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Abstract

Research focusing on glutamate as a major contributor to schizophrenia has attained increasing prominence over the past decade.
Analogous to an NMDA-receptor hypofunction in schizophrenia, growing evidence suggest that the disease is related to an excess of
brain kynurenic acid (KYNA), an endogenous antagonist at the glycine-site of the NMDA receptor. Previous studies have shown that
MK-801, an NMDA-receptor antagonist with psychotomimetic properties, induces alteration of several genes and protein levels in
cortex and thalamus previously found to be changed in the brains of patients with schizophrenia. In the present study, we use proteomics
to investigate whether an increased KYNA turnover in the brain, induced by subchronic treatment of kynurenine and probenecid, would
interfere with the protein synthesis in the cortex and thalamus in the rat brain. The levels of four proteins in the cortex were increased
in the group treated with kynurenine and probenecid compared to vehicle-treated controls. The proteins were; 1, Ubiquitin carboxy-
terminal hydrolase L1 (UCHL1), 2, Similar to NADH dehydrogenase, 3, Cytochrome c oxidase and 4, protein with an undetermined
identity. No protein changes were observed in the thalamus. Two of these proteins are implicated in mitochondrial energy productions
and mRNA from one of them – cytochrome c oxidase – has previously been shown to be increased in the cortex from patients with
schizophrenia. Present result show that increased turnover of the endogenous NMDA receptor antagonist KYNA is able to affect
cortical protein synthesis to a condition as observed in patients with schizophrenia.
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Introduction
The underlying cause of schizophrenia has traditionally been
attributed to dopaminergic hyperactivity in the brain (Abi-Dargham
et al., 2000; Carlsson and Lindqvist, 1963). Over the past decade
though, research focusing on glutamate as a major contributor to
the disease has attained increasing prominence (Carlsson et al.,
2001; Javitt, 2004; Javitt and Zukin, 1991; Jentsch and Roth, 1999;
Kim et al., 1980; McCullumsmith et al., 2004; Coyle, 2004; Coyle, 2006).
An NMDA-receptor hypofunction in schizophrenia comes above
all from clinical observations that NMDA-receptor antagonists
like phencyclidine (PCP) and ketamine induce schizophrenia-like
symptoms including both positive and negative symptoms as
well as cognitive deficits (Adler et al., 1999; Itil et al., 1967; Luby,
1959). Thus, a dysregulation of dopamine (DA) transmission in
schizophrenia might be secondary to alterations in glutamatergic
N-methyl-D-aspartate (NMDA)-receptor mediated transmission
(Carlsson et al., 2004; Grace, 1991; Olney and Farber, 1995).
Analogous to an NMDA-receptor hypofunction in schizophrenia,
growing evidence suggest that the disease is related to an excess
of brain kynurenic acid (KYNA), an endogenous antagonist at
the glycine-site of the NMDA receptor. Thus, KYNA is elevated
in the cerebrospinal fluid (CSF) (Erhardt et al., 2001a; Nilsson et

al., 2005) as well as in the post-mortem brain (Schwarcz et al., 2001)
in patients with schizophrenia. Furthermore, preclinical studies
suggest that the compound tonically modulates the impulse
activity of DA neurons in the ventral tegmental area (Erhardt and
Engberg, 2002; Nilsson et al., 2006; Schwieler et al., 2006) and
causes disruption of prepulse inhibition (Erhardt et al., 2004), a
behavioral model of schizophrenia.

Proteome analyses may serve as a useful strategy allowing for
identification of molecular mechanisms underlying the pathophysi-
ology of schizophrenia. Previous studies have shown that MK-
801, an NMDA-receptor antagonist, induces alterations in corti-
cal and thalamic levels of several genes and proteins previously
found to be changed in the post-mortem brain from patients with
schizophrenia (Paulson et al., 2004a; Paulson et al., 2004b; Paulson
et al., 2003). Therefore, we have investigated whether increased
KYNA turnover in the brain (Nilsson et al., 2006), induced by
subchronic treatment with kynurenine, the precursor of KYNA,
and probenecid which prevents the efflux of KYNA from the brain,
would interfere with protein synthesis in the cortex and the thala-
mus in the rat.
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Materials and methods

Subjects

Male Sprague-Dawley rats (Scanbur BK, Sollentuna, Sweden;
weighing a minimum of 180 g (at day of surgery) and a maximum of
350 g (at day of experiment)) were housed in groups of three or
four with ad libitum feeding. Environmental conditions were
checked daily and maintained under constant temperature (25°C),
and 40-60% humidity in a room with a regulated 12-h light/dark
cycle (lights on at 06.00 AM, off at 06.00 PM). Experiments were
approved by and performed in accordance with the guidelines of
the Ethical Committee of Northern Stockholm, Sweden, and all
efforts were made to minimize the number of animals used and
their suffering. To subchronically elevate endogenous brain KYNA
concentration, rats were administered kynurenine and probenecid
for 14 days via osmotic pumps with a continuous flow of 5 µl/h.
Osmotic pumps (2ML2 Alzet, USA) were filled under aseptic con-
ditions with either vehicle (0.1 M Tris in deionised water; pH
adjusted to 7.4 with acetic acid), kynurenine (dissolved in
deionised water; pH adjusted to 3.5 with NaHCO

3
) in a concentra-

tion equivalent to approximately 20 mg/kg/day at day of surgery,
or probenecid (dissolved in 0.1 M Tris buffer; pH 8.0) in a concen-
tration equivalent to approximately 10 mg/kg/day at the day of
surgery. Both drugs were dissolved in the highest possible con-
centration permitted in the osmotic pumps (volume: 2 mL) and all
solutions were filtered through a sterile filter (Acrodisc Syringe
Filter 0.2 µm Supor Membrane) before filling of pumps. The os-
motic pumps were inserted through an incision in the neck and
placed subcutaneously on the back of the rats during chloral
hydrate anaesthesia (400 mg/kg, i.p.). After surgery the rats were
placed in single cages to awake for 24 hours before reunited in
groups of 3-4 per cage. After 14 days, electrophysiological or
behavioral experiments were performed. Immediately after each
experiment the rats were killed by decapitation. The right hemi-
sphere was used for HPLC analyses of KYNA (see Nilsson et al.,
2006). Electrophysiological, behavioral and KYNA data from these
rats have previously been published (Nilsson et al., 2006). The
remaining hemisphere was placed on an ice-cooled metal surface
and the thalamus and cerebral cortex were dissected. Each tissue
sample was put in an ice-cooled Eppendorf tube and frozen on
dry ice before storage at –80oC in a freezer for later proteome
analysis.

Two-dimensional gel electrophoresis

Proteome analyses were performed on the cortex and thalamus
using two-dimensional gel electrophoresis (2-DGE) and mass spec-
trometry (MS). For analysis of quantitative differences, approxi-
mately 100 protein spots were taken into account in the proteomic
analysis of cortex and approximately 200 protein spots in thala-
mus. The thalamus and cortex, approx. 25-50 mg wet weight of
each, were extracted as previously described (Paulson et al., 2004b).
The protein sample (30 µL, 300 µg) was mixed with 160 mL rehy-
dration buffer (9 M urea, 4 % immobilized pH gradient (IPG) buffer,
bromphenolblue) and 160 mL isobuffer (9 M urea, 65 mM 3-[(3-
cholamidopropyl)-dimethylammonio]-1-propanosulfonate hydrate
(CHAPS), 35 mM tris, 65 mM dithiothreitol (DTT),
bromphenolblue). To separate the proteins 2-DGE was performed.
In the first dimension Ready StripTM IPG strips, pH 5-8, 11 cm
(BioRad) were used in a Protean IEF Cell (BioRad). The second
dimension was carried out using 12% Criterion XT Bis-Tris Gels
(BioRad) in a Criterion Dodeca Cell (BioRad) combined with 3-[N-
morpholino] propane sulfonic acid (MOPS) running buffer (50 m
M MOPS, 50 mM tris, 3.5 mM SDS, 0.8 mM EDTA ) at a constant
voltage (200 V), for 60 min. The gels were stained with SYPRO
Ruby Protein Stain (Molecular Probes, Eugene, OR, USA) ac-
cording to the supplier’s protocol. Image acquisition and analysis
were performed on a LAS-3000 (Fuji). The protein spots were
detected, quantified and matched using the PD-Quest 2D-gel
analysis software, 7.4. The gels were normalized according to the 3

a) 

b) 

c) 

total protein density of detected spots in each gel. Only proteins
with significantly altered levels (Mann-Whitney p<0.05) in the
kynurenine- and probenecid -treated rats as compared to vehicle
treated rats were reported. Altered proteins were excised for iden-
tification using MS.

In-gel Protein Digestion

The gel spots with significantly up or down regulated intensity
were excised from the SYPRO-stained 2-D gels and enzymatic
cleaved with trypsin as described previously (Paulson et al.,
2004b), with some modifications. Briefly, the gel pieces were
washed in 100 µL 1:1 H

2
O:acetonitrile (ACN) 2 x 15 min and then

destained and dried with 50 µL ACN. The gel pieces were rehy-
drated in 10 µL chilled digestion buffer (50 mM NH

4
HCO , 12.5 ng/
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Figure 2:. Mass spectra of a) cytochrome c oxidase, b) Ubiquitin
carboxy-terminal hydrolase L1, c) NADH dehydrogenase, and d)
unidentified protein.
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µL trypsin) at 37°C overnight. The supernatant was collected and
the peptides extracted twice with 30µL 5% formic acid (FA): ACN
(1:1). The combined supernatants were lyophilized and dissolved
in 10 µL 0.1% formic acid (FA), prior to analysis.

Mass Spectrometry and Data Base Searches

Mass analysis of protein digests were performed in reflectron
mode with a MALDI-TOF MS (Autoflex, Bruker-Franzen Analytik
GmbH, Germany). A stainless steel MALDI target 400/384 TF
(AnchorChipTM, Bruker Daltonik, Bremen, Germany) with circular
interruptions, which act as hydrophilic sample anchors, was used
(Schuerenberg et al., 2000). A thin layer of α-cyano-4-hydroxy-
cinnamic acid (CHCA; 100 g/L CHCA in 90% acetone, 0.005%
TFA (v/v)) crystals was spread out on all the anchors on the
sample plate. 1 µL of each sample was deposited onto an anchor
point. After two minutes the remaining liquid was removed and
the target was washed by immersing it in a solution of 0.1% trifluoric
acid (TFA) for 10 seconds. MS spectra (Figure 2) were processed
using Flex-analysis (Bruker) and used without further interpreta-
tion for database searches against all entries in the NCBI nr data-
base with MASCOT (http://www.matrixscience.com). A mass de-
viation of 50 ppm was used, and one missed cleavage and Rattus
norvegicus were specified. Only those protein identities obtained
with >95% confidences using MALDI-TOF MS were considered.
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Results
Proteome analyses were performed in the cortex and thalamus
using 2-DGE and MS. For analysis of quantitative differences,
approximately 100 protein spots were taken into account in the
proteomic analysis of the cortex and approximately 200 protein
spots in the thalamus. In cortex four protein levels were increased
with >95% significance in the group treated with kynurenine and
probenecide (n=11) compared to saline controls (n=15). The pro-
teins were; ubiquitin carboxy-terminal hydrolase L1 (UCHL1), Simi-
lar to NADH dehydrogenase, cytochrome c oxidase and a fourth
protein that could not be positively identified. This protein has a
pI of ~5.5 and a MW of ~10. A summary of the altered protein
levels in cortex is presented in Table 1. Figure 1 shows a typical
SYPRO Ruby stained 2D-gel of the cortex proteins in kynurenine
and probenecid treated rats, with numbers indicating altered and
excised protein spots. No changes were observed in the thala-
mus.

Discussion
In the present study, kynurenine and probenecid was adminis-
tered subchronically in order to increase brain KYNA turnover,
thereby mimicking a situation of hypoglutamatergia and
hyperdopaminergia as proposed in schizophrenia (see Introduc-
tion). This model was used to screen for aberrations of the
proteome in rat thalamus and cortex in order to validate and in-
crease the understanding of the kynurenic acid hypothesis of
schizophrenia. The finding of the present study is that subchronic
treatment with kynurenine and probenecid is associated with al-
tered rat cortical levels of the proteins UCHL1, Similar to NADH
dehydrogenase, and cytochrome c oxidase. In agreement with the
present results, cytochrome c oxidase gene expression has previ-
ously been reported to be upregulated in rats subchronically
treated with the NMDA receptor antagonist MK-801 (Paulson et
al., 2004a; Paulson et al., 2004b; Paulson et al., 2003).

Several lines of evidence indicate that schizophrenia is associ-
ated with changes in mitochondrial energy production in the brain
(Ben-Shachar, 2002). Traditionally, peptides such as cytochrome
c oxidase, a key enzyme in the respiratory chain producing meta-
bolic energy, and NADH dehydrogenase has been used as mark-
ers in reflecting neuronal energy metabolism and neuronal func-
tion in general (Prince et al., 1999). The first paper reporting an
involvement of oxidative metabolism in schizophrenia was pub-
lished in the mid 1950’s (Takahashi et al., 1954; see Maurer et al.,
2001) and showed lowered aerobic glycolysis in patients with
schizophrenia. Although this original finding has been replicated,
the picture is probably more complex - in many studies the results
might have been confounded by medication effects, chronic ill-
ness and difficulties of measurement (Andreasen et al., 1997).
More recent studies have found both decreased as well as in-
creased metabolic activity in patients with schizophrenia which
may be explained by an imbalance in cortical and subcortical cir-
cuits (Andreasen et al., 1997). In agreement with present data,
Mulcrone and collegues (Mulcrone et al., 1995) have shown that
the mRNA of cytochrome c oxidase is increased in the cortex in
patients with schizophrenia, tentatively reflecting increased en-
ergy metabolism.

The finding that the levels of Similar to NADH dehydrogenase,
and cytochrome c oxidase was increased in the present study,
suggest per se that elevated levels of brain KYNA increase brain
energy metabolism in the rat. In a recent study we reported that
enhanced turnover of KYNA, as induced by using the present
protocol, increase neuronal firing of VTA DA neurons (Nilsson et
al., 2006). Clearly, neuronal activity demands high energy
consumption and there is a fine-tuned coupling between firing
rate and mitochondrial function of a neuron (see Kann & Kovacs,
2007). Indeed, PCP and MK-801 have been shown to produce
EEG changes with high-amplitude cortical activity (Marquis et al.,
1989). Recent studies from our laboratory are in consonance with

this observation. Thus, acutely or subchronically elevated levels
of brain KYNA increase the firing of rat midbrain DA neurons
(Erhardt and Engberg, 2002; Erhardt et al., 2001b; Nilsson et al.,
2006; Schwieler et al., 2006; Linderholm et al., 2007) and disrupt
PPI in rats (Erhardt et al., 2004). These findings are supported by
clinical studies showing that CSF KYNA positively correlates to
CSF homovanillic acid in healthy controls as well as in patients
with schizophrenia, suggesting that increased brain KYNA is
associated with an increased turnover of DA (Nilsson et al., 2007a;
2007b).

UCHL1 is an abundant protein making up 2% of all proteins in the
brain (Wilkinson et al., 1989). It is responsible for hydrolysis of
polyubiquitin chains into monomeric ubiquitin and belongs to a
family of deubiquitinating enzymes (Pickart, 2000). Mutations in
the gene encoding for UCHL1 result in a 50% decrease of cata-
lytic activity, implying that increase of UCHL1 activity might lead
to increased ubiquitination and therefore enhanced clearance of
abnormal proteins. It has been suggested that UCHL1 plays an
essential role in the pathogenesis of neurodegenerative disor-
ders (Ross and Pickart, 2004). The significance of our finding that
UCHL1 is increased following elevated KYNA turnover is ob-
scure but tentatively this protein may, at least to some extent,
participate in the well-known neuroprotective actions of KYNA
(see Stone, 2000).

Following 2 weeks of kynurenine and probenecid administration,
electrophysiological and behavioural experiments along with
analysis of brain and blood levels of KYNA was performed. This
treatment enhanced dopaminergic firing activity and tended to
disrupt PPI (Nillson et al., 2006). However, whereas a single dose
of kynurenine and probenecid (corresponding to a daily dose of
the subchronic treatment) as well as a four-day treatment with the
compounds significantly increased brain KYNA concentration,
the subchronic treatment (14 days) did not produce elevated whole
brain levels (Nilsson et al., 2006). The lack of increase in whole
brain KYNA levels at day 14 may perse  point to a development of
tolerance in the conversion of kynurenine into KYNA with
subchronic kynurenine and probenecid treatment. However, this
appears unlikely since the subchronic treatment produced effects
on spontaneous VTA DA cell firing identical in magnitude to those
observed following acute elevation of brain KYNA (Erhardt and
Engberg, 2002; Nilsson et al., 2006; Schwieler et al., 2006;
Linderholm et al., 2007). Rather, the present effects of subchronic
treatment with kynurenine and probenecid should be related to
an increased turnover of KYNA involving increased release to,
and elimination from glutamatergic boutons (Curatolo et al., 1996;
Guillemin et al., 2001; Kiss et al., 2003; Swartz et al., 1990) enough
for possible receptor interaction (Turski et al., 1989), but without
producing a detectable increase in whole brain KYNA concentra-
tion. In this regard the present results are in harmony with previ-
ous findings where e.g. subchronic L-DOPA treatment is found to
produce motoric sensitisation in spite of the lack of a striatal DA
elevation (Carey, 1991; Carey, 1993).

Moreover, kynurenine is the precursor of several kynurenines,
e.g. quinolinic acid, an excitotoxic NMDA-receptor agonist (Stone
and Perkins, 1981), and we cannot exclude the possibily that other
kynurenines than KYNA are responsible for the present observa-
tions. Indeed, probenecid, which was given to prevent the efflux
of KYNA out of the brain (Moroni et al., 1988), would also in-
crease quinolinic acid, which is extruded via the same probenecid-
sensitive carrier (Morrison et al., 1999). However, in support of a
prevailing role of KYNA in this regard is the fact that administra-
tion of kynurenine, alone or in combination with probenecid, dis-
play anticonvulsant effects and attenuates quinolinic acid induced
neurotoxicity in rats (Nozaki and Beal, 1992; Santamaria et al.,
1996; Vecsei et al., 1992). Moreover, subchronic administration of
kynurenine and probenecid was previously found to be associ-
ated with increased neuronal activity of VTA DA neurons (Nilsson
et al., 2006), effects also observed following acute pharmacologi-
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cal elevation of KYNA (Erhardt and Engberg, 2002). These effects
of elevated KYNA levels have previously been demonstrated to
be executed via blockade of the NMDA receptor (Erhardt and
Engberg, 2002; Erhardt et al., 2002; Linderholm et al., 2007), thus
strongly arguing against a significant role of quinolinic acid in the
present study. Since schizophrenia is associated with a dysfunc-
tion of dopaminergic systems tentatively induced by increased
levels of brain KYNA (Erhardt et al., 2001; Schwarcz et al., 2001;
Nilsson et al., 2005), novel treatment of the disease could ratio-
nally be directed towards brain KYNA formation. The develop-
ment of specific kynurenine aminotransferase (KAT) II inhibitors
(Pellicciari et al., 2006) that decrease brain KYNA concentrations
could thus be of importance in the treatment of schizophrenia. In
support of this notion, cyclooxygenase (COX)-2 inhibitors (which
reduce rat brain KYNA levels as well as decrease midbrain dopam-
inergic activity; Schwieler et al., 2005; 2006) added to conven-
tional antipsychotic treatment, display beneficial effects with re-
gard to both positive and negative symptoms in patients with
schizophrenia (Müller et al., 2002; 2004).

It would be interesting to explore protein levels in rats following a
robust and prolonged elevation of brain KYNA levels. In the
present paper, no protein levels in the thalamus and only four
protein levels in the cortex were changed following subchronic
blockade of NMDA receptors, differences tentatively explained
by the lack of confirmed increase in KYNA levels. In our previous
papers, changes in both thalamus and cortex have been observed
and several more proteins are altered (Paulson et al., 2003, 2004a,
2004b). For example both the levels of glutamate decarboxylase
(GAD) and the levels of the GABA transporter (GAT) were found
to be altered in the rat frontal cortex following chronic administra-
tion of MK-801 (Paulson et al., 2003). In addition, it has been
suggested that hypofunction of the NMDA receptor, tentatively
caused by elevated levels of endogenous KYNA, induces
GABAergic dysfunction in schizophrenia (Benes and Berretta,
2001; Coyle, 2004; Coyle and Tsai, 2004). In follow-up studies, the
most important and interesting proteins to explore following a
robust and prolonged elevation of brain KYNA levels would there-
fore be the levels of GAD and GAT.

In conclusion, the present study shows that subchronic treat-
ment with kynurenine and probenecid results in increased corti-
cal levels of four proteins. Two of these proteins are implicated in
mitochondrial energy productions and mRNA from one of them –
cytochrom C oxidase - is increased in the cortex from patients with
schizophrenia. Present result show that increased turnover of the
endogenous NMDA receptor antagonist KYNA is able to affect
cortical protein synthesis to a condition as observed in patients
with schizophrenia.
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Appendix 1

It was assumed that each data set analysed is only a homogenous

part of the total proteome of a given species. Then the fitted DEL

model formula and the hypothetical distribution of the total popu-

lation of proteins of a given organism (see Appendix 2) are related

in the proportion:

*
2

*
21

*
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2211
* )exp()exp(

)exp()exp(
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P
def

k

k

N
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kdakda
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n

n =
−+−
−+−= A.1.1)

where *
1a and *

2a are the amplitudes of a  hypothetical distribution

for the total population,
PN is the extrapolated size of the analysed

probe and *
PN is the total size of proteome.

In the above ratio, 
PN value includes interacting proteins (  0>kN )

and also non-interacting ones ( 
0n  ) - not included in the investi-

gated data sets, so that:

            00 >+= kP NnN (A.1.2)

As eq. A.1.1 is fulfilled for each node degree   and for different

decay constants  1d and 
2d  , it should be:
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           scaa /2
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where the scaling factor  equals to:

             *
00

P

k

N

Nn
sc >+= (A.1.5)

 Appendix 2

Let us consider protein interaction network containing two classes

of proteins (namely 1 and 2) characterized by different dynamics

of evolutional performance, i.e., emerging with the rates 
1q and 

1q (as

non-interacting at the beginning), then gaining some interactions

with the rates 1ν and

 
2

ν  and being eliminated with the rates  
1γ and

 
2

γ  - per protein. All mentioned rates are assumed as being distinct

and constant.

A number of selected proteins of a given class  *
iNδ (i=1,2), origi-

nated within small period of time  , vanishes with age a according

the equation

2,1*
*

=∆−= iN
da
Nd

ii
i γδ

(A.2.1)

with an initial condition

       2,10
* === itqN iai δ (A.2.2)

The resolution of eqs. A.2.1 and A.2.2 represents the exponen-

tially diminishing course

 2,1)exp(* =−= iatqN iii γδδ (A.2.3)

The assumed continuous approximation and linear increase in

protein connectivity

 ak iν= (A.2.4)

and also the relationship  , let us to transform eq. A.2.3  into the
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formula
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which integrated within successive intervals [k, k+1] indicates

the number of k-degree proteins of class "i" ,  , equal to
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Now, the total distribution of node degree, 
*
kn  ,

where *
2

*
1
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kkk nnn +=   , may be written in the double-exponential

form:
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A contribution of "i " class proteins in eqs. A.2.7 formally van-

ishes for  1−> iek ντ , where  is the time of evolution of

interactome. Thus the index k should not exceed  ]1,1max[ 21 −− ντντ ee

Assuming a relatively high value  eτ  ( iν/1>>  ), by summation

of a superposition of geometrical series *
kn described by the eq.

A.2.7 over  ∞≤≤ k0  , one can obtain the total size of proteome

: *
PN
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γγ
qq

N P += (A.2.12)

with a distinguished levels of class  contribution
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and
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