [139,140] is the most crucial metrics for WES or other 
target sequencing; it is usually 40-75% for WES. For a more detailed 
review of the metric Guo et al. research can be approached [10].

Assembly metrics

Box 8: scaffolds and contigs: The result of de novo assembly is a set 
of DNA strings, called scaffolds. They consist of run of genomic DNA 
and runs of ‘Ns’, denoting a gap of estimated length. These ‘Ns’ are 
ambiguous bases. The substrings of scaffolds, separated by gaps, are 
called contigs. 

Very useful papers on genome assembly metrics and performance 
comparison are from Darling et al. [141] and Meader et al. [142]. 
We want to mention some popular metrics to assess an assembly 
performance [97,110]:

In the absence of reference genome [143]: 
•	 Number of contigs/scaffolds. The fewer of them the better.
•	 Contig/scaffolds sizes: max, mean, N50. To calculate a contig N50, 

one should first re-arrange contigs by ascending order. Then sum 
up contigs in descending order one by one, starting from the largest 
contig, until their sum will be equal or more than all contigs total 

half-sum. The contig N50 of the assembly is the length of the last 
contig to sum up [144]. The same definition is valid for scaffolds.

•	 Total size of scaffolds. It should be close to an expected size of a 
genome assembled.

•	 Number of Ns (gapped bases) should be as small as possible.

If there is a reference genome, one can assess assembly accuracy and 
several normalised metrics. Namely normalization takes into account 
only those parts of assembly that can be aligned to a reference genome 
using standard local alignment tools. The most popular metrics [145]:

•	 Sensitivity of assembly is a percent of genome assembled;

•	 Normalised N50 for contigs;

•	 Normalised N50 for scaffolds, which is more complicated than for 
contigs because of N gaps.

Q re-calibration

Even in a raw fastq file before mapping and computing error rates, 
each base call in a read goes together with its predicted quality, Q-value. 

Box 9: A Q-value in a group of a base calls is essentially a log 
transformation of probability of error of a base call:

Q = -10 × log10(p)				                 (1)

Where p is computed as the number of errors divided by the total 
number of base calls in the group [146].

Brief description: The Q-value/score is the most well accepted 
measure of base call quality [146,147]. The quality Q-scores compress 
a variety of types of information about the quality of base calls into a 
probability-of-error value. Many analysis tools and almost all assemblers 
and aligners require quality score input to deliver accurate results. 

In a raw fastq/bam files these Qs are predicted. The prediction 
is based on a set of feature values of a base call, and on previous 
experience with the values of these features. The predicted Q-values 
are assigned with the help of pre-computed ‘canned’ look up table, so 
called calibration table [24,30]. Low Q (Q<20, which corresponds to 
0.001 error rate in a group) indicates an ambiguous base call. The high 
Q (Q>30) usually reflects how successful sequencing on machine was 
performed and how confident a base call was.

Note that library preparation errors usually have high Q values 
because they occur before sequencing itself. The errors on a sequencer 
are usually of low Q, and originate from technological and hardware 
imperfections. There are well known sources of errors for Illumina 
sequencers, such as dye label X-talk, phasing inaccuracy [81], molecule 
degradation with time, G-quenching [148]. 

Box 10: In Illumina technology, the sequencer analyses one 
nucleotide of the sequence in each cluster per cycle. At each cycle, A, 
C, G and T nucleotides, each labelled with a different dye, are added to 
the flow-cell and the intensity for each dye in each cluster is recorded. 
Ideally, the strongest of the four intensities recorded at a given cycle for 
a given cluster should correspond to the nucleotide at that position in 
the sequence for that cluster. The signal to noise ratio is measured with 
an index of dominance, called Purity. Two problems accrue in clusters 
of DNA over successive cycles of the Illumina sequencer, making Purity 
(and quality) low: phase inaccuracy due to base-incorporation errors 
and dye-label cross-talk [76]. The phase inaccuracy arises due to base-
incorporation errors. A G-quenching is usually lower quality base call 
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of a nucleotide preceded [81,148].

Purity is considered high enough, if its value more than 0.6 [30], 
ensuring strong dominance of intensity of unique base call. Purity 
filtering is done by computing Purity for each of 25 first base calls in a 
read. If second maximum Purity of each of base calls is more than 0.6, 
then the read is defined as a good one. Otherwise the read is filtered out.

It was extremely pronounced for the v3 version HiSeq, and 
significantly reduced for HiSeqX10 and X5 [136]. 

The predicted Qs do not always correspond to actual Qs for a 
particular run/lane/library [148]. In this case (and in case when 
heterogeneous data are merged) it is recommended to re-calibrate the 
data using formula (1) [146,149,150]. There is in-house Sanger Institute 
recalibration and error analysis implemented [30]. The authors attempt 
not to remove an ambiguous base calls, but to make warnings (low Q) 
of possible sequencing errors. An example of recalibrated Phix data is 
shown in the Figure 4:  the red and cyan bars are actual Q-scores for 
errors and all bases, correspondingly.

Reliable Q-value is known to improve SNP call accuracy [151] 
better than hard filtering. That is why recalibration is recommended as 
good practice before variant calling.

Variant Identification: Variant Calling and Genotyping
Variant calling from NGS data  refers to a computational method 

for identifying variable sites in genome from the results of NGS 
experiments [152,153]. Genotype calling determines the genotype for 
each individual at each site [154].

Though variant identification sounds straightforward and simple: 
Just compare sequenced samples to a reference genome, in real life it is 

complicated by various sources of sequencing errors. Thus a good variant 
caller should compensate or correct for these errors. For a mainstream 
genotyping and SNP calling guidance we would recommend [155], 
especially if one wants to analyse human sample. The authors included 
extra guidance in case of a data not conforming standard assumptions: 
not having a lot of variance or reliable annotation set. 

Variant calling includes small-scale variants [156], such as single 
nucleotide polymorphisms (SNPs), short insertions and deletions 
(indels) ranging from 1 to 50 bp in length [157], and large-scale 
structural variants, Copy Number Variants (CNV) and Structural 
Variants (SV), which are inversions, translocations, or large indels. Both 
types of variants relative to a reference are identified by comparison to 
a reference genome.

Proportion of variation in genomes is significant: e.g. for human 
genome, SNPs constitute around 0.1%, while SV’s impact is estimated 
as 1.2% [157] and CNV’s even as 15% [158]. 

One of the main uses of NGS is to discover nucleotide level 
variation between populations of related samples. Thus, variant calling 
is essential to comparative genomics and genetics of human diseases. 
An important variant calling application is a clinical testing: Finding 
disease-associated mutations. Variant calling from NGS can help to 
detect mutations with a lower frequency than traditionally used Sanger 
sequencing [159]. 

For the majority of Whole Genome Sequencing (WGS) and Whole 
Exome Sequencing (WES) studies detecting of genomic variants is one 
of the final steps before biological conclusions.

Variant calls are performed in two ways: (1) After aligning reads, or 
(ii) After assembling. Sometimes these steps are combined. Alignment 

Figure 4: Recalibrated Q-distribution: (top)-all called bases: cyan is for recalibrated Q, blue is for predicted Q, (bottom)-mismatch bases: yellow is for 
recalibrated Q mismatches, red is for predicted Q of mismatches. Illumina platform, Phix control data.
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of short sequencing reads to a reference genome detects SNPs and small 
indels in the individuals sequenced, but larger structural variants and 
repetitive regions in the genome are more difficult to detect. Because 
structural variation can disrupt genes or regulatory elements, whole-
genome sequencing without assembly and detection of structural 
variation is not complete [123]. 

For reference -based alignment, the location of each read relative to 
the reference genome is mapped first. After reads are mapped, a series 
of QC steps, including duplicate removing, recalibration and indel-
realignment, are performed prior to variant calling [160]. The variants 
are identified by comparison of mapped reads to a reference genome 
[11,161]. They are further annotated if data about already confirmed 
variants exist.

For assembly-based alignment, an assembly of raw reads is done 
first, and only after it this assembly is compared to a reference genome 
(if it exists). Variant identification after assembling might be useful for 
individual genes, but becomes less successful when applied to whole 
genome identification because one cannot use raw reads to verify 
spurious variants and other genome’s contaminations [161].

Box 11: Somatic vs. germline mutations

Variant calling from NGS is successfully applied in genetics of 
human diseases. There are three common ways how NGS data is used in 
the area: (a) Identification of causal germline mutations in Mendelian 
disorders [162,163]; (b) Identification of candidate genes for complex 
diseases with GWAS [49,164-167]; (c) Identification of somatic and 
constitutional mutations in cancer [164-168]. 

It is harder to detect a somatic mutation than a germline mutation 
[11]. To detect somatic mutations in cancer, Yan et al. and Vissers et 
al. [169,170] usually compare tumour vs normal samples for the same 
individual.

Box 12: Small list of variant call tools

There are a lot of variant NGS callers, some of them are designed for 
germline variant calls, others are more suitable for somatic variants. For 
calling of large-scale structural variant special tools are developed as 
well. A brief list, far from being complete, of modern variant callers is 
below: 

•	 Germline variant callers [11] are central for finding rare disease 
mutations. The most known are: CRISP, GATK [160], SAMtools/
bcftools [123], SNver [171-173], VarScan 2 [174].

•	 Somatic callers are GATK, SAMtools/bcftools, SomaticSniper [175], 
VarScan 2.

•	 CNV detection tools are: CNVnator [176], RDXplorer [177], Contra 
[178], exomeCNV [179]. CNV are usually located within WES or 
WGS data. 

•	 A SV (inversions, translocations, or large Indels) detection tools are 
BreakDancer [180], Breakpointer [181], CLEVER [182], SVMerge 
[159].

The outputs of small-scale variant calls are usually stored in VCF 
(variant call format) files [183], which are a text comma separated type. 
An impressive amount of sophisticated statistics is attached for each 
possible variant position in genome [184]. The large scaled variants are 
stored in GFF (genetic feature files) format [185]. A machine learning 
correction is employed by GotCloud [186], where the authors use 
majority of metrics/features above to train their classifier and correct 
for biases. 

After a variant call it is usually performed an annotation step 
[64,187,188], followed by visualization [131]. The most common 
way to annotate is to provide database links to various public variant 
databases, such as dbSNP. Visual representation can be useful for 
result’s interpretation.

Post-variant Call/Genotyping QC
The list of metrics, which are used as hard filters, is listed below. 

One can assess a quality of variant calls with these post variant call 
metrics [186,189-191]. We will mention some of these metrics and their 
expectation for human NGS data below.

A single nucleotide variants are either transitions, Ti (purine-purine 
A<->G or pyrimidine-pyrimidine T<->C) or transversions, Tv (pyrine-
pyrimidine). The ratio of random changes is expected to be Ti/Tv=0.5. 
However, 1000 G [160] data showed that Ti/Tv for genomic DNA is 
around 2.1, while for exons it is around 3. Other studies reported that 
exonic synonymous Ti/Tv is expected as high as 5.6 [192], while other 
genomic locations are generally in agreement with 1000 G data. Thus 
Ti/Tv can be used as a measure of variant call quality control. 

When analysed 1000G data, Wang et al. [193] found that Ti/
Tv negatively correlated with extreme GC-content: The higher Ti/Tv 
within moderate GC-content (which corresponded to exonic DNA). 
Hence GC content of the region should be takedn into account during 
variant calling.

Number of known and novel SNPs per person is estimated to be not 
more than 200 [194] novel SNPs. SNP spatial density can be important 
parameter. Using data from WGS, the human spatial SNP rate is 
estimated around 1.1 × 10−8 per site per generation [195]. Viruses have 
much higher mutation rate, 10−3 to 10−6 per site per generation [196].

Another metric is heterozygosity ratio: heterozygosity to non-
reference homozygosity ratio (het/nonrefhom). It was suggested by 
Guo et al. [10] to use its value equal 2 as a quality control metric for 
WGS.

A sequencing coverage depth and evenness are important metrics 
to determine the confidence of variant calling. The more deep and even 
is the coverage, the higher is the accuracy of variant calling [8]. 

To reduce False Positive (FP), many variant callers do a lot of 
filtering and trimming based on metrics above: using a minimum depth 
of coverage threshold, base call frequency, masking of homo-polymers 
and repeats, trimming poor quality bases from a read etc. However, 
while reducing FP, one can increase false negative (FN) while applying 
these filters [161,197]. 

Interestingly, that if one does recalibration of Q-values; it will be 
comparable and even outperform all hard filtering [186] in respect to 
variant call accuracy.

To evaluate a performance of a variant caller, one should use a 
performance metrics (accuracy sensitivity and specificity). These 
metrics can be derived from contingency tables with FP, FN, TP and TN 
variant counts [161]. One complication was that there were not a lot of 
good benchmarking test sets and reliable reference. This complication 
is partially resolved with selecting a gold standard test set, see further 
in the text.

There is an ongoing discussion about sensitivity of variant calls 
for NGS technologies, ranging from very optimistic 100% and 
recommendations to use NGS for clinical testing [160] (where the 
variant coverage was in average around 1000x) to much more cautious, 
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such as 92% sensitivity for SOLiD [26] (with an average coverage 
around 30x), while 98% for Illumina and Complete Genomics. Thus this 
coverage difference might explain the difference in accuracy achieved.

A detailed review of post-map QC is done in a research by Guo et al. 
and Wyllie [190,198]. GATK uses variant QC metrics for their variant 
calls, using genotyping and known SNP information for a variant QC 
and annotation. There is a good online resource for a variant detection 
[199].

Problems and best practices to solve them: variant calling and 
genotyping

Similarly to aligners and assemblers, there is a large amount 
of variant call tools now days, so it is hard to choose a right one. 
Surprisingly, there seems to be lacking a standard evaluation of variant 
callers [161,200]. 

There are many complications and challenges for variant detection 
from NGS data, such as a huge amount of variants. Thus Build 147 
provides over 745 million submitted and 250 million reference variants 
for 7 organisms [201], dbVar [202], and giving large amount of already 
discovered genetic variations which should be compared with newly 
called variants during variant annotations. 

Large-scale projects, such as 1000 G [203], CHARGE [204] and 
ExAC [205] significantly contributed into aggregating and harmonising 
genome and exome sequencing data on genetic human variability, so it 
became available for the broad scientific community [152] and helps 
to improve sensitivity of variant detection. One of the conclusions of 
these projects was that an application of multiple calling algorithms 
improved the discovery rate and accuracy of genetic variants discovery. 

Typical after mapping and after assembling variant call’s 
complications are below:

The most pronounced sources of errors after mapping are repetitive/
duplicated genome regions and structural variation [97]. If slightly 
different regions are mapped to the same locations, they give rise to 
FP SNP calls. However, these regions are often given low mapping Q, 
because they have multiple occurrence in genome. In this case they can 
be filtered out together with true variants, thus given rise to FN. It also 
should be noted that sequence-specific errors are not always associated 
with low quality [80,81,206].

There is a special challenge to detect an indel (insertions and 
deletions) [106] and structural variations [156]. The structural variant 
call problems are described by Medvedev et al. [99] in details.

Even if reads are mapped correctly, but a region contains small 
indels or structural variation, it can lead to local misaligning errors, and 
subsequently to FP and FN calls [207]. For example, reads that aligned 
at flanking regions of indels, are aligned with mismatches looking as 
SNP evidence, but are actually alignment artifacts. It is recommended 
by Van der Auwera et al. [155] to re-align indel locations locally.

Errors because of assembling, such as mis-joined sequences, 
mis-incorporated adapters etc., produce a false positive variant calls 
[161,208]. In addition, assemblies often mis-incorporate homo-
polymer stretches, specific for some platforms [209], and often collapse 
multiple alleles into one erroneous variant call. Spurious SNPs are hard 
to be filtered due to insufficient coverage (1X for assembly), and they 
are harder to be verified with raw reads. Contaminated genomes are 
hard to be detected with ‘after-assembly’ approaches.

Another problem is a reference allele preferential bias, namely that 

heterozygous alleles might be mapped better for reference variant. 
In the studies [210,211] this bias was among most important factors 
which affected allele calling (allele frequency estimation) of targeted 
sequencing of pooled samples in disease association tests. For the 
human genome wide study [212] they also found a significant bias 
toward reference sequence, compared to alternative allele.

In the population genomics studies (such as 1000 G), mapping bias 
is an important cause of errors in frequency estimation in the HLA 
(human leucocyte antigen) human genes, reported [213] team. The 
authors has found that reference allele frequencies were over-estimated 
in HLA highly polymorphic regions, when analysing 1000 genome 
data, phase 1.

A genotype calling artefact is still a persistent problem. A 
visualization of genotype cluster plots for each called SNP is developed 
by Morris et al. [214] to verify the quality of genotyping.

A discordance/disagreement between variant calling pipelines 
[215,216] is another serious problem. To overcome this problem, a 
set of QC metrics to increase reproducibility between SNV-calling 
pipelines was developed by Wong et al. [159]. These metrics depend 
only on reference genome used in the alignment without accessing the 
raw and intermediate data or knowing the SNV calling details.

Another positive development is creating a ‘gold standard’ SNP 
training set, based on NA12778 human individual, in order to classify 
FP and TP in SNP calling by Genome in Bottle (GIAB) consortia [217]. 
It allowed more systematic comparison of SNP and genotype callers 
aiming to provide clinical NGS usage guidance [218]. There is growing 
evidence of improving sensitivity and specificity of variant call by 
utilizing multiple call consensus approach together with this reliable 
SNP set [219,220].

Though there are still some drawbacks of machine learning methods 
to call variants (they are known to be often over-trained, or they might 
pick up a spurious signal [160,186], the developing of reliable training 
sets, such as Genome in a bottle data [217], should help to improve 
reliability of these methods.

Cross-contamination of samples 

When variants are called from NGS data, some fraction of low AAF 
(alternative allele frequency) variants might result because of cross-
sample contamination or mix-up of samples [221]. 

Cross-sample contamination occurs often enough in large-scale 
NGS studies; its fraction varies from 0.01 to 0.2 depending on a study 
[221]. It can happen at many steps of a sequencing process: during 
sample collection, storage, shipping and library preparation. Even 
if a sample is sequenced without contamination, it can be mixed up 
computationally at the later stages of merging of multiple runs or di-
multiplexing pipeline errors.

There are two major types of contamination: cross-species and 
within-species. While a cross-species contamination can be filtered 
out during an alignment, a within species contamination is harder to 
detect, especially for low coverage studies. Mis-labelling of samples 
(human error) leads to wrong SNP calls as well. 

Contaminated samples often have unusually high levels of 
heterozygosity [222,223]. It is advised either to exclude contaminated 
samples from analysis, or model sample contamination during analysis 
to obtain more accurate SNP and genotype calls.
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Cross-individual within species contamination may become a 
source of FP variant calls, genotype errors and reduced power for 
association studies. It is very important to distinguish between cross-
contamination calls and low level mutation, which is the aim in studies 
such as cancer somatic mutations (sub-clonal mutations) [152,224].

What is done in the area to solve cross-contamination

Checking for contamination becomes important QC during variant 
call step, and advised to perform for reliable results [225]. There are 
several methods to detect cross-sample contamination. However, all 
of them are usually supported by the additional information about 
mutations in other samples in a batch [226] or known genotypes [222].

Li and Stoneking [152] detect cross-contamination mutations as 
minor alleles for contaminated samples which supported by a major 
allele of some other samples. They also use metrics such as allele 
balance, depth and recalibrated Q to filter for sequencing artefacts. 

For human data the VerifyBamID [222,223] methods is developed, 
which utilises known SNP information for samples to detect cross-
sample contamination. The method suggests supporting contamination 
estimation by a genotype data. 

Recently Flickinger et al. [221] developed a method to estimate 
and correct for within-species DNA sample contamination during 
genotyping step. To estimate genotype, they use allele frequencies from 
the population from which the sample was drawn. Allele frequencies are 
estimated from a closely related reference population, from array-based 
genotypes from the same population, or even from the proportion of 
reads that carry each allele across all sequenced samples. 

A brilliant wet-lab based method is developed by Quail et al. [226] 
for either mixed-up or cross-contaminated samples of any organism. 
The authors suggested a process where a set of uniquely barcoded DNA 
fragments are added to samples. From the final sequencing data, one 
can verify the reads of each sample sequenced and detect contamination 
or presence of other samples by these barcodes. 

To our best knowledge, there is no computational method to 
estimate cross-contamination for any non-human organism is 
developed so far. We propose a simple straight-forward method to do 
so by analysing an alternative allele frequency and depth’s distributions 
directly from an aligned bam data. 

NGS Error Models and Simulations

The better we understand and characterise the sources of errors, the 
better we can cope with them. Thus, it is very useful to derive an error 
models and to simulate error-prone processes.

It is very important to benchmark existing and newly developed 
computational methods to process and analyse NGS data. To do so, 
one can use empirical or simulated data. A pitfall of otherwise valuable 
real-life empirical data is that genuine process underlying it is often 
unknown. Therefore it is hard to evaluate accuracy of a method. In 
contrast, digital simulated data can be generated in controllable way 
with known parameters. In this way simulated data can complement 
empirical data for evaluation of a method. 

Thus, simulation is used to evaluate performance of bioinformatics 
tools [227,228], design sequencing projects [229] and computational 
tools [230]. It is also very useful for evaluating of assemblies [231], 
gene prediction [232], and genotyping and haplotype reconstruction 
[154,233].

It is essential to derive good realistic error model for successful 
simulation of data. An empirically derived, sequence-context based 
error models are used by Janin et al. [233] to simulate individual 
sequencing runs and/or technologies. Empirical fragment length and 
quality score distributions are used. Reads may be drawn from one or 
more genomes or haplotype sets. In this way one can simulate deep 
sequencing, meta-genomic, and resequencing. The authors conclude a 
batch effect: Error profiles can vary noticeably even between different 
runs of the same NGS technology.

In the interesting study, Orton et al. [234] have developed a 
computational error model of Illumina’s sample processing, including 
experimental steps. This model predicts which genomic locations are 
likely to be affected by PCR errors.

However, there is some critique on simulators’ redundancy [18]. 

Discussion 
About error correction

Generally speaking, there are two types of error correction: (i) After 
aligning: An attempt to correct a mismatch between sequenced read 
and a reference, which looks as an error. (ii) After/during assembling: a 
consensus (as a majority of base calls) correction of base calls across all 
reads belonging to the same assembled location, in case at least one of 
them is different to others.

After alignment step, small amount of mismatches is introduced. 
Though it is usually a very small proportion of data, they might 
constitute the most important biological information about sample 
variability. 

However, as one could see before, a significant proportion of 
mismatches are the result of sequencing and post-processing artefacts 
and biases. One approach is to compensate for known biases by low 
Q-score, so they would be warned for further analysis, e.g. error-
prone motifs. Another approach is to correct mismatches utilising 
knowledge about error sources for different platforms’ errors [161,235] 
and computational methods for data processing (aligning, assembling, 
variant calling).

There are numerous attempts to correct sequencing errors. If 
sequencing is deep enough (> 10x), they usually correct mismatches by 
consensus. The authors of Abnizova et al. [81] showed that 80% of errors 
can be corrected by second best call for Illumina platform, thus reducing 
FP rate significantly. The authors of Chen et al. [236] proposed to improve 
sequencing quality and correct for errors by trimming reads for Illumina 
data. They compared current trimming approaches [46,237] and suggested 
their alternative one to improve both trimming speed and quality of 
assembly for trimmed data. Many methods correct for known context 
biases, such as GGGGT error patterns for Illumina [48].

Box 13: List of error-correction tools: A good list of tools and 
their short descriptions one can find online [19]. For a platform specific 
errors there are several error-correction tools such as Musket [238] 
or Hammer [239] which is performed prior to genome assembly; or 
PAGIT [240] and Pilon [241] performed after assembly. 

A Bayesian approach to correct errors is introduced [242]. It 
minimizes the error effect on detection low frequency SNPs, applied 
to pyrosequencing data. There is an attempt to correct for high quality 
PCR errors in this study.

Another very successful example of correcting PCR errors is 
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developed by duplex sequencing [243], where the information about 
forward and reverse complements strands are utilised. In Schulz et al. 
[244], the correction of indels, especially important for 454 and Ion 
Torrent data is introduced.

Problems and best practices to solve them in error-correction

An error correction might introduce new type of errors: mis-
correction errors [245,246]. And these errors are harder to correct back 
than technological errors. It might happen that ‘averaged’ error-corrected 
repetitive regions are mapped wrongly along genome, creating uneven 
coverage and false conclusions in further analysis [247,248]. 

Yang et al. [249] made a sound comparison of NGS platform and 
a good explanation of current error-correction methods in general 
and in details. However, the paper’s strong points surprisingly lead a 
reader to a negative conclusion: the paper sounds very convincing, that 
one should not introduce new mis-correcting errors. From Fujimoto 
et al. research [245], one can find a conclusion similar to above: error 
correction methods cannot handle heterozygosity and introduce new 
mis-corrected errors.

Many methods correct for known context biases, such as GGGGT 
error patterns for Illumina [80,44]. However, with new Illumina releases 
(e.g. HXseq or v4 ), the previous nucleotide dependency is significantly 
reduced, and new artefacts, such as larger context dependence on a next 
to mismatch base, arrive [134].

On a positive side, there are successful examples of reduction of 
error rates and improvement after error correction. Even some time 
ago there were successful examples of developing strategies to improve 
reliability of sequencing by machine learning approach [118].

More recently, Wang et al. and Manley et al. [247,248] developed 
methods which improve the error rate for Illumina sequencing using 
Phix spike-in external control as an example. Enormous reduction 
of substitution error rate (93%) for Illumina MiSeq was achieved by 
Schrimer et al. [249]. They tested different error correction strategies 
for amplicon sequencing, and found out that quality trimming by Sickle 
[250] combined with error correction by BayesHammer [239], which 
then was subjected to read overlapping by Pandaseq [251] gave the best 
results.

Conclusions
There are definite advantages of NGS compared with Sanger 

sequencing: the NGS is cheaper and faster than Sanger sequencing 
[252]. It also has allowed translation of results into clinical practice 
[253,254].

However, there are still bottle-necks in high-throughput sequencing 
[255]. One of the main NGS challenges is an overwhelming volume of 
data generated [252]. It is also challenging to store, analyse [256] and 
translate this amount of genetic and genomic data into medical and 
biological context [3,256,257].

Another NGS challenges are dealing with long DNA repeats 
(because of relatively short reads), and obtaining of uniform genome 
coverage. Nevertheless, there is the evidence that longer read third 
generation sequencing is capable to resolve these problems [101,109].

Even more, long synthetic reads facilitate genome phasing [258] 
and reduce coverage which is needed for phasing [259]. Moreover, 
the speed of DNA processing already showed how useful long read 
sequencing can be in medicine and biology. Namely, Oxford Nanopor 

Technology MinION helped in 2014 Ebola epidemic [260]. One more 
example is utilising the same device to track the Salmonela outbreak in 
the Stanley Road Hospital, UK [261].

Although second generation sequencing has facilitated SNP and 
small indels studies at the population level, analysis of larger structural 
variants is still hard. Third generation mapping and sequencing 
significantly helped to detect large structural variants [109]. Because 
many structural variants are surrounded by repeats, the long-range 
information helps to map repeats and detect variants [137].

The areas mostly beneficial from long read technologies are 
genome assembly [262,263] and, correspondently, clinical applications 
[264]. Thus, the authors of [262] assembled several genomes of model 
organisms (yeast, fruit fly, Escherichia coli, Arabidopsis) to very high 
quality.

Single cell sequencing is hoped to bring more understanding in 
cell development and disease progressions [144]. We can hope to gain 
qualitative understanding of life processes in the nearest future.

Acknowledgement

Authors are grateful to Wellcome Trust Sanger Institute and University of 
Hertfordshire, UK. The work was supported by RFBR (16-54-53064) and ICG SB 
RAS budget project 0324-2016-0008 (for YLO).

References

1.	 Robasky K, Lewis NE, Church GM (2014) The role of replicates for error 
mitigation in next-generation sequencing. Nat Rev Genet 15: 56-62.

2.	 Sanger F, Nicklen S, Coulson AR (1997) DNA sequencing with chain-
terminating inhibitors. Proc Natl Acad Sci 74: 5463-5467.

3.	 Liu L, Li Y, Li S, Hu N, He Y, et al. (2012) Comparison of next-generation 
sequencing systems. J Biomed Biotechnol 2012: 251364.

4.	 Dolled-Filhart MP, Lee M Jr, Ou-Yang CW, Haraksingh RR, Lin JC (2013) 
Computational and bioinformatics frameworks for next-generation whole 
exome and genome sequencing. Sci World J 2013: 730210.

5.	 Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation 
sequencing. Hum Mol Genet 19: R227-R240.

6.	 McCourt CM, McArt DG, Mills K, Catherwood MA, Maxwell P, et al. (2013) 
Validation of next generation sequencing technologies in comparison to current 
diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. 
PLoS One 8: e69604.

7.	 Clarke LA, Rebelo CS, Gonçalves J, Boavida MG, Jordan P (2001) PCR 
amplification introduces errors into mononucleotide and dinucleotide repeat 
sequences. Mol Pathol 54: 351-353.

8.	 Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth 
and coverage: key considerations in genomic analyses. Nat Rev Genet 15: 
121-132.

9.	 van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-
generation sequencing technology.Trends Genet 30: 418-426.

10.	Guo Y, Ye F, Sheng Q, Clark T, Samuels DC (2014) Three-stage quality control 
strategies for DNA re-sequencing data. Brief Bioinform 15: 879-889.

11.	Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, et al. (2014) A survey 
of tools for variant analysis of next-generation genome sequencing data. Brief 
Bioinform 15: 256-278.

12.	Mutarelli M, Marwah V, Rispoli R, Carrella D, Dharmalingam G, et al. (2014) A 
community-based resource for automatic exome variant-calling and annotation 
in Mendelian disorders. BMC Genomics 15: S5.

13.	Anders S, Pyl PT, Huber W (2015) HTSe-a Python framework to work with high-
throughput sequencing data. Bioinformatics 31: 166-169.

14.	Wolfinger MT, Fallmann J, Eggenhofer F, Amman F (2015) ViennaNGS: A 
toolbox for building efficient next-generation sequencing analysis pipelines.



Citation: Abnizova I, te Boekhorst R, Orlov Y (2017) Computational Errors and Biases in Short Read Next Generation Sequencing. J Proteomics 
Bioinform 10: 1-17. doi: 10.4172/jpb.1000420

Volume 10(1) 1-17 (2017) - 13 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

15.	Li JW, Bolser D, Manske M, Giorgi FM, Vyahhi N, et al. (2013) The NGS Wiki 
Book: a dynamic collaborative online training effort with long-term sustainability. 
Brief Bioinform 14: 548-555.

16.	Li JW, Schmieder R, Ward RM, Delenick J, Olivares EC, et al. (2012) 
SEQanswers: an open access community for collaboratively decoding 
genomes. Bioinformatics 28: 1272-1273.

17.	Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of 
next-generation sequencing technologies. Nat Rev Genet 17: 333-351.

18.	Escalona M, Rocha S, Posada D (2016) A comparison of tools for the simulation 
of genomic next-generation sequencing data. Nat Rev Genet 17: 459-469.

19.	Omictools (2016) Error correction software.

20.	Hadfield J (2013) Where did It all go Wrong? Quality control for your NGS data.

21.	Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ 
file format for sequences with quality scores, and the Solexa/Illumina FASTQ 
variants. Nucleic Acids Res 38: 1767-1771. 

22.	Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and 
calling variants using mapping quality scores. Genome Res 18: 1851-1858.

23.	Ewing B, Green P (1998) Base-calling of automated sequencer traces using 
phred II error probabilities. Genome Res 8: 186-194.

24.	Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, et al. (2008) 
Quality scores and SNP detection in sequencing-by-synthesis systems. 
Genome Res 18: 763-770.

25.	Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, et al. (2009) 
Evaluation of next generation sequencing platforms for population targeted 
sequencing studies. Genome Biol 10: R32.

26.	Rieber N, Zapatka M, Lasitschka B, Jones D, Northcott P, et al. (2013) Coverage 
bias and sensitivity of variant calling for four whole-genome sequencing 
technologies. PLoS One 8: e66621.

27.	Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic high-
throughput sequencing data generated on Illumina HiSeq and genome analyzer 
systems. Genome Biol 12: R112.

28.	McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, et al. (2014) 
IlluminaTruSeq synthetic long-reads empower de novo assembly and resolve 
complex, highly-repetitive transposable elements. PLoS One 9: e106689.

29.	Ledergerber C, Dessimoz C (2011) Base-calling for next-generation sequencing 
platforms. Brief Bioinform 12: 489-497.

30.	Abnizova I, Skelly T, Naumenko F, Whiteford N, Brown C, et al. (2010) Statistical 
comparison of methods to estimate the error probability in short-read Illumina 
sequencing. J Bioinform Comput Biol 8: 579-591.

31.	Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive 
evaluation of read trimming effects on Illumina NGS data analysis. PLoS One 
8: e85024.

32.	Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and 
correction of sequencing errors. Genome Biol 11: R116.

33.	Pireddu L, Leo S, Zanetti G (2011) SEAL: a distributed short read mapping and 
duplicate removal tool. Bioinformatics 27: 2159-2160.

34.	Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ (2013) 
Kraken: a set of tools for quality control and analysis of high-throughput 
sequence data. Methods 63: 41-49.

35.	FASTXtoolkit (2010) FASTQ/A short-reads pre-processing tools.

36.	Li JW, Robison K, Martin M, Sjödin A, Usadel B, et al. (2012) The SEQanswers 
wiki: a wiki database of tools for high-throughput sequencing analysis. Nucleic 
Acids Res 40: D1313-D1317.

37.	Martin M (2011) Cutadapt Removes Adapter Sequences From High-Throughput 
Sequencing Reads. EMBJ.

38.	Marroni F, Pinosio S, Morgante M (2012) The quest for rare variants: pooled 
multiplexed next generation sequencing in plants. Front Plant Sci 3: 133.

39.	Jiang H, Lei R, Ding SW, Zhu S (2014) Skewer: a fast and accurate adapter 
trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 
15: 182.

40.	Mir K, Neuhaus K, Bossert M, Schober S (2013) Short barcodes for next 
generation sequencing. PLoS One 8: e82933.

41.	Illumina (2014) Sequencing Library QC on the MiSeq® System.

42.	Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality 
assessment of Illumina second-generation sequencing data. BMC 
Bioinformatics 11: 485.

43.	http://support.illumina.com/sequencing/sequencing_software/sequencing_
analysis_viewer_sav/documentation.html 

44.	 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

45.	Lo CC, Chain PS (2014) Rapid evaluation and quality control of next generation 
sequencing data with FaQCs. BMC Bioinformatics 15: 366.

46.	Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next 
generation sequencing data. PLoS One 7: e30619.

47.	Shin S, Park J (2016) Characterization of sequence-specific errors in various 
next-generation sequencing systems. Mol Biosyst 12: 914-922.

48.	Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, et al. (2011) 
Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39: 
e90.

49.	Day-Williams AG, Zeggini E (2011) The effect of next-generation sequencing 
technology on complex trait research. Eur J Clin Invest 41: 561-567.

50.	Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-
throughput sequencing data. Bioinformatics 28: 3169-3177.

51.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local 
alignment search tool. J Mol Biol 215: 403-410.

52.	Mostovoy Y, Levy-Sakin M, Lam J, Lam ET, Hastie AR, et al. (2016) A hybrid 
approach for de novo human genome sequence assembly and phasing. Nat 
Method 13: 587-590.

53.	Li H, Homer N (2010) A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform 11: 473-483.

54.	Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 
14: 157-167.

55.	Otto C, Stadler PF, Hoffmann S (2014) Lacking alignments? The next-
generation sequencing mapper segemehl revisited. Bioinformatics 30: 1837-
1843.

56.	Pightling AW, Petronella N, Pagotto F (2014) Choice of reference sequence 
and assembler for alignment of Listeria monocytogenes short-read sequence 
data greatly influences rates of error in SNP analyses. PLoS One 9: e104579.

57.	Shang J, Zhu F, Vongsangnak W, Tang Y, Zhang W, et al. (2014) Evaluation and 
comparison of multiple aligners for next-generation sequencing data analysis. 
Biomed Res Int 2014: 309650.

58.	http://www.ebi.ac.uk/~nf/hts_mappers/

59.	 Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment 
program. Bioinformatics 24: 713-714.

60.	Novoalign (2014) Novo align NGS quick start tutorial.

61.	Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA 
databases. Genome Res 11: 1725-1729.

62.	Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26: 589-595.

63.	Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome 
Biol 10: R25.

64.	Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast 
tool for short read alignment. Bioinformatics 25: 1966-1967.

65.	https://www.biostars.org/p/11005/ 

66.	Li Z, Chen Y, Mu D, Yuan J, Shi Y, et al. (2012) Comparison of the two major 
classes of assembly algorithms: overlap-layout-consensus and de-bruijn-
graph. Brief Funct Genomics 11: 25-37.

67.	Seeman T (2011) De novo genome assembly for NGS.



Citation: Abnizova I, te Boekhorst R, Orlov Y (2017) Computational Errors and Biases in Short Read Next Generation Sequencing. J Proteomics 
Bioinform 10: 1-17. doi: 10.4172/jpb.1000420

Volume 10(1) 1-17 (2017) - 14 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

68.	Baker M (2012) De novo genome assembly: what every biologist should know. 
Nat Method 9: 333-337.

69.	Chin FYL, Leung HCM, Yiu SM (2014) Sequence assembly using next 
generation sequencing data-challenges and solutions. Sci China Life Sci 57: 
1140-1148.

70.	Zhang W, Chen Y, Yang Y, Tang Y, Shang J, et al. (2011) A practical comparison 
of de novo genome assembly software tools for next-generation sequencing 
technologies. PLoS One 6: e17915.

71.	Desai A, Marwah VS, Yadav A, Jha V, Dhaygude K, et al. (2013) Identification 
of optimum sequencing depth especially for de novo genome assembly of small 
genomes using next generation sequencing data. PLoS One 8: e60204.

72.	Wajid B, Serpedin E (2012) Review of general algorithmic features for 
genome assemblers for next generation sequencers. Genomics Proteomics 
Bioinformatics 10: 58-73.

73.	Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using 
second-generation sequencing. Genome Res 20: 1165-1173.

74.	Patro R, Kingsford C (2015) Data-dependent bucketing improves reference-
free compression of sequencing reads. Bioinformatics 31: 2770-2777.

75.	Wang JM, Zhang K (2015) Microarray analysis of microRNA expression in bone 
marrow-derived progenitor cells from mice with type 2 diabetes. Genom Data 
7: 86-87.

76.	Erlich Y, Mitra PP, delaBastide M, McCombie WR, Hannon GJ (2008) Alta-
Cyclic: a self-optimizing base caller for next-generation sequencing. Nat 
Method 5: 679-682.

77.	Balint B (2016) Decreased sequencing accuracy at the 3’ end of SBS Illumina 
reads.

78.	Sameith K, Roscito JG, Hiller M (2016) Iterative error correction of long 
sequencing reads maximizes accuracy and improves contig assembly. Brief 
Bioinform 18: 1-8.

79.	Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, et al. (2013) 
Characterizing and measuring bias in sequence data. Genome Biol 14: R51.

80.	Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic high-
throughput sequencing data generated on IlluminaHiSeq and genome analyzer 
systems. Genome Biol 12: R112.

81.	Abnizova I, Leonard S, Skelly T, Brown A, Jackson D, et al. (2012) Analysis of 
context-dependent errors for illumina sequencing. J Bioinform Comput Biol 10: 
1241005.

82.	Chen YC, Liu T, Yu CH, Chiang TY, Hwang CC (2013) Effects of GC bias in 
next-generation-sequencing data on de novo genome assembly. PLoS One 
8: e62856.

83.	Benjamini Y, Speed TP (2012) Summarizing and correcting the GC content bias 
in high-throughput sequencing. Nucleic Acids Res 40: e72.

84.	Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP (2012) Palindromic 
sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol 6: S10.

85.	Niu B, Fu L, Sun S, Li W (2010) Artificial and natural duplicates in pyrosequencing 
reads of metagenomic data. BMC Bioinformatics 11: 187.

86.	Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW (2013) Shining a 
light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS 
Comput Biol 9: e1003031.

87.	Li S, Li R, Li H, Lu J, Li Y, et al. (2013) SOAPindel: efficient identification of 
indels from short paired reads. Genome Res 23: 195-200. 

88.	Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, et al. (2011) 
Dindel: accurate indel calls from short-read data. Genome Res 21: 961-973.

89.	Kai Ye, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth 
approach to detect break points of large deletions and medium sized insertions 
from paired-end short reads. Bioinformatics 25: 2865-2871.

90.	Laehnemann D, Borkhardt A, McHardy AC (2016) Denoising DNA deep 
sequencing data-high-throughput sequencing errors and their correction. Brief 
Bioinform 17: 154-179.

91.	Poptsova MS, Il’icheva IA, Nechipurenko DY, Panchenko LA, Khodikov MV, et 

al. (2014) Non-random DNA fragmentation in next-generation sequencing. Sci 
Rep 4: 4532.

92.	Schwartz S, Oren R, Ast G (2011) Detection and removal of biases in the 
analysis of next-generation sequencing reads. PLoS One 6: e16685.

93.	Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, et 
al. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl 
Acad Sci U S A 106: 14926-14931.

94.	https://genome.ucsc.edu/goldenPath/releaseLog.html

95.	Jason de Koning AP, Gu W, Castoe TA, Batzer MA, et al. (2011) Repetitive 
elements may comprise over two-thirds of the human genome. PLoS Genet 
7: e1002384.

96.	Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where 
genetics meets genomics. Nat Rev Genet 3: 329-341.

97.	Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome 
sequence assembly. Nat Methods 8: 61-65.

98.	Ye L, Hillier LW, Minx P, Thane N, Locke DP, et al. (2011) A vertebrate case 
study of the quality of assemblies derived from next-generation sequences. 
Genome Biol 12: R31.

99.	Medvedev P, Stanciu M, Brudno M (2009) Computational methods for 
discovering structural variation with next-generation sequencing. Nat Methods 
6: S13-S20.

100.	Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read 
survey of the human transcriptome. Nat Biotechnol 31: 1009-1014.

101.	Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, et al. (2015) The 
power of single molecule real-time sequencing technology in the de novo 
assembly of a eukaryotic genome. Sci Rep 5: 16780.

102.	Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 
303: 1626-1632.

103.	Wildschutte JH, Baron A, Diroff NM, Kidd JM (2015) Discovery and 
characterization of Alu repeat sequences via precise local read assembly. 
Nucleic Acids Res 43: 10292-10307.

104.	Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, et al. (2008) Active 
Aluretrotransposons in the human genome. Genome Res 18: 1875-1883.

105.	Chen K, Chen L, Fan X, Wallis J, Ding L, et al. (2014) TIGRA: a targeted 
iterative graph routing assembler for breakpoint assembly. Genome Res 24: 
310-317.

106.	Narzisi G, O’Rawe JA, Iossifov I, Fang H, Lee YH, et al. (2014) Accurate 
de novo and transmitted indel detection in exome-capture data using 
microassembly. Nat Methods 11: 1033-1036.

107.	Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, et al. (2014) 
Reconstructing complex regions of genomes using long-read sequencing 
technology. Genome Res 24: 688-696.

108.	10X Genomics (2015) GemCode linked-read platform.

109.	Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, et al. (2015) 
Resolving the complexity of the human genome using single-molecule 
sequencing. Nature 517: 608-611.

110.	Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A whole-
genome assembly of Drosophila. Science 287: 2196-2204.

111.	Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read 
assembly using de Bruijn graphs. Genome Res 18: 821-829.

112.	GenomeFactory (2013) Paired read confusion.

113.	Illumina (2010) Genomic sequencing.

114.	Alkan C, Cardone MF, Catacchio CR, Antonacci F, O’Brien SJ, et al. (2011) 
Genome-wide characterization of centromeric satellites from multiple 
mammalian genomes. Genome Res 21: 137-145.

115.	Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation 
sequencing data. Genomics 95: 315-327.

116.	http://www.illumina.com/documents/products/technotes/technote_nextera_
matepair_data_processing.pdf

117.	Park N, Shirley L, Gu Y, Keane TM, Swerdlow H, et al. (2013) An improved 



Citation: Abnizova I, te Boekhorst R, Orlov Y (2017) Computational Errors and Biases in Short Read Next Generation Sequencing. J Proteomics 
Bioinform 10: 1-17. doi: 10.4172/jpb.1000420

Volume 10(1) 1-17 (2017) - 15 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

approach to mate-paired library preparation for Illumina sequencing. Methods 
Next Gen Seq 1: 10-20.

118.	Kircher M, Stenzel U, Kelso J (2009) Improved base calling for the Illumina 
Genome Analyzer using machine learning strategies. Genome Biol 10: R83.

119.	Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, et al. (2013) 
The genome sequence of the colonial chordate, Botryllusschlosseri. Elife 2: 
e00569.

120.	https://gtc.soe.ucsc.edu/content/solid-technology-overview

121.	https://lifescience.roche.com/en_gb.html

122.	Magoc T, Pabinger S, Canzar S, Liu X, Su Q, et al. (2013) GAGE-B: an 
evaluation of genome assemblers for bacterial organisms. Bioinformatics 29: 
1718-1725.

123.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence 
Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.

124.	GeneStack (2014) Read processing and mapping

125.	Picard (2010) Picard tools.

126.	GATK (2009) Genome ananysis toolkit.

127.	Li B, Zhan X, Wing MK, Anderson P, Kang HM, et al. (2013) QPLOT: a quality 
assessment tool for next generation sequencing data. Biomed Res Int 2013: 
865181.

128.	http://www.broadinstitute.org/software/igv/UserGuide

129.	http://www.sanger.ac.uk/science/tools/gap5. 

130.	http://www.sanger.ac.uk/science/tools/categories/sequence-data-processing

131.	Nielsen CB, Cantor M, Dubchak I, Gordon D, Wang T (2010) Visualizing 
genomes: techniques and challenges. Nat Methods 7: S5-S15.

132.	Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, 
et al. (2015) Visualizing genome and systems biology: technologies, tools, 
implementation techniques and trends, past, present and future. Gigascience 
4: 38. 

133.	Ruffalo M, LaFramboise T, Koyutürk M (2011) Comparative analysis of 
algorithms for next-generation sequencing read alignment. Bioinformatics 27: 
2790-2796. 

134.	Ruffalo M, Koyuturk M, Ray S, LaFramboise T (2012) Accurate estimation 
of short read mapping quality for next-generation genomesequencing. 
Bioinformatics 28: i349-i355.

135.	Lassmann T, Hayashizaki Y, Daub CO (2011) SAMStat: monitoring biases in 
next generation sequencing data. Bioinformatics 27: 130-131.

136.	Abnizova (2017) Changes in context dependencies for new Illumina releases. 
Manuscript submitted for publication.

137.	Lee H, Schatz MC (2012) Genomic dark matter: the reliability of short read 
mapping illustrated by the genome mappability score. Bioinformatics 28: 2097-
2105.

138.	Schmieder R, Edwards R (2011) Fast identification and removal of sequence 
contamination from genomic and metagenomic datasets. PLoS One 6: 
e17288.

139.	Garcia-Garcia G, Baux D, Faugere V, Moclyn M, Koenig M, et al. (2016) 
Assessment of the latest NGS enrichment capture methods in clinical context. 
Sci Rep 6: 20948.

140.	Shearer AE, Hildebrand MS, Ravi H, Joshi S, Guiffre AC, et al. (2012) Pre-
capture multiplexing improves efficiency and cost-effectiveness of targeted 
genomic enrichment. BMC Genomics 13: 618.

141.	Darling AE, Tritt A, Eisen JA, Facciotti MT (2011) Mauve assembly metrics. 
Bioinformatics 27: 2756-2757.

142.	Meader S, Hillier LW, Locke D, Ponting CP, Lunter G (2010) Genome assembly 
quality: Assessment and improvement using the neutral indelmodel. Genome 
Res 20: 675-684.

143.	Simpson JT (2014) Exploring genome characteristics and sequence quality 
without a reference. Bioinformatics 30: 1228-1235.

144.	Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical 
challenges in single-cell transcriptomics. Nat Rev Genet 16: 133-145.

145.	Makinen V, Salmela L, Ylinen J (2012) Normalized N50 assembly metric using 
gap-restricted co-linear chaining. BMC Bioinformatics 13: 255.

146.	Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated 
sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175-
185.

147.	Bonfield JK, Staden R (1995) The application of numerical estimates of base 
calling accuracy to DNA sequencing projects. Nucl Acids Res 23: 1406-1410.

148.	https://www.idtdna.com/pages/docs/technical-reports/fluorescence-
quenching-by-proximal-g-bases.pdf?sfvrsn=6 

149.	Whiteford N, Skelly T, Curtis C, Ritchie ME, Lohr A, et al. (2009) Swift: primary 
data analysis for the IlluminaSolexa sequencing platform. Bioinformatics 25: 
2194-2199.

150.	Massingham T, Goldman N (2012) All your base: a fast and accurate 
probabilistic approach to base calling. Genome Biol 13: R13.

151.	Li M, Stoneking M (2012) A new approach for detecting low-level mutations in 
next-generation sequence data. Genome Biol 13: R34.

152.	Zhang W, Ng HW, Shu M, Luo H, Su Z, et al. (2015) Comparing genetic 
variants detected in the 1000 genomes project with SNPs determined by the 
International HapMap Consortium. J Genet 94: 731-40. 

153.	Lawrence M (2014) Introduction to variant calling.

154.	Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling 
from next-generation sequencing data. Nat Rev Genet 12: 443-451.

155.	Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, et al. (2013) 
From fastQ data to high confidence variant calls: the genome analysis toolkit 
best practices pipeline. Curr Protoc Bioinformatics 43: 11.

156.	Kojima K, Nariai N, Mimori T, Takahashi M, Yamaguchi-Kabata Y, et al. (2013) 
A statistical variant calling approach from pedigree information and local 
haplotyping with phase informative reads. Bioinformatics 29: 2835-2843.

157.	Tattini L, D’Aurizio R, Magi A (2015) Detection of genomic structural variants 
from next-generation sequencing data. Front Bioeng Biotechnol 3: 92.

158.	Wong K, Keane TM, Stalker J, Adams DJ (2010) Enhanced structural variant 
and breakpoint detection using SVMerge by integration of multiple detection 
methods and local assembly. Genome Biol 11: R128.

159.	Chin ELH, da Silva C, Hegde M (2013) Assessment of clinical analytical 
sensitivity and specificity of next-generation sequencing for detection of simple 
and complex mutations. BMC Genetics 14: 6. 

160.	DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A 
framework for variation discovery and genotyping using next-generation DNA 
sequencing data. Nat Genet 43: 491-498.

161.	Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW (2015) Best practices for 
evaluating single nucleotide variant calling methods for microbial genomics. 
Front Genet 6: 235.

162.	Stitziel NO, Kiezun A, Sunyaev S (2011) Computational and statistical 
approaches to analyzing variants identified by exome sequencing. Genome 
Biol 12: 227.

163.	Lettice LA, Hill AE, Devenney PS, Hill RE (2008) Point mutations in a distant 
sonic hedgehog cis-regulator generate a variable regulatory output responsible 
for preaxial polydactyly. Hum Mol Genet 17: 978-985.

164.	Marian AJ (2012) Molecular genetic studies of complex phenotypes. Transl 
Res 159: 64-79.

165.	Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS 
discovery. Am J Hum Genet 90: 7-24.

166.	Lander ES (2011) Initial impact of the sequencing of the human genome. 
Nature 470: 187-197.

167.	Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 
359: 2143-2153.

168.	Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, et al. (2009) 
Genetic prognostic and predictive markers in colorectal cancer. Nat Rev 
Cancer 9: 489-499.

169.	Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, et al. (2011) Exome sequencing 
identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute 
monocyticleukemia. Nat Genet 43: 309-315.



Citation: Abnizova I, te Boekhorst R, Orlov Y (2017) Computational Errors and Biases in Short Read Next Generation Sequencing. J Proteomics 
Bioinform 10: 1-17. doi: 10.4172/jpb.1000420

Volume 10(1) 1-17 (2017) - 16 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

170.	Vissers LE, Fano V, Martinelli D, Campos-Xavier B, Barbuti D, et al. 
(2011) Whole-exome sequencing detects somatic mutations of IDH1 in 
metaphysealchondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA). 
Am J Med Genet A 155A: 2609-2616.

171.	Bansal V (2010) A statistical method for the detection of variants from next-
generation resequencing of DNA pools. Bioinformatics 26: i318-i324.

172.	Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H (2011) SNVer: a statistical 
tool for variant calling in analysis of pooled or individual next-generation 
sequencing data. Nucleic Acids Res 39: e132.

173.	Wang W, Hu W, Hou F, Hu P, Wei Z (2012) SNVerGUI: a desktop tool for variant 
analysis of next-generation sequencing data. J Med Genet 49: 753-755.

174.	Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. (2012) VarScan 
2: somatic mutation and copy number alteration discovery in cancer by exome 
sequencing. Genome Res 22: 568-576.

175.	Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, et al. (2012) 
SomaticSniper: identification of somatic point mutations in whole genome 
sequencing data. Bioinformatics 28: 311-317.

176.	Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach 
to discover, genotype, and characterize typical and atypical CNVs from family 
and population genome sequencing. Genome Res 21: 974-984.

177.	Yoon S, Xuan Z, Makarov V, Ye K, Sebat J (2009) Sensitive and accurate 
detection of copy number variants using read depth of coverage. Genome 
Res 19: 1586-1592.

178.	Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, et al. (2012) 
CONTRA: copy number analysis for targeted resequencing. Bioinformatics 
28: 1307-1313.

179.	Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, et al. (2011) 
Exome sequencing-based copy-number variation and loss of heterozygosity 
detection: ExomeCNV. Bioinformatics 27: 2648-2654.

180.	Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, et al. (2009) 
BreakDancer: an algorithm for high-resolution mapping of genomic structural 
variation. Nat Methods 6: 677-681.

181.	Sun R, Love MI, Zemojtel T, Emde AK, Chung HR, et al. (2012) Breakpointer: 
using local mapping artifacts to support sequence breakpoint discovery from 
single-end reads. Bioinformatics 28: 1024-1025.

182.	Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, et al. (2012) CLEVER: 
clique-enumerating variant finder. Bioinformatics 28: 2875-2882.

183.	http://www.1000genomes.org/wiki/Analysis/vcf4.0

184.	Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. (2011) The variant 
call format and VCFtools. Bioinformatics 27: 2156-2158.

185.	http://www.ensembl.org/info/website/upload/gff.html

186.	Jun G, Wing MK, Abecasis GR, Kang HM (2015) An efficient and scalable 
analysis framework for variant extraction and refinement from population-
scale DNA sequence data. Genome Res 25: 918-925.

187.	Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of 
genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: 
e164.

188.	Yang H, Wang K (2015) Genomic variant annotation and prioritization with 
ANNOVAR and wANNOVAR. Nat Protoc 10: 1556-1566.

189.	Guo Y, Long J, He J, Li CI, Cai Q, et al. (2012) Exome sequencing generates 
high quality data in non-target regions. BMC Genomics 13: 194.

190.	Guo Y, Zhao S, Sheng Q, Ye F, Li J, et al. (2014) Multi-perspective quality 
control of Illuminaexome sequencing data using QC3. Genomics 103: 323-
328.

191.	Bainbridge MN, Wang M, Wu Y, Newsham I, Muzny DM, et al. (2011) Targeted 
enrichment beyond the consensus coding DNA sequence exome reveals 
exons with higher variant densities. Genome Biol 12: R68.

192.	Gudbjartsson DF, Sulem P, Helgason H, Gylfason A, Gudjonsson SA, et al. 
(2015) Sequence variants from whole genome sequencing a large group of 
Icelanders. Sci Data 2: 150011.

193.	Wang J, Raskin L, Samuels DC, Shyr Y, Guo Y (2015) Genome measures 
used for quality control are dependent on gene function and ancestry. 
Bioinformatics 31: 318-323.

194.	Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, et al. (2011) Exome 
sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 
12: 745-755.

195.	Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, et al. (2010) Analysis of 
genetic inheritance in a family quartet by whole-genome sequencing. Science 
328: 636-639.

196.	Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of 
spontaneous mutation. Genet 148: 1667-1686.

197.	Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, et al. (2014) 
Integrating human sequence data sets provides a resource of benchmark SNP 
and indel genotype calls. Nat Biotechnol 32: 246-251.

198.	Wyllie M (2013) Comprehensive analysis of clinical trials data shows 
unequivocally that Phosphodiesterase Inhibitors (PDEi) improve orgasm. The 
power of meta-analysis? BJU Int 111: 190-191.

199.	Blue Collar Bioinformatics (2013) Framework for evaluating variant detection 
methods: comparison of aligners and callers.

200.	Pabinger S, Trajanoski Z (2013) Genome-scale model management and 
comparison. Mol Biol 985: 3-16.

201.	http://www.ncbi.nlm.nih.gov/SNP/

202.	Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D (2015) Making the 
difference: integrating structural variation detection tools. Brief Bioinform 16: 
852-864.

203.	IGSR (2008-2016) 1000 genome project.

204.	https://www.dnanexus.com/usecases-charge

205.	http://exac.broadinstitute.org/about

206.	Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases 
in ultra-short read data sets from high-throughput DNA sequencing. Nucleic 
Acids Res 36: e105.

207.	Subramanian S, Di Pierro V, Shah H, Jayaprakash AD, Weisberger I, et 
al. (2013) MiST: a new approach to variant detection in deep sequencing 
datasets. Nucleic Acids Res 41: e154.

208.	Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile 
and open software for comparing large genomes. Genome Biol 5: R12.

209.	Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, et al. (2012) 
High-throughput bacterial genome sequencing: an embarrassment of choice, 
a world of opportunity. Nat Rev Microbiol 10: 599-606.

210.	Chen X, Listman JB, Slack FJ, Gelernter J, Zhao H (2012) Biases and errors on 
allele frequency estimation and disease association tests of next-generation 
sequencing of pooled samples. Genet Epidemiol 36: 549-560.

211.	Guo Y, Cai Q, Li C, Li J, Courtney R, et al. (2013) An evaluation of allele 
frequency estimation accuracy using pooled sequencing data. Int J Comput 
Biol Drug Des 6: 279-293.

212.	Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, et al. (2009) Effect 
of read-mapping biases on detecting allele-specific expression from RNA-
sequencing data. Bioinformatics 25: 3207-3212.

213.	Brandt DY, Aguiar VR, Bitarello BD, Nunes K, Goudet J, et al. (2015) Mapping 
bias overestimates reference allele frequencies at the HLA genes in the 1000 
genomes project phase I data. G3 (Bethesda) 5: 931-941.

214.	Morris JA, Randall JC, Maller JB, Barrett JC (2010) Evoker: a visualization tool 
for genotype intensity data. Bioinformatics 26: 1786-1787.

215.	O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, et al. (2013) Low concordance of 
multiple variant-calling pipelines: practical implications for exome and genome 
sequencing. Genome Med 5: 28.

216.	Zhang W, Soika V, Meehan J, Su Z, Ge W, et al. (2015) Quality control metrics 
improve repeatability and reproducibility of single-nucleotide variants derived 
from whole-genome sequencing. Pharmacogenomics J 15: 298-309.

217.	http://jimb.stanford.edu/giab/

218.	Hwang S (2015) Systematic comparison of variant calling pipelines using gold 
standard personal exome variants. Sci Rep. 

219.	Highnam G, Wang JJ, Kusler D, Zook J, Vijayan V, et al. (2015) An analytical 



Citation: Abnizova I, te Boekhorst R, Orlov Y (2017) Computational Errors and Biases in Short Read Next Generation Sequencing. J Proteomics 
Bioinform 10: 1-17. doi: 10.4172/jpb.1000420

Volume 10(1) 1-17 (2017) - 17 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

framework for optimizing variant discovery from personal genomes. Nat 
Commun 6: 6275.

220.	Cornish A, Guda C (2015) A comparison of variant calling pipelines using
genome in a bottle as a reference. Biomed Res Int 2015: 456479.

221.	Flickinger M, Jun G, Abecasis GR, Boehnke M, Kang HM (2015) Correcting for 
sample contamination in genotype calling of DNA sequence data. Am J Hum
Genet 97: 284-290.

222.	Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, et al. (2012) Detecting 
and estimating contamination of human DNA samples in sequencing and
array-based genotype data. Am J Hum Genet 91: 839-848.

223.	Cibulskis K, McKenna A, Fennell T, Banks E, DePristo M, et al. (2011) ContEst: 
estimating cross-contamination of human samples in next-generation
sequencing data. Bioinformatics 27: 2601-2602.

224.	Schmitt MW, Loeb LA, Salk JJ, (2016) The influence of subclonal resistance 
mutations on targeted cancer therapy. Nat Rev Clin Oncol 13: 335-347.

225.	http://www.1000genomes.org/

226.	Quail MA, Smith M, Jackson D, Leonard S, Skelly T, et al. (2014) SASI-Seq:
sample assurance Spike-Ins, and highly differentiating 384 barcoding for
Illumina sequencing. BMC Genomics 15: 110.

227.	Hu X, Yuan J, Shi Y, Lu J, Liu B, et al. (2012) pIRS: Profile-based Illumina pair-
end reads simulator. Bioinformatics 28: 1533-1535.

228.	Caboche S, Audebert C, Lemoine Y, Hot D (2014) Comparison of mapping
algorithms used in high-throughput sequencing: application to Ion Torrent
data. BMC Genomics 15: 264.

229.	Hoban S, Bertorelle G, Gaggiotti OE (2012) Computer simulations: tools for
population and evolutionary genetics. Nat Rev Genet 13: 110-122.

230.	Huang W, Li L, Myers JR, Marth GT (2012) ART: a next-generation sequencing 
read simulator. Bioinformatics 28: 593-594.

231.	Knudsen B, Forsberg R, Miyamoto MM (2010) A computer simulator for
assessing different challenges and strategies of de novo sequence assembly. 
Genes (Basel) 1: 263-282.

232.	McElroy KE, Luciani F, Thomas T (2012) GemSIM: general, error-model based 
simulator of next-generation sequencing data. BMC Genomics 13: 74.

233.	Janin L, Schulz-Trieglaff O, Cox AJ (2014) BEETL-fastq: a searchable
compressed archive for DNA reads. Bioinformatics 30: 2796-2801.

234.	Orton RJ, Wright CF, Morelli MJ, King DJ, et al. (2015) Distinguishing low
frequency mutations from RT-PCR and sequence errors in viral deep
sequencing data. BMC Genomics 16: 229.

235.	Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction 
for next-generation sequencing reads. Bioinformatics 31: 3476-3482.

236.	Chen C, Khaleel SS, Huang H, Wu CH (2014) Software for pre-processing
Illumina next-generation sequencing short read sequences. Code Biol Med
9: 8.

237.	Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30: 2114-2120.

238.	Liu Y, Schroder J, Schmidt B (2013) Musket: a multistage k-mer spectrum-
based error corrector for Illumina sequence data. Bioinformatics 29: 308-315.

239.	Nikolenko SI, Korobeynikov AI, Alekseyev MA (2013) BayesHammer:
Bayesian clustering for error correction in single-cell sequencing. BMC
Genomics 14: S7.

240.	Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, et al. (2012) A post-
assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes 
from contigs. Nat Protoc 7: 1260-1284.

241.	Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. (2014) Pilon: an
integrated tool for comprehensive microbial variant detection and genome
assembly improvement. PLoS One 9: 112963.

242.	Zagordi O, Klein R, Daumer M, Beerenwinkel N (2010) Error correction of
next-generation sequencing data and reliable estimation of HIV quasispecies. 
Nucleic Acids Res 38: 7400-7409.

243.	Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, et al. (2014) Detecting
ultralow-frequency mutations by Duplex Sequencing. Nat Protoc 9: 2586-
2606.

244.	Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S, et al. (2014) Fiona:
a parallel and automatic strategy for read error correction. Bioinformatics 30:
i356-i363.

245.	Fujimoto M, Bodily PM, Okuda N, Clement MJ, Snell Q (2014) Effects of
error-correction of heterozygous next-generation sequencing data. BMC
Bioinformatics 15: S3.

246.	Yang X, Chockalingam SP, Aluru S (2013) A survey of error-correction methods 
for next-generation sequencing. Bioinform 14: 56-66.

247.	Wang XV, Blades N, Ding J, Sultana R, Parmigiani G (2012) Estimation of
sequencing error rates in short reads. BMC Bioinformatics 13: 185.

248.	Manley LJ, Ma D, Levine SS (2016) Monitoring error rates In Illumina
sequencing. J Biomol Tech 27: 125-128.

249.	M Schrimer, Ijaz UZ, D’Amore R, Hall N, Sloan WT, et al. Insight into biases
and sequencing errors for amplicon sequencing with the Illumina MiSeq
platform. Nucleic Acid Res 43: e37.

250.	https://pods.iplantcollaborative.org/wiki/display/DEapps/Sickle-quality-based-
trimming 

251.	Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012)
PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 
13: 31.

252.	Kircher M, Kelso J (2010) High-throughput DNA sequencing--concepts and
limitations. Bioessays 32: 524-536.

253.	https://www.veritasgenetics.com/documents/VG-launches-999-whole-
genome.pdf

254.	Schatz MC, Langmead B (2013) The DNA Data Deluge: Fast, efficient 
genome sequencing machines are spewing out more data than geneticists
can analyze. IEEE Spectr 50: 26-33.

255.	Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing
technology. Trends Genet 24: 142-149.

256.	Sunyaev SR (2012) Inferring causality and functional significance of human 
coding DNA variants. Hum Mol Genet 21: R10-R17.

257.	Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, et al. (2012) Assuring 
the quality of next-generation sequencing in clinical laboratory practice. Nat
Biotechnol 30: 1033-1036.

258.	Snyder MW, Adey A, Kitzman JO, Shendure J (2015) Haplotype-resolved
genome sequencing: experimental methods and applications. Nat Rev Genet
16: 344-358.

259.	Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z, et al. (2014) Whole-genome
haplotyping using long reads and statistical methods. Nat Biotechnol 32: 261-266.

260.	Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, et al. (2016) Real-time, 
portable genome sequencing for Ebola surveillance. Nature 530: 228-232.

261.	Quick J, Ashton P, Calus S, Chatt C, Gossain S, et al. (2015) Rapid draft
sequencing and real-time nanopore sequencing in a hospital outbreak of
Salmonella. Genome Biol 16: 114.

262.	Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, et al. (2012) Hybrid
error correction and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol 30: 693-700.

263.	Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, et al. (2013)
Nonhybrid, finished microbial genome assemblies from long-read SMRT 
sequencing data. Nat Methods 10: 563-569. 

264.	http://www.nature.com/nrg/collection/clinical-application-next-gen-seq/index.
html


	Title
	Abstract
	Corresponding author
	Keywords
	Introduction
	Box 1 NGS library construction
	Box 2 Post-processing pipelines information
	Quality Control (QC) of raw sequence reads
	Box 3. Base calls, their qualities, and reads
	Problems and best practices to solve them in QC cleaning

	Aligning Reads to a Reference Genome and/or Assembly Reads
	Box 4 Brief description and classification of NGS aligners and assemblers
	Problems and best practices to solve them: aligners and assemblers

	Post-Mapping QC 
	Problems and best practices to solve them: post-mapping statistics 
	Assembly metrics
	Q re-calibration

	Variant Identification: Variant Calling and Genotyping 
	Box 11 Somatic vs. germline mutations
	Box 12 Small list of variant call tools
	Post-variant Call/Genotyping QC
	Problems and best practices to solve them: variant calling and genotyping
	Cross-contamination of samples 
	What is done in the area to solve cross-contamination
	NGS Error Models and Simulations

	Discussion 
	About error correction
	Problems and best practices to solve them in error-correction 

	Conclusions
	Figure 1
	Figure 2
	Figure 3
	References



