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Introduction
Recent clinical trials in cancer and organizational trends

The critical evaluation in this review of recent clinical trials in 
cancer and related methodologies aims at the selection of strategies 
and methodologies that would optimize the survival rates of cancer 
patients involved in new clinical trials in the near future. Although 
very positive and remarkable results were obtained in cancer clinical 
trials over the last decade, there is ample room for the consideration 
of various remarkable possibilities and advanced techniques that have 
only recently become available. Such technological and methodological 
advances have the potential for substantially improving the survival 
rates of cancer patients undergoing clinical trials at phase III and IV. 

On the one hand, quite remarkable progress has been made with 
cancer treatments through a handful of such clinical trials over the 
last decades [1-10], especially with lung cancer treatments where new 
classes of anti-cancer medicines were thoroughly tested [11], and 
the development of some of which involved rational pharmacology 
[12], as in the case of Imatinib for example. Such novel anti-cancer 
drugs were found to prolong cancer patient lives significantly, and 
in significant numbers of lung cancer patients. However, many of 
the drugs tested were shown not to make a significant impact on the 
growth of malignant tumors, and did not have positive outcomes for 
cancer treatment. It is therefore surprising that such unsuccessful or 
unremarkable compounds are currently still being tested in cancer 
clinical trials in several large countries. Such controversial, cancer 
clinical trials may be only financially-driven, rather than being rational. 

There are already numerous, published reports on several types of 
clinical trials in cancer and their number is rapidly increasing each year 
as remarkable progress has already been made over the last decade. 
However, in this article only a small fraction of clinical trial reports was 
selected [1-7,13-28] and related research publications [8-12,29-283] 
because the focus of this article is on optimizing strategies for clinical 
trials in cancer. 

The proposed applications in a significant size project are based 
on combining advanced methodologies/techniques with conceptual 
progress via modeling and simulations of complex processes that can 
lead to neoplastic transformations, malignant tumors and resistance to 
therapy in clinical trials. 

On the one hand, successful complex systems modeling of 
individual cancers does depend critically upon the availability of 
sufficiently detailed and reproducible data obtained by such novel 
techniques and methodologies. The data obtained so far from clinical 
trials does not satisfy such critical requirements.

On the other hand, successful and effective Pharmacogenomics 
does require, and relies upon, a sufficiently improved understanding 
of the molecular mechanisms underlying the development of tumor 
resistance to treatment in individual cancer patients participating in 
clinical trials.

The critical need for optimizing clinical trials in cancer

In spite of the remarkable progress made in cancer chemotherapy 
through clinical trials with novel anti-cancer drugs, the expected 
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‘magic bullet’ for a complete treatment of cancers has not yet been 
found, and most of the clinical trials were not optimized for the 
maximum possible length of survival for the largest number of cancer 
patients involved in such advanced stage cancer trials. The latter fact 
raises the important issue of designing rational strategies for clinical 
trials in cancer that would optimize the survival rates of the maximum 
possible number of patients undergoing new clinical trials in cancer. 
The number of new anti-cancer drugs proposed for testing in cancer 
clinical trials is on the rise, and therefore this issue takes on the urgency 
of maximizing cancer patients’ survival in such clinical trials. Such an 
outcome is both highly desirable and also now made possible through 
multi-disciplinary approaches and high-throughput, low-cost analysis 
of genomics, interactomics and epigenetics in drug-resistant malignant 
tumor subpopulations of cancer patients treated in advanced cancer 
stage clinical trials. The details of such advanced techniques and 
methodologies, as well as specific recommendations and suggestions, 
are respectively, provided in Appendix I and II of this article. 

The following section 2 presents important concepts related to 
the control of cell cycling and the development of modular models 
of cancer interactome networks that serve as a basis for the rational 
chemotherapy of cancers and for optimizing survival outcomes in new 
clinical trials in cancer. 

Section 3 presents an overview of selected clinical trials in cancer 
with several signal transduction inhibitors. Additional advanced tools 
and methodology that are needed for optimizing cancer clinical trials 
are then presented in Section 3 and Appendix I. 

Further required genomic and epigenomic means of optimizing 
the results and improving the survival outcomes in future cancer 
clinical trials are, respectively, presented in Sections 4 and 5, and also 
complemented by Appendix II. 

Cell Cyclins Expression and Modular Cancer Interactome 
Networks

Carcinogenesis is a complex process that involves dynamically 
inter-connected biomolecules in the intercellular, membrane, cytosolic, 
nuclear and nucleolar compartments that form numerous inter-
related pathways referred to as networks. One such family of pathways 
contains the cell cyclins. Cyclins are often over-expressed in cancerous 
cells [101]. This provides a basis for the development of novel rational 
chemotherapies and chemoprevention of cancers. 

A novel theoretical and cancer modeling analysis [58,217] is based 
on recently published, numerous studies of cyclin signaling, with 
special emphasis placed on the roles of cyclins D1 and E; our analysis 
also suggests the possibility of optimizing novel clinical trials through 
the development of rational therapies of cancer and the possibility of 
re-establishing cell cycling inhibition in metastatic cancer cells without 
subsequent transformations that lead to drug resistance.

Cyclins

Cyclins are proteins that link several critical pro-apoptotic and 
other cell cycling/division components, including the tumor suppressor 
gene TP53 and its product, the Thomsen- Friedenreich antigen (T 
antigen), Rb, mdm2, c-Myc, p21, p27, Bax, Bad and Bcl-2, which all 
play major roles in carcinogenesis of many cancers. Cyclin-dependent 
kinases (CDK), their respective cyclins, and inhibitors of CDKs 
(CKIs) were identified as instrumental components of the cell cycle-
regulating machinery. CDKs are enzymes that phosphorylate several 
cellular proteins thus ‘fueling’ the sequential transitions through the 
cell division cycle. In mammalian cells the complexes of cyclins D1, D2, 
D3, A and E with CDKs are considered motors that drive cells to enter 
and pass through the “S” phase. See for example in Figure 1 the gene 
data related to cyclin D1. Cell cycle regulation is a critical mechanism 
governing cell division and proliferation, and is finely regulated by the 
interaction of cyclins with CDKs and CKIs, among other molecules 
[191].

It was also reported that CDKs have another key role –the 
coordination of cell cycle progression with responses to possible 
DNA-damage that could, if unchecked or unfixed, lead to a lack of 
genomic integrity marking the onset of cell disease including cancers 
[138]. The S-phase is thought to be the most vulnerable interval of 
the cell cycle because during this interval all of 3 billion DNA bases 
of the human genome must be replicated precisely in the sense of 
‘carbon copies’ being made of the existing DNA strands, without any 
breaks in the sequence or base substitutions of the copied/replicated 
strands. Therefore, this correct replication process controls the cell’s 
survival, especially under genotoxic conditions such as those caused 
for example by mutagens or X-ray/γ-radiation. Furthermore, Huang 
et al. reported in [138,139] that CDK mediated the phosphorylation 
of the FOXO1 transcriptional activator of the proapoptotic genes 
during the S-phase; when DNA damage occurs either before or 
during the S-phase, a complex network is activated in the cell which 
‘silences’ CDK thereby either delaying or stopping/arresting the cell 

Figure 1: Gene database of Cyclin-D1, from the PBD website: http://www.dsi.univparis5.fr/genatlas/fiche.php?symbol=CCND1
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cycle progression. This may allow the cell to repair the DNA damage 
by recombination involving BRCA2 and survive. However, if this is 
not possible because the DNA damage was too great to be reparable, 
then FOXO1 would trigger apoptosis (cell death). It was proposed 
that during the unperturbed (normal) S-phase CDK2 phosphorylates 
FOXO1 at the Serine249 residue in the cell nucleus, which then results 
in the transfer and sequestering of the FOXO1 in the cytoplasm, 
where it is well separated from the proapoptotic genes, the ‘target’ 
of FOXO1 action. Moreover, the CDK-mediated phosphorylation of 
BRCA2 during the unperturbed S-phase renders inactive the DNA 
recombination. On the other hand, when DNA becomes damaged, 
CDK2 is inhibited through the Cdc25A pathway, with the consequence 
of a dephosphorylated FOXO1 which then remains in the cell nucleus 
and is able to activate the proapoptotic genes, unless BRCA2 is able to 
induce DNA recombination and repair in time to prevent apoptosis. 
The steps that follow are then as explained above: either DNA repair 
and continued cell cycling, or apoptosis induced by FOXO1. There are 
still several important questions regarding the entire process that need 
to be answered before the FOXO1 and CDK2 mechanisms of action can 
be translated into successful clinical trials based on such knowledge.

A positive correlation has been noticed between overexpression 
of several cell cycle proteins and unfavorable prognoses and outcomes 
in several different cancer types [109,128,255]. In human lung tumors 
and soft tissue sarcomas, it has recently been discovered that cyclin A/
cdk2 complex expression and kinase activity were reliable predictors of 
proliferation and unfavorable prognosis, thereby further substantiating 
the epidemiological factors of cyclin signaling [94,95,198].

The p21 and p27 proteins

The proteins p27 and p21 are implicated in cyclin regulation and 
cancer development (Figure 2). Mouse embryonic fibroblasts that 
were deficient for p27 and p21 were found to contain less cyclin D1 
and D2 as well as cyclin D3 [70] than controls. Similarly, mammary 
glands of p27-deficient mice were shown to possess decreased cyclin 
D1 levels [5]. It has been demonstrated in vivo that p27 is necessary for 
maintaining proper levels of cyclins D2 and D3, and this dependency 
on p27 is common to a wide variety of cells/tissues in vivo. Regarding 
the molecular interaction between p27 and D-cyclin, CDK4 is a clear 
candidate as a mediating molecule [74]. Cells employ CDK4/6– cyclin 
D complexes to flexibly titrate p27 from the complexes containing 
CDK2, and thereby they control their proliferation. However, 
mutual dependency between cyclin D and p27 serves also some yet 
unidentified function in differentiation-related processes. Thus, loss of 
p27 not only causes unrestricted growth due to inefficient inhibition 
of CDK2–cyclin E/A, but may also elicit a decrease in levels of D-type 
cyclins, resulting in differentiation defects. Upon ablation of cyclin D, 
cells lose their ability to titrate p27 from CDK2–cyclin A/E complexes 
and proliferation is suppressed. However, defects in differentiation 
caused by the absence of D-cyclin are reminiscent to defects produced 
by the absence of p27 [74]. When the changes in levels of p27 and/or 
D-type cyclins occur, an equilibrium alteration could result between 
proliferation/differentiation processes that may in the end result in 
tumorigenesis [74].

D1- vs. E- cyclins

The D-type and E-type cyclins control the G1 → S phase transition 
during normal cell cycling and are important components of steroid- 
and growth factor-induced mitogenesis in breast epithelial cells [249]. 

Cyclin D1 null mice are resistant to breast cancer that is induced by the 
neu and ras oncogenes, which suggests a pivotal role for cyclin D1 in 
the development of some mammary carcinomas [249]. Cyclin D1 and 
E1 are usually over-expressed in breast cancer, with some association 
with adverse outcomes, which is likely due in part to their ability to 
confer resistance to endocrine therapies. The consequences of cyclin E 
overexpression in breast cancer are related to cyclin E’s role in cell cycle 
progression, and that of cyclin D1 may also be a consequence of a role 
in transcriptional regulation [249]. One critical pathway determining 
cell cycle transition rates of G1 → S phase is the cyclin/cyclin-dependent 
kinase (Cdk)/ p16Ink4A/ retinoblastoma protein (pRb) pathway 
[245]. Alterations of different components of this particular pathway 
are ubiquitous in human cancer [160]. There appears to be a certain 
degree of tissue specificity in the genetic abnormalities within the Rb 
pathway. A model relating Rb to cyclin control in the overall scheme 
of pro-apoptotic behavior is shown below (Figure 3). In breast cancer 
these abnormalities include the over-expression of cyclins D1, D3 and 
E1, the decreased expression of the p27Kip1 CKI and p16Ink4A gene 
silencing through promoter methylation. These aberrations occur with 
high frequency in breast cancer, as each abnormality occurs in ~40% 
of primary tumors. This fact implicates a major role for the loss of 
function of the Rb pathway in breast cancer. Further details on D1- and 
E1- cyclins roles in cancer were recently reviewed in [58].

Apoptosis and its connection to cell cycle-related proteins is of 
interest therapeutically, as these types of therapies could ultimately lead 
to the cancer cell annihilation via apoptosis. Recently, a shift appears 
to have occurred, with a change in the focus of chemotherapy from 
exploration of agents that cause cell growth arrest to those that favor 
apoptosis.

FGFR tyrosine kinases

Fibroblast growth factor receptor (FGFR) tyrosine kinases have 
recently been studied as they relate to intracellular signaling and 
their effects on pRb, and are of interest to the field of cancer biology. 
Overexpression of FGFR tyrosine kinases has been found in many 
human breast carcinomas and has been associated with poor clinical 

Figure 2: Regulation of p27 Phosphorylation during Cell Cycling. (http://cgap.
nci.nih.gov/Pathways/BioCarta/h_p27Pathway)
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prognosis [165]. Fibroblast growth factor receptors (FGFRs) are 
glycoproteins composed of extracellular immunoglobulin (Ig)- like 
domains, a hydrophobic transmembrane region and a cytoplasmic 
moiety that contains a tyrosine kinase domain [165]. When active, 
FGFRs stimulate tyrosine phosphorylation, as well as activation of 
several signaling molecules: Shc, PI3K, Src, PLCg, Crk, SH2 domain 
containing phosphatase-2 (SHP-2), p38, STAT1/3 and FGFR substrate 
2 (FRS2) [161]. Treatment of tumor cells with the FGFR tyrosine 
kinase inhibitor leads to a reduction in pRb phosphorylation on 
serine 795, a site known to be phosphorylated by the cyclin D/cdk4 
complex [165]. FGFR signaling may in fact promote cell proliferation 
by upregulating cyclin D levels. This idea is supported by the fact that 
ectopic cyclin D1 expression is able to rescue the FGFR inhibitor-
mediated antiproliferative effect [165]. Using a cyclin D1 reporter 
gene, Koziczak et al. found that FGFR inhibitor caused a significant 
reduction in promoter activity, and was reflected in an overall decrease 
in cyclin D1 mRNA levels [165].

A recent study employed p27-deficient mice to investigate the 
significance of p27 for the metabolism of D-type cyclins in differentiated 
cells [80]. The absence of p27 resulted in decreased cyclins D2 and/
or D3 levels in several organs. The drop in cyclin D levels that was 
due to the absence of p27 equaled the amount of cyclin D physically 
associated with p27 animal controls. This indicates the possibility 
that it is the fraction of p27-associated cyclin D that determines the 
response to p27 deficiency. Cells in which the D-type cyclin level is 
dependent on p27 do not up-regulate their CDK2 and CDK4 activities 
upon deactivation of p27 (Figure 2). Moreover, these cells have a 
negligible amount of p27 bound to CDK2 and/or cyclin A/E under 
non-cancerous conditions [74]. These findings point to the existence 
of two roles for p27: regulation of the cell cycle through inhibition of 
CDKs, and participation in the establishment or maintenance of the 
differentiated status that is achieved in conjunction with D-cyclins 
[74], as schematically represented in (Figure 2).

Ubiquitin

The regulation of protein stability via the ubiquitin–proteasome 
pathway is critical to the comprehension of the biomolecular basis of 
cancer development. However, ubiquitin modification of substrates 
signals many cellular processes (besides proteolysis) that are also 
important for cancer development. Interestingly, many breast cancer 
proteins studied by clinical researchers are involved in these specific 
ubiquitin pathways. These proteins include cyclins, CDK inhibitors and 
the SCF in cell cycle control, the breast and ovarian cancer suppressor 
BRCA1-BARD1, ErbB2/HER2/Neu and its ubiquitin ligase c-Cbl , as 
well as and the estrogen receptor and its target, Efp.

One function of the ubiquitin–proteasome proteolysis pathway is 
to label proteins for rapid degradation. It consists of four enzymes: a 
ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme 
(E2), a ubiquitin ligase (E3) and the 26S proteasome [134]. E1 binds 
to and activates ubiquitin in an ATP-dependent manner through a 
thiolester bond and then transfers ubiquitin to an E2 enzyme. E2 then 
transfers ubiquitin to a lysine residue in the substrate via a terminal 
isopeptide bond through E3. E3 is a scaffold protein that bridges in 
the substrate and the ubiquitin-bound E2. The resultant covalent bonds 
of the ubiquitin ligations form polyubiquitinated conjugates that are 
quickly found and digested by the 26S proteasome. 

A modular, cancer cycling model summarizing various controls 
involved in the cell cycle is presented in Figure 3.

Understanding these signaling pathways may provide many critical 
clues toward the development of novel diagnostic tools and treatments 
for cancer patients [12]. Over the past decade researchers have 
identified important functional roles for the D- and E- type cyclins 
in the evolution of human breast cancers. These genes are among the 
most commonly over-expressed genes in breast cancer, being over-
expressed in the early phases of disease and having proven oncogenic 
effects on mammary epithelial cells both in vitro as well as in vivo. 
Their established role in CDK activation and Rb pathway regulation 
has directed scientific attention toward aberrant cell cycling as the basis 
of oncogenic potential.

More recent data on the role of different G1 cyclins in the areas 
of differentiation, chromosome stability and transcriptional regulation 
indicate that their role in breast cancer is much more complex than 
initially predicted. Further investigations may yield a more complete 
understanding of the role of these cyclins regarding the biomolecular 
basis and pathophysiology of breast cancer, with significant potential 
benefits clinically, through the identification of novel markers of 
prognosis and therapeutic responsiveness and potential new targets for 
innovative clinical intervention.

Biomedical Applications of Microarrays in Clinical 
Trials
Microarray applications to gene expression: Identifying 
signaling pathways

Changes in homeostasis can be followed through various 
experimental strategies that monitor gene expression profiling, for 
example, by employing high-throughput microarray technology. This 
section discusses briefly the successful use of microarray technology in 
RNA expression studies aimed at identifying signaling pathways that 
are regulated by key genes implicated in carcinogenesis/ tumorigenesis. 
A primary objective of tumor-profiling experiments is to identify 
transcriptional changes that may be the cause of the transition from the 
normal to the tumor phenotype. Such changes may, however, occur 
also as a consequence of various neoplastic transformation(s). More 
importantly, this approach may allow the identification of molecular 
fingerprints that can be utilized for the classification of different 
tumor types, and are therefore valuable diagnostic molecular tools 
in cancer patients. For example, Alizadeh et al. [35] reported that 
they have successfully used such an approach to identify molecularly 
distinct subclasses of diffuse large B-cell lymphoma that could not be 
distinguished by conventional diagnostic tools. In another study, a 
molecular fingerprint comprising approximately 50 genes has been 
isolated from a total of over 6,000, and this fingerprint can reliably 
differentiate between acute myeloid leukemia and acute lymphoblastic 
leukemia [121]. The approach requires, however, multiple independent 
experiments with several large groups of samples in order to enable one 
to reliably and reproducibly separate the biologically relevant changes 
from false ones that may occur as a result of the genetic heterogeneity 
between individual samples from the same tumor, for example. The 
two examples quoted above were able to reproducibly identify tumor 
type-specific molecular determinants through multiple experiments 
with various tissue samples.

 Identification of specific transcriptional targets in cancer: A 
different experimental approach to the one presented above is, however, 
needed for identifying specific targets such as defined genes that are 
implicated in cancer progression; this involves monitoring changes 
in transcriptional profile that occur as a result of modulation of the 
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expression level of the defined gene, or genes, selected for such studies. 
The altered expression profile can be viewed as a ‘blueprint’ by which 
the defined gene controls its cellular function. The transcriptional 
profiles are thus employed to define downstream signaling pathways 
that have been previously validated through other techniques such as 

differential display [251] and serial analysis of gene expression [280]. 
This approach combined with microarray technology allows the 
simultaneous identification of all potential targets. Its only drawback 
is the reliance upon the prior knowledge of the selected genome for 
such investigations. The caveat is, however, that the investigator who 
employs this approach needs also to devise additional experiments in 
order to confirm that genes identified with the microarray are indeed 
physiologically relevant targets. 

Identification of downstream transcriptional targets of the 
brca1 tumor-suppressor gene: The breast and ovarian cancer 
susceptibility gene BRCA1 is probably the most studied gene in the 
breast cancer field because of its clinical significance and multiple 
functions. BRCA1 was shown to be mutated in the germline of women 

with a genetic predisposition to either breast or ovarian cancer [186]. 
Most mutations identified reported have resulted in the premature 
truncation of the BRCA1 protein. BRCA1 is known to encode a 1863 
amino acid phosphoprotein that is predominantly localized to the 
nucleus, presumably with a unique function. Protein sequence analysis 

identified a C-terminal BRCT motif, which was then postulated 

to play a role in cell cycle checkpoint control in response to DNA 
damage [162]. Consistent with this postulated role, BRCA1 becomes 
hyperphosphorylated in response to various agents that damage DNA 
such as γ/X--ray-irradiation, an effect that was reported to be partially 
mediated by chk2 kinases [169]. Furthermore, BRCA1 has been shown 
to be implicated in at least three functional pathways:

i. Mediating the cellular response to DNA damage,

ii. Acting as a cell cycle checkpoint protein, and

iii. Functioning in the regulation of transcription.

However, the physiological significance of such BRCA1 actions 
as well as their relationships with the function of BRCA1 as a tumor-

Figure 3: Pro-Apoptotic Cancer Cycling Model (updated version from [20]).
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suppressor gene still remain to be defined. Further details are presented 
next.

The BRCA1-BARD1 ubiquitin ligase: As already stated above, the 
BRCA1 gene encodes a 1863-amino-acid protein [186] that consists of 
a RING-finger domain in its terminal N-region, a region that includes 
a nuclear localization signal and a domain that binds to many cellular 
proteins, and tandem BRCT domains in its C-terminal region. BRCA1 
is associated with a diverse range of biological processes, such as 
DNA repair, cell cycle control, transcriptional regulation, apoptosis 
and centrosome duplication. Thus, a specific role has already been 
postulated for BRCA1 in transcriptional regulation. The C-terminal 
domain of BRCA1 was reported to contain a potent transactivation 
domain when this was fused to a heterologous DNA binding motif 
[191]. The oligonucleotide array-based expression profiling described 
above in Section 2.2 was employed in 2000 by Haber in collaboration 
with Affymetrix Co. to identify the downstream transcriptional targets 
of the BRCA1 tumor-suppressor gene in order to define its function 
[130].

The only known biochemical function of BRCA1 is its E3 ubiquitin 
ligase activity. The N-terminal RING finger domain of BRCA1 interacts 
with another conformationally similar RING finger protein, BARD1, 
that also contains an N-terminal RING domain and C-terminal BRCT 
domains. BRCA1 attains high ubiquitin ligase activity when bound 
to BARD1 as a heterodimer. Importantly missense mutations in the 
RING-finger domain of BRCA1 found in familial breast cancer all 
eradicate the ubiquitin ligase activity of BRCA1-BARD1 [209]. This 
fact suggests a strong link between BRCA1 ligase activity and its function 
as a tumor suppressor. The analysis of ubiquitin ligase activity of RING-
domain mutations is important not only for the investigation of the 
biological function of BRCA1, but also to be able to predict a specific 
patient’s propensity for cancer, which may influence the determination 
of the need for prophylactic surgery. Besides enhancing BRCA1’s 
ubiquitin ligase activity, BARD1 is also critical for BRCA1 stability in 
vivo. Loss of BARD1 leads to a phenotype similar to that of the loss 
of BRCA1, that is, early embryonic lethality/ chromosomal instability. 
Moreover, germline mutations of BARD1 are found in both breast 
and ovarian cancer patients. Although ubiquitin ligase activity may be 
significant for the role of the BRCA1 gene as a tumor suppressor, the 
way the activity contributes to BRCA1’s biological function remains 
unknown. Two issues exist that are critical to the elucidation of the 
role of the BRCA1-BARD1 ubiquitin ligase: the type of polyubiquitin 
chain built by BRCA1-BARD1 (and its consequences), and the specific 
identity of its substrates.

The following reported observations provide only indirect, 
additional clues to the tumor-suppressor gene function of BRCA1. 
Germline mutations of BRCA1 were reported for half of breast-ovarian 

cancer pedigrees and for approximately 10% of women with early 
onset of breast cancer, uncorrelated with their family history [106]. It 
was also shown in other studies that somatic inactivation of BRCA1 is 
rare in sporadic breast cancers [110], and mutations were reported for 
approximately 10% of sporadic ovarian cancers, therefore suggesting 
potentially distinct genetic mechanisms for sporadic, breast and 
ovarian cancers [66]. The reduced BRCA1 protein expression reported 
for the majority of sporadic breast cancers indicates that epigenetic 
mechanisms (see also Section 6) may also play a significant role in 
regulating the BRCA1 expression [268]. Furthermore, a defect was 
reported in the transcription-coupled repair of oxidative-induced DNA 
damage in mouse embryo fibroblasts with attenuated BRCA1 function 

[130]; this observation would suggest that BRCA1 plays a more general 
role in mediating the cellular response to DNA damage. Thus, BRCA1 
has also been reported to be involved in cell cycle checkpoint control, 
by becoming hyperphosphorylated during late G1 and S cell phases, 
and then changing to transiently dephosphorylated early after the M- 
phase [222]. Moreover, the BRCA1 overexpression has been reported 
to induce a G1/S arrest in human colon cancer cells [9]. By comparison 
with the cancer regulation model in (Figure 3), it seems very 
significant for oncogenesis that BRCA1 is physically associated with the 
transcriptional regulators p53 [202], CtIP [281], c-Myc [264], as well 
as the histone deacetylases HDAC1 and HDAC2 [277]. The physical 
association of BRCA1 with c-Myc acquires special significance as 
c-Myc seems to be involved in controlling telomerase activity, whereas 
p53 is involved in DNA-repair, cell-cycling and apoptosis. Therefore, in 
the simplified model presented in Figure 3, one should add the BRCA1 
links to both p53 and c-Myc in order to facilitate an understanding of 
the BRCA1 possible roles in oncogenesis. 

Selecting gene expression systems: There are several related 
problems in studying gene function by expression profiling. For 
example, it has been often reported to be difficult to generate cell lines 
that overexpress genes such as BRCA1, or p53, because their forced 
overexpression can lead either to growth suppression or apoptosis 
(as shown for example in (Figure 3), and at the end of the previous 
section). However, in the case of BRCA1, it was reported that the tet-
off inducible expression system [124] can be utilized to generate cell 
lines with highly regulated inducible expression of BRCA1 [131,132]. 
This inducible expression system introduces into the cells a chimeric 
transactivator; the latter consists in the tet repressor fused to the 
VP16 transactivation domain. This chimeric transactivator is inactive 
in the presence of tetracycline, whereas in the absence of tetracycline 
it can bind to promoters that contain the tet operator sequence; the 
latter sequence is then utilized to drive the expression of BRCA1. This 
expression system has a major advantage in that it allows the change in 
just one parameter involved in the induction of BRCA1. The BRCA1 

Figure 4: Secondary structures and binding sites of the oligonucleotides HS1 
to HS6 and the target RNA.
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induction in one population is the only difference between the genetic 
backgrounds of the two populations that are being compared by 
oligonucleotides arrays. A number of BRCA1 transcriptional targets 
can thus be identified with Affymetrix oligonucleotides arrays, and 
among these, the stress and DNA damage-inducible gene GADD45 
was the gene that exhibited the greatest degree of differential signal 
intensity [132]. The specific target genes thus identified were also 
verified by Northern blot or quantitative reverse transcriptase-PCR 
analysis in order to confirm induction in response to the stimulus, that 
is, the induction of BRCA1 [132]. 

Further details were discussed in a recent, related report [58].

In another recent report [278], Yu et al. utilized a modified version 

of the tet-off inducible expression system to define the downstream 

transcriptional targets of the p53 tumor suppressor gene [280]. A total 
of 34 genes were identified that exhibited at least a 10-fold upregulation 
in response to the inducible expression of p53. Somewhat surprisingly, 
there was a marked heterogeneity of the response when it was evaluated 
in different cell lines derived from the same tissue of origin. Among the 
33 genes studied only nine were found to be induced in a panel of five 
unrelated colorectal cell lines, and 17 were induced in a subset; however, 
eight were not induced at all in any of the five cell lines examined. This 

can be interpreted as being due to a high degree of cell type specificity. 
Furthermore, p53 was not absolutely required for induction for the 
majority of the genes identified in response to either adriamycin or 
5-FU. Therefore, these agents do not seem to act exclusively through 
p53, suggesting that there is inherent redundancy in the majority of 
signaling pathways. Such inherent redundancy in signaling pathways of 
cancer, and untransformed, cells might be important in understanding 
the results of clinical trials in cancer treatment with signal transduction 
modulators that will be discussed in the next (subsection (3.2)).

Clinical trials with signal transduction inhibitors - novel 
anticancer drugs active in chemo-resistant tumors

Recently, there is an increasing number of reports suggesting that 
human cancers frequently involve pathogenic mechanisms which 
give rise to numerous alterations in signal transduction pathways. 
Therefore, novel therapeutic agents that target specific signal 
transduction molecules or signaling pathways altered in cancer are 
currently undergoing clinical trials often with remarkable results in 
cancer treatments of patients in which chemo- and/or radio- therapy 
resistant tumors have become apparent. For example, several classes of 
such anti-cancer drugs that were developed during the last decade are:

•	 Tyrosine/threonine kinase inhibitors, including: STI-571 
(‘Gleevec’, or Imatinib Mesylate), ZD-1839 (‘Iressa’), OSI-
774, and flavopiridol, which are ATP-site antagonists and 
have already completed phase I and phase II trials; Imatinib 
Mesylate and Iressa are FDA approved.

•	 Several other kinase antagonists that are currently undergoing 
clinical evaluations, including UCN-01 and PD184352;

•	 Other strategies for downmodulating kinase-driven signaling 
include 17-allyl-amino-17 demethoxygeldanamycin and 
rapamycin derivatives. Phospholipase-directed signaling may 
also be modulated by alkylphospholipids.

•	 Farnesyltransferase inhibitors, originally developed as 
inhibitors of ras-driven signals, may attain anti-cancer activity 
by affecting other/or additional targets; several are FDA 
approved;

•	 Monoclonal antibodies (Mab-class) Herceptin and C225; FDA 
approved.

Figure 5: An illustration of FCCS Applications to DNA Hybridization, PCR and DNA Binding Sites Localization.
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Medicines that block in a highly specific manner the signal 
transduction in cancer cells are an efficient method for fine-tuning 
the development of effective cancer treatments if the development of 
resistance to such drugs through mutations can be either prevented or 
circumvented by second and third generation medicines whose action 
is not affected by the multitude of possible mutations in a malignant 
tumor. The following detailed background on clinical trial and signal 
transduction modulators as novel anticancer drugs summarizes the 
contents of an earlier NCI Report of such signal transduction inhibitors 
in cancer cells [20].

 Tyrosine kinase inhibitors: T1. STI-571, or ‘Gleevec’, or Imatinib 
mesylate:

I. STI-571 action mode and impact:

a. Inhibits three kinases: Abl (all forms), PDGFR and c-kit 
tyrosine kinases;

b. Blocks the Bcr-Abl tyrosine kinase;

c. important in chronic myelogenous leukemia (CML) patients 
because CML cells have constitutively active Bcr-Abl tyrosine 
kinase;

d. STI-571 differentially inhibited the growth of p210Bcr-Abl CML 
and p185Bcr-Abl CML containing acute lymphoblastic leukemia 
cells and does not affect the normal marrow cells;

e. The effect of STI-571 is truly exciting because it inhibits c-kit/
CD117 positive tumors where there is a paucity of interventions 
for such chemoresistant tumors. An example of its action: 
a significant response was observed in rapidly progressive 
gastrointestinal tumors (GIST) and also in soft-tissue sarcomas 
that were previously resistant to several cytostatic, anticancer 
drugs when Gleevec was not administered simultaneously with 
such cytostatics;

f.   FDA has approved Gleevec for GIST as well as CML treatments, 
and is undergoing clinical trials for novel therapeutic strategies 
of other types of cancer. 

g. This is a remarkable success example of clinical trials for cancer 
treatment.

II. T2. SU5416: 

h. This ATP-site antagonist of the vascular endothelial growth 
factor (VEGF) (Flk1/KDR) receptor was designed following 
studies of the indolin-2-one pharmacophore and the fibroblast 
growth factor (FGF) receptor tyrosine kinase domain. A 
Lineweaver-Burk analysis showed SU5416 to be a competitive 
inhibitor with ATP for the Flk1/KDR and PDGF receptors (Ki 
~0.16 µM and 0.32 µM, respectively), as reported in [16] and 
[189].

i. The first SU5416 clinical trial enrolled 63 patients and 
administered the drug i.v. biweekly [222]; at the higher doses, 
nausea, vomiting, headache and some liver toxicity were 
noticed; [stable disease of greater than 6 months duration 
was the only reportable outcome in patients with a variety 
of advanced diseases (colorectal, lung, renal and Kaposi’s 
sarcoma);

j. Patients with significant progression suffered noticeable 
increases in vascularity; the occurrence of vascular 

complications like thrombotic events raises the risk of broad 
application of this drug [167].

III. Tyrosine kinase/EGFR inhibitors: 

a. 5.2.2.1) TE1. ZD 1839 (‘Iressa’) action mode: EGFR, the 
Epidermal Growth Factor Receptor (s) activate(s) several 
downstream signaling pathways and is over-expressed in 
numerous types of human cancers, including: non-small cell 
lung (NSCLC), colorectal, head and neck, bladder, brain, 
pancreas, breast, ovary, prostate, and gastric cancers [126,225]. 
Overexpression of EGFR is associated with increased 
invasiveness, resistance to treatment and poor outcomes 
in several tumor types [157,197] specified herFound to be 
effective in the treatment of: Non-small cell lung (NSCLC), 
colorectal, head and neck, bladder, brain, pancreas, breast, 
ovarian, prostate and gastric cancer types that were previously 
unresponsive to other chemotherapy [126,226];

b. ZD 1839 (Iressa) blocks EGFR; ZD1839 inhibits 
autophosphorylation, and resulted in complete regression 
in some xenograft tumors [82,245] when used either in 
conjunction with cytotoxic drugs such as doxorubicin, or in 
combination with radiation; Iressa inhibits the Ras/MAP 
kinase and STAT-3 transcription factors, in many tumors; the 
inhibition of the epidermal growth factor receptor (EGFR) 
has been of significant interest lately, partially because of the 
autocrine activation of EGFR and several downstream pathways, 
such as the ras/MAP kinase and STAT-3 transcription factors, 
in several tumors. The activated EGFR pathway induces entry 
into the cell cycle, inhibition of apoptosis, and also activation of 
angiogenesis and motility. Several phase I and II studies with 
Iressa have already been completed [2,63,198]. Daily oral doses 
have ranged from 50 to 700 mg for 2 to 4 weeks. ZD1839 resulted 
in some responses in NSCLC and prostate cancer, and stability 
of disease (over 4 months) in several patients [63,111,198]. 
22% of Japanese patients achieved partial response according 
to Negoro et al. report in [198]; side effects have been relatively 
mild and have included diarrhea and rash.

IV. TE2. OSI-774 ( Erlotinib, or ‘Tarceva’): ‘Tarceva’ is also 
an EGFR inhibitor; it binds very tightly to EGFR, causing EGFR 
inhibition, and also produces downstream inhibition of the P13/
MAPK signal transduction pathways, resulting in accumulation of p27, 
that leads to cell cycle arrest in the G1 phase, and thus causes induction 
of apoptosis [196]. EGFR-TK is more than 1000- fold sensitive to 
‘Tarceva’ compared with any other tyrosine kinases. Therefore, it is 
a very specific inhibitor of EGFR –TK and reduces very markedly the 
phosphorylated EGFR-TK;

a. The IC50 for ‘Tarceva’ is 2 nM (when measured by purified 
EGFR-TK inhibition in biochemical assays), and its value is 20 
nM for the EGFR-TK autophosphorylation when measured in 
intact cells;

b.  Proposed mechanism of action: reversible inhibition of EGFR-
TK through competitive binding to the ATP site;

c. Results of preliminary clinical trials reports are: partial 
responses in patients with colorectal cancer and renal cell 
carcinoma (kidney), as well as > 5 month stabilization in: 
colon, prostate, cervical, NSCLC and head and neck cancers.
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V. TE3. ‘Herceptin’ (or Trastuzumab) action modes and impact:

a. Trastuzumab, a recombinant humanized monoclonal antibody 
directed against HER2, is known as ‘Herceptin’ [51]. The 
HER2/neu gene increases the kinase activity, initiating signal 
transduction, that leads to proliferation and differentiation in 
approximately 30% of human breast cancers (with as many as 
50 to 100 gene copies/cell);

b. The HER2/neu gene makes a type I receptor tyrosine kinase 
encoding a 185 kDa surface membrane receptor protein;

c. Phase I trials showed that the dose of trastuzumab (i.v. at 10 
to 500 mg single dose or weekly) could be increased without 
toxicity and that pharmacokinetics were dose-dependent [239]. 
Phase II trials response was >5.3 months. Phase III trial patients 
received doxorubicin or epirubicin plus cyclophosphamide; 
28% of patients treated with chemotherapy and trastuzumab 
were reported to be free of tumor progression, compared with 
9% of the patients treated with standard chemotherapy alone.

d. The monoclonal antibody of the membrane receptor HER2 
signaling protein was reported to be much more efficient than 
chemotherapy alone. About 1 in 5 of the patients had cardiac 
dysfunction, when trastuzumab was administered at 4 mg/kg 
body weight initially; this is, therefore, a clear example of a 
clinical trial that was not optimized for patient survival rates 
even though at phase II 28% of the patients treated were cancer 
progression-free one year later. 

e. A phase II trial was conducted with 46 HER2 (+) metastatic 
breast cancer patients who had failed prior cytotoxic 
chemotherapy [35]. Objective responses were seen in 5 of 
43 assessable patients, including one complete remission 
and 4 partial remissions. A second phase II trial combined 
trastuzumab with cisplatin in 39 HER2 (+) metastatic patients 
who had failed prior chemotherapy [211]. Of the group of 
37 subjects, 9 achieved a partial response and 9 had a minor 
response or stability. A randomized, placebo-controlled phase 
III study was performed to determine efficacy and safety of 
adding trastuzumab to chemotherapy in breast carcinoma. 
28% of patients treated with both were disease progression-free 
at 12 months, compared with 9% of the patients treated only 
with ‘standard’ chemotherapy.

f. The treatment is indicated as a single agent for patients that have 
failed earlier therapy, and it is used also as first-line treatment 
for metastatic disease when applied in combination with 
paclitaxel.

g. Trustuzumab has already been approved by the FDA for use 
in women with metastatic breast cancer with HER2-positive 
tumors.

VI. TE4. Cetuximab: An antibody-based approach to affecting 
tyrosine kinase signaling is by cetuximab, a humanized monoclonal 
antibody against the EGFR. Mab225, a murine monoclonal antibody 
that specifically binds to EGFR, specifically competes with signal 
transduction initiated by TGF-α [116]. Cetuximab (C225) is a human-
mouse chimeric version of Mab225 that binds specifically to EGFR 
with high affinity, thus preventing the ligand from interacting with the 
receptor. Preclinical studies show that cetuximab results in cell-cycle 
arrest, as well as apoptosis, in different contexts [140]. A synergistic 

effect of cetuximab with cytotoxic chemotherapy has been seen with 
cisplatin, doxorubicin [63], gemcitabine [73], docetaxel [254], and 
paclitaxel [144]. Early phase I trials demonstrated that cetuximab 
displays nonlinear, dose-dependent pharmacokinetics that are not 
altered by coadministration of cisplatin [62]. These studies were 
conducted in patients with tumors overexpressing EGFR. There were 
only 5 episodes of severe C225-related toxicities among the 52 patients. 
Two patients with head and neck tumors who received cetuximab at 
doses of 200 mg/m2 and 400 mg/m2 with cisplatin exhibited a partial 
response. In light of these results, the clinical development of cetuximab 
is continuing with a number of phase II and III studies.

Serine-threonine kinase antagonists (Stkas)

S1. Rapamycin congeners: 

a. Rapamycin (Sirolimus, Rapamune) is a macrolide fungicide that 
binds intracellularly to the immunophilin FKBP12; the resulting 
complex inhibits the activity of a 290-kDa kinase known as 
mTOR – the mammalian target of rapamycin. Rapamycin 
was isolated from the bacterium Streptomyces hygroscopicus 
and possesses potent antimicrobial and immunosuppressive 
properties.

b. Sirolimus was approved by the FDA for the prevention of 
allograft rejection following organ transplantation in humans.

c. Several subsequent studies with rapamycin revealed significant 
antitumor activity. This is as expected because of the 
importance of mTOR in mitogenic cell signaling. The mTOR 
is a kinase member of the PI3K-related kinase family which is 
activated in response to growth signaling through the PI3K/
Akt pathway. The activation of mTOR results in an increased 
translation of several critical cell-cycle regulatory mRNAs 
through two downstream effector kinases, p70S6K and 4E-
BP1/PHAS [118,240]. Rapamycin causes G1 cell-cycle arrest 
by increasing the turnover of cyclin D1 [134], preventing 
upregulation of cyclins D3 and E [88], upregulating p27KIP1, 
and also inhibiting cyclin A-dependent kinase activity [156]. 
Several analogs of rapamycin have been selected for further 
development as anticancer agents.

d. CCI-779, an ester of rapamycin, has significant antiproliferative 
effect and favorable toxicology profile and is being studied 
in several phase I trials in humans [137,218]. Several partial 
responses have been documented in renal cell carcinoma, 
NSCLC, neuroendocrine tumors, and breast cancer, in addition 
to minor responses or stable disease in several tumor types 
[137,218]. RAD001, an orally bioavailable hydroxyethyl ether 
derivative of rapamycin, also has potent activity against various 
animal xenograft models of human tumors; an antiangiogenic 
effect may account in part for its antiproliferative properties 
[203].

S2. MEK inhibitor PD 184352: 

a. The stimulation of Ras-mediated signal pathways results in 
a cascade of downstream kinase activation including Raf, 
which phosphorylates two distinct serine residues on the dual-
specificity kinase MEK (MAP kinase-kinase) [151]. MEK, in 
turn, activates and exclusively phosphorylates two subsequent 
kinases, ERK1 and ERK2 (MAPK), on specific tyrosine 
and threonine residues within each kinase. These kinases 
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phosphorylate a variety of substrates including transcription 
factors critical to cell proliferation and tumor invasion [161]. 

b. In cytotoxicity studies, correlation between sensitivity to 
PD184352 and increased activated MAPK levels was observed 
in some cells-in particular, colon cancer cells. Higher levels of 
MAPK activation were observed in colon tumor tissue versus 
normal mucosa as this event occurs late in colon carcinogenesis 
[236].

c. In mice with colon 26 xenograft model treated with PD184352, 
excision and assay of tumor cells revealed diminished phospho-
MAPK levels. After drug withdrawal, a return to baseline levels 
was observed reflecting the cytostatic nature of the inhibition. 
The pharmacodynamic measurement of activated MAPK in 
tumor tissue may be used as a biological marker of drug activity 
as antibodies specific for phosphorylated MAPK are routinely 
available.

S3. Bryostatins: 

a. The bryostatins represent a large family of secondary 
metabolites produced in extremely small amounts by the 
marine invertebrate, Bugula neritina of the phylum Ectoprocta 
[215]. The various bryostatins are distinguished by varying side 
chains off the macrocyclic lactone ring structure. Despite this 
close structural relationship, these nontumor-promoting PKC 
activators have different biologic activities and spectrum of 
toxicity [149,166]. Bryostatin 1 (Bryo1) is the prototype of this 
17-member family and the most extensively studied in humans. 
Initial isolation of Bryo1 was based on its antineoplastic activity 
against the murine P388 lymphocytic leukemia. Bryo1 is a 
potent and rapid activator of PKC; however, unlike other PKC 
activators, including phorbol myristate acetate (PMA), Bryo1 
lacks tumor-promoting capabilities.

b. The first two published phase I trials evaluated Bryo1 
administered as a 1 h intravenous infusion [211,216]. The DLT 
was myalgia, occurring approximately 48 h after treatment 
and lasting up to several weeks at the highest dose levels (65 
μg/m2/dose). The MTD was 50 μg/m2, and the recommended 
dose for phase II trials was 35 to 50 μg/m2 every two weeks. 
Partial responses were observed in two patients with malignant 
melanoma, which lasted 6 months and 10 months. Plasma levels 
of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-
6) increased 2 h and 24 h after treatment, respectively, and were 
dose related. 

S4. UCN-01 (7-OH staurosporine): 

a. Staurosporine, a natural product isolated from Streptomyces 
staurosporeus, is a relatively broad action, nonspecific protein 
kinase antagonist, originally isolated in an effort to define 
inhibitors of protein kinase C (PKC). 7-OH staurosporine 
(UCN-01) was defined as a more selective, but not specific, 
PKC antagonist.

b. Two prominent effects of UCN-01 have emerged in preclinical 
studies in vitro: induction of cell-cycle arrest, and abrogation 
of the checkpoint to cell-cycle progression induced by DNA 
damaging agents. UCN-01 inhibited cell growth in several 
in vitro and in vivo human tumor preclinical models [32]; 
however, antiproliferative activity on the part of UCN-01 
cannot be explained solely by inhibition of PKC. Firstly, in cell-

cycle analyses UCN-01 inhibits Rb+ cells at G1/S phase of the cell 
cycle [33]. Secondly, cells treated with various concentrations 
of UCN-01 showed decreased pRb phosphorylation in a dose-
dependent manner [81]. These results suggest that CDK2- or 
CDK4-regulated steps are targets for UCN-01-induced cell-
cycle arrest.

c. UCN-01 abrogates the DNA damage-induced checkpoints 
to cell-cycle progression in G2 [76,261], and in S phase 
[240]. It is noteworthy that these effects were apparent at 
drug concentrations that appeared to have little direct effect 
on cell proliferation or that caused enhanced cytotoxicity by 
clonogenic or proliferation assays. In addition, they provided 
a mechanistic framework for prior observations that DNA-
damaging agents such as mitomycin [32] could greatly 
potentiate UCN-01 action.

d. In contrast to animal studies, UCN-01 displayed strong 
binding to human plasma proteins, apparently to the α1-acid 
glycoprotein (AAG) in initial human phase I clinical trials 
[20,112]. One partial response occurred in a patient with 
melanoma, and a protracted (>4 year) period of stabilization of 
minimal residual disease was observed in a patient with alk (+) 
anaplastic large cell lymphoma.

Miltefosine and perifosine (ALP analogs): 

a. Certain alkylphospholipids (ALP) (e.g., Rac-1-O-octadecyl-2-
O-methyl-glycero-3-phosphocholine [ET-18-OCH3, edelfos-
ine]) when given to mice prior to transplantation of Ehrlich 
ascites carcinoma cells, effectively prevent growth of this tu-
mor [252]. Enhancement of immune defense against tumor 
cells was initially considered a plausible mechanism and has 
been demonstrated on multiple occasions by a number of ALP 
analogs.

b. Edelfosine is also able to induce apoptosis in HL60 leukemic 
cells, even in low concentrations and after short incubation 
times. In U937 leukemic cells, the compound induced apoptosis 
rapidly, whereas in epithelial HeLa tumor cells this induction 
required prolonged times of treatment [191].

c. All ALP analogs studied so far cause an indirect inhibition 
of PKC, most likely as a result of the reduced formation of 
diacylglycerol through inhibition of phospholipase C [237,255]. 
Additional antiproliferative mechanisms could involve altered 
growth factor receptor function, as well as recent evidence of 
p21 induction by an as yet undefined pathway [208], irrespective 
of p53 function.

d. Eight phase I-II studies, consisting of 443 patients using 
topically applied miltefosine 2%-8% for skin metastases in 
patients with breast cancer, showed a median response rate of 
38% [24,26,27]. Evidence from the trials led to the approval of 
miltefosine, licensed as Miltex©, in Germany for the treatment 
of cutaneous breast cancer and cutaneous lymphomas.

e.  The heterocyclic alkylphosphocholine derivative octadecyl-(1,1-
dimethyl-piperidino-4-yl) phosphate (D-21266; perifosine) 
was developed and selected for improved gastrointestinal 
tolerability. A number of phase I studies with this compound 
have been completed both in Europe and USA; early evidence 
points to greater tolerability and less gastrointestinal toxicity 
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[186].

The proteasome inhibitor PS-341:

a. The proteasome, a multicatalytic protease responsible for 
degradation of most proteins with the cell, has emerged as a new 
target for anticancer drug development. The 20S proteasome 
is involved in the degradation of several cell-cycle regulatory 
proteins such as cyclins (A, B, D, E), cyclin-dependent kinase 
inhibitors (p21WAF1/CIP1 and p27), oncogenes (c-fos/c-jun, 
c-myc, N-myc), p53 and regulatory proteins (IκB, p130) [159]. 
Inhibition of the 20S proteasome pathway, therefore, aims at 
altering the cell cycle to promote apoptosis [39]. Although the 
proteasome is present in all cells, transformed and dividing 
cells are most sensitive to its inhibition [96].

b. PS-341 is the first proteasome inhibitor to enter human trials. 
It is a boronic acid dipeptide that specifically inhibits the 20S 
proteasome presumably through the stability of a boron-
threonine bond that forms at the active site of the proteasome. 
It was found to have substantial cytotoxicity against a wide 
range of human tumor cells in the NCI 60 cell line anticancer 
drug screen [29]. PS-341 causes accumulation of cyclin A, 
cyclin B, p21WAF1/CIP1, and wild-type p53 and arrests the cells at 
the S and G2/M phases followed by nuclear fragmentation and 
apoptosis. PS-341 significantly inhibited NF- B DNA binding 
and functional reporter activity [250]. Several phase I studies 
evaluated various schedules of PS-341 administration. At the 
MTD recommended for phase II studies (1.25 mg/m2-1.3 mg/
m2), a 65%-72% inhibition of 20S proteasome was achieved 
[13,30]. An average 54% inhibition of proteasome was achieved 
in patients’ tumors [127]. In these phase I studies several 
patients achieved partial responses and disease stabilization 
including a bronchoalveolar NSCLC, melanoma, sarcoma, lung 
adenocarcinoma, and malignant fibrous histiocytoma. Patients 
usually had more toxicity with the second cycle of treatment. 
Currently several phase II clinical trials are evaluating PS-341 
as a single agent in hematologic malignancies, neuroendocrine, 
renal cell, melanoma, breast, brain, pediatric tumors, and 
several other solid tumors. Significant antitumor effects were 
documented in a phase II study of PS-341 in refractory multiple 
myeloma [219].

Farnesyl transferase inhibitors:

a. Ras genes are mutated in 30% of all human cancers with K-Ras 
being the most common. This family of genes encodes GTP 
binding proteins that are important in malignant transformation, 
cell growth, and intracellular signal transduction.

b. Normal ras binds GTP and in the GTP-bound state interacts 
with numerous effectors including the raf proto-oncogene 
kinase and phosphatidyl-inositol 3-kinase.

c. Three isoforms, Harvey (Ha), Kirsten(K), and N-isoforms have 
been described, with mutation of the GTPase of the K isoform 
resulting in a persisting signaling capacity in approximately 
20% of human epithelial tumors. N-ras is mutated in a smaller 
proportion of malignancies, predominantly leukemias. Ras 
function requires lipophilic anchorage to the cell membrane by 
lipid prenylation. This requires posttranslational modification 
or covalent thioether bond formation between a farnesyl group 

(C15) and a cysteine residue at the ras carboxy terminus. A 
“GTT shunt pathway” maintains K-Ras in an active prenylated, 
membrane-bound form and explains in part the requirements 
for higher farnasyl transferase inhibitor (FTI) dose or co-
treatment with a GTT inhibitor for significant growth 
inhibition in K-Ras models [210]. Several classes of FTIs have 
been developed in an initial effort to define inhibitors of Ras 
function and, in general, compete with the enzyme substrates, 
the CAAX tetrapeptide, and farnesyl pyrophosphate (FFP). 
The CAAX competitors are generally peptidomimetic agents 
that mimic the carboxyl terminal portion of the Ras protein.

F1. SCH66336:

a. SCH66336 is a novel oral agent derived from a class of 
nonpeptide, nonthiol-containing, CAAX mimetic FTIs [67]. 
The drug inhibits in vitro FT activity with an IC50 of 1.9 nM 
for H-ras, 2.8 nM for N-ras, and 5.2 nM for K-ras. Inhibition 
of cells with activated ras and anchorage-independent growth 
was noted with IC50 of 75 nM in H-ras versus 400 nM with 
K-ras-driven cells [176]. The observed growth inhibition of 
tumor cells in soft agar and in xenografts was independent 
of ras mutational status because even wild-type ras cells were 
sensitive [177].

The phase I experience with SCH66336 involved 20 patients using 
a twice a day schedule over 7 days every 21 days. Eight patients had 
stable disease, and treatment for up to 10 cycles was possible in a few 
patients. Antitumor activity was reported in only one patient with 
advanced NSCLC who had a greater than 50% reduction in an adrenal 
metastasis and received treatment for 14 months [1]; further studies 
will be needed as statistical significance had not been achieved in this 
clinical trial.

F2. R115777: 

R115777 is a substituted quinolone and competitive inhibitor of 
the CAAX peptide binding site of FT [103]. The compound inhibits 
in vitro K-Ras farnesylation (IC50 7.9 nM) and exerts antiproliferative 
effects in cell lines such as H-Ras-transformed fibroblasts (IC50 1.7 nM) 
and K-Ras-driven colon and pancreatic cells lines (at roughly IC50 20 
nM) [104].

a. The initial clinical experience with R115777 in 27 patients was 
reported by Zujewski et al. [28]. A patient with metastatic colon 
cancer had symptomatic improvement and a 50% reduction in 
carcinoembryonic antigen (CEA) levels.

b. A most interesting outcome was obtained in patients with 
myelo-dysplastic syndrome or relapsed or poor prognosis 
leukemias, where a phase I dose escalation study revealed DLT 
at 1200 mg twice per day, consisting of neurotoxicity, with non-
DLTs including renal insufficiency and myelo-suppression. 
There was clear evidence of down-modulation of erk kinase 
activity, along with the farnesylation status of lamin A and 
HDJ-2. Clinical responses occurred in 29% of 34 evaluable 
patients, including 2 complete responses [154]. Though there 
were no mutations in N-Ras detected in this patient population, 
this study did suggest that in addition to clinical activity there 
was some evidence of down-modulation of signaling as well as 
farnesylation-directed activities.
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The results summarized in this section convey the promise, as 
well as some of the major challenges, still encountered in developing 
effective signal transduction inhibitors for cancer treatment. These 
molecules represent a distinct departure from previous therapeutic 
approaches based on cytotoxic activity in tumor models, without 
reference to underlying mechanism. The fact that any responses have 
been seen at all reaffirms the relevance of tumor cell biology in charting 
the further course of cancer developmental therapeutics. However, the 
initial experiences raise a number of issues that should be considered 
before the field advances.

First of all, with certain agents the actual magnitude of 
conventionally described responses is lower than would usually be 
associated with clinical value. A more accurate means of diagnosing the 
dependence of a tumor on a particular signaling pathway or target must 
be defined. Microarray, proteome- and interactome- based approaches 
offer the promise of personalized cancer therapies, but these must be 
integrated into the clinical trials process in a manner that optimizes the 
survival rate of the cancer patients. Some agents have entered initial 
clinical trials with extensive efforts to document target-based effects 
in conjunction with pharmacology and clinical toxicity evaluations. 
On the other hand, other agents have not, however, been sufficiently 
evaluated before beginning the clinical trials, and in those instances the 
phase I study may lack depth as far as patient survival and also deriving 
valuable therapeutic information is concerned. Lacking clear evidence 
of clinical response, one cannot recommend in such cases to move 
forward to the next phase.

Intelligent design of combinations with standard cytotoxic agents 
also remains a significant challenge because the cytotoxic treatments 
are well-established in medical practice. Pre-clinical models of 
synergistic effect with signaling agents often proceed from empirical 
considerations without a rational basis that would guide clinical 
implementation, for example, by employing in silico simulations with 
modular models (Figure 3) that can predict the qualitative dynamics 
of cancer cell lines in a tumor when sufficient genomic information 
is available from microarray determinations. Such circumstances 
therefore call for renewed efforts to define better assays of target effects 
in the pre-clinical phase of a drug’s development that can be rationally 
translated to the clinical arena.

Many of the agents utilized both in model systems and in initial 
clinical observations on cancer patients might be associated with 
protracted periods of disease stability, rather than overt cytotoxic effects 
which might be assigned to the initiation of an apoptotic response. 
Though such stable disease cases can be readily observed in animal 
tumor models, it is uncertain whether these could be meaningfully 
captured also in clinical populations of human patients with advanced 
forms of cancers, and especially with treatment-resistant tumors. One 
must develop decision-making, step-by-step strategies that will also 
aid in the use of potent drugs in patients at the earlier cancer stages, 
or indeed design prevention and adjuvant strategies. Clinical study 
algorithms for various cancers, and especially lung cancers, must also 
be developed that address such biologically relevant possibilities in a 
manner that does not compromise patient safety, and at the same time 
maximizes the rate of patients survival in cancer clinical trials.

There is clearly a need for individualized cancer therapy strategies 
based on high throughput microarray information recorded for isolated 
tumor cell lines from stage I through stage III cancer patients; such data 
is essential for improving the survival rate of stage III cancer patients 
undergoing clinical trials with novel signaling pathway modulator or 

blocker medicines, such as those discussed in this section. Specific 
methodologies, advanced techniques (see Appendix I) and suggestions 
for developing such strategies for personalized cancer treatments are 
discussed in the next sections and the two appendices.

Interactome-Transcriptome Analysis and Differential 
Gene Expression in Cancer

It has been claimed that high-throughput yeast-two-hybrid (HT-
Y2H) methods will allow a systematic approach to functional genomics, 
by placing individual genes in the global context of cellular functions 
[164]. One finds that high-throughput screening methods such as HT-
Y2H have indeed allowed the mapping of the first interactomes for 
three eukaryotes [119,174]. Because of the human interactome’s much 
larger size and its very high-degree of complexity there will be quite high 
costs and labor involved in obtaining the data necessary, for example, 
for an HT-Y2H mapping of a complete human cell interactome. 
Furthermore, the complete data analysis together with the assembly of 
the complete interactome network is likely to require both conceptual 
and computational advances, in addition to a significant amount of 
time and collective effort(s) by one or several research teams. In view 
of the high, potential importance of the human interactome for cancer 
therapy, and also for improved diagnosis and ‘rational’ clinical trials, 
such an effort should now be the top priority or, at the very least, must 
be given a priority far above that of ‘simpler’ projects for the smaller-
sized interactomes. Such an effort should also be coordinated with an 
improved mapping of the complete yeast interactome as a model, or 
test, system. Meantime, there have been since 2005 a few reports of 
partial, human cancer cell interactomes in the form of predicted maps 
of human protein interaction networks based on partial data and 
comparative analysis. Such studies emphasize even further the need 
and urgency for the complete mapping of several human cancer cell 
interactomes.

Following the seminal studies of DeRisi et al. in 1996 that utilized 
cDNA microarray to analize gene expression patterns in human cancer 
[90], there have been relatively few attempts at deriving hypothetical 
gene expression patterns in human cancer. The first claim of such an 
attempt was made by Wachi et al. [262] for genes that were differentially 
expressed in squamous cell lung cancer tissues from five patients who 
had undergone surgical removal of the tumor(s) [261]; (cRNA samples 
were prepared and hybridized to arrays obtained from Affymetrix® 
(Hg-U133ATM). These authors were able to carry out paired t-test 
analyses for each individual patient in order to distinguish the genes 
in which expression levels in their squamous lung cancer cells differed 
from the paired normal lung tissue (control samples) obtained from 
the same five individuals. The authors’ prediction methodology will 
be briefly discussed in the next subsection as some of the details are 
relevant for the evaluation of these results which were the first to be 
reported for the (hypothetical) interactome-transcriptome analysis 
of human cancer cell data for a group of five patients with the same 
diagnosed form of (lung) cancer, and with the same treatment (tumor 
removal by surgery). 

The hypothetical human protein interaction maps are relatively 
new endeavors [72,172] perhaps because they are likely to have many 
false positives, as well as miss a significant fraction of the relevant/real 
protein-protein interactions. Currently, microarray analysis still suffers 
inherently from relatively high noise levels and the accompanying 
information loss (buried in noise); although this inherent noise 
problem is partially eliminated through multiple replicate analyses, the 
number of replicates is often limited by the availability and the material 
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cost. Another significant problem of such microarray projects is the 
huge amount of data that needs to be processed in order to obtain 
useable information [84]. 

Analysis of Human Protein-Protein Interactions (HPPI) and 
integration of array data into a Predicted Protein-Protein 
Interaction Network (PPIN), (summarized from [261])

Wachi et al. [262] employed for their human cell data analysis 
a web-presented database (OPHID, April 25, 2005) of predicted 
interactions between human proteins [72] based on data for human 
and other four organisms which included the intensely-studied yeast 
and fruit fly. (OPHID is freely available to academic users at http://
ophid.utoronto.ca ). This protein interaction database listed 16,034 
known human protein interactions obtained from various public 
protein interaction databases, as well as 23,889 additional, predicted 
interactions which are evaluated using protein domains, gene co-
expression and Gene Ontology terms. The results can be visualized 
in OPHID using a customized, graph visualization program. The 
data comprises literature-derived human PPI from BIND, HPRD 
and MINT, “with predictions made from Saccharomyces cerevisiae, 
Caenorhabditis elegans, Drosophila melanogaster and Mus musculus”. 
The genes in the WYU05 array were matched to those in OPHID using 
gene symbols and protein sequences. In this manner, 2137 genes in 
the WYU05 microarray experiments were ‘matched to the protein 
network from OPHID’. These predictions should, however, be thought 

of only as ‘hypotheses’ until they are experimentally validated. On the 
other hand, there is increasing evidence that at least certain PPIs may 
be conserved through evolution [205,274]. Subsequently, Sharan et al. 
claimed that about 50% of the protein-protein interactions predicted 
by using interologs between microorganisms are also experimentally 
validated [242]. The interologs approach might play therefore a role 
in the partial validation of the HT-Y2H protein network mapping 
without, however, necessarily achieving the claimed, global validation 
of the predicted (hypothetical) interactome. 

Differentially expressed genes (DEGs) from squamous cell 
carcinomas (SCCs) were then identified as discussed above and their 
connectivity in the network graph was examined to determine their 
‘topological’ properties, such as the edge distribution for DEGs in 
comparison with the surrounding graph sub-network. 

Differentially expressed genes –DEG- results for SCC of 
human lung (summarized from [261])

The genes that are upregulated in SCC were found to exhibit a 
positive correlation (Pearson’s r-coefficient of 0.82) with the number 
of edges associated with them (Figure 1a of Wachi et al. [262]), which 
was interpreted as indicating that DEGs that are upregulated in SCC 
are also highly connected. However, the downregulated genes were 
reported also to have a positive correlation (r = 0.75) to connectivity, 
albeit slightly lower (Figure 1b of Wachi et al. [262]). On the other 
hand, microarray probe sets that matched the genes in the protein 
network (n =-2,137) had a negligible correlation coefficient (r =0.06) 
to link number, proving that the genes on the test microarrays did not 
contribute to bias in the number of links for DEGs in SCC. 

A k-core analysis of DEGs in SCC of the human lung was also 
carried out (loc. cit.) which was reported to measure “how close are the 
DEGs to the topological ‘center’ of the human PPI network”. Based on the 
k-core analysis, it was concluded that: “the upregulated genes are more 
centrally located in the protein network than the downregulated genes”. 
If duplicated and validated, such studies would be important as the 

‘topological centrality’ of the genes in the interactome was previously 
reported to be associated with the essential functions of the genes in 
the yeast [148]. Such essential genes, are lethal when mutated, and also 
tend to have high connectivity. Moreover, other genes that are not 
essential in this sense, but provide a vital function in toxin metabolism 
were reported to have a high number of edges associated with the 
nodes, and to be less well connected than the essential genes in yeast 
[224]. Furthermore, a k-core analysis has also been performed on the 
yeast essential genes and they were reported to be global hubs, whereas 
the non-essential genes were not hubs [274]. It was also claimed that 
these essential, global hubs are conserved throughout different species; 
however, one notes that, thus far, there is insufficient data and evidence 
to prove this claim, or hypothesis. Nevertheless, one may consider 
as a ‘working hypothesis’ that “there should be a core set of genes that 
needs to be maintained throughout the course of somatic evolution in the 
tumor microenvironment” [259]. This hypothesis is thus consistent with 
the somatic evolution model of cancer. Such conserved genes might be 
the ‘essential genes’ in cancer cells, and they may also have somewhat 
analogous to the global hub, essential genes reported in yeast [272,278]. 
DEGs would thus be essential for the survival and proliferation of 
cancer cells in SSC of the human lung, and the upregulated genes 
would be centrally located in the protein network as well as have 
higher connectivity, perhaps suggesting their possible essential role(s) 
in human (SSC) lung cancer. As this is the first report of a predicted/ 
hypothetical human cancer interactome network one should definitely 
consider ‘replicating’ the reported studies and also evaluating such 
potentially important findings in the context of a complete human 
cancer interactome (differential) analysis. This possibility that DEGs 
might be essential for the survival and proliferation of cancer cells in 
SSC of the human lung has much too important consequences to be 
ignored; therefore, it must be thoroughly investigated and also tested 
with sufficiently extensive, translational genomics and transcriptional 
databases that do not seem to be currently available [128]. Additional 
supporting analyses for this conjecture made by Wachi et al. [262] are 
further considered in the next subsection.

Cancer proteins and the global topology of the human 
interactome network

An extensive study of both cancer and non-cancer proteins [127] 
was integrated into a validated protein-protein interaction (PPI) 
network, or interactome, of human proteins. In their report, the 
connectivity properties were investigated for all proteins previously 
shown to be modified as a result of mutations leading to cancer [86]. 
A global protein-protein interaction network was then constructed 
by a homology--based method which is claimed to accurately predict 
protein-protein interactions. It was then suggested that human 
proteins that are involved in cancer, or ‘cancer proteins’, exhibit 
a network topology which is substantially different from that of 
other proteins which are considered not to be involved in cancer. 
Notably, increased connectivity was pointed out for cancer proteins 
involved in the following sub-networks: cell growth and apotosis-
related, signal transduction (MAPK, TGF-beta, insulin, T-cell and 
B-cell receptor, adipocytokine, cytokine-cytokine interaction), cell 
motility/cytoskeleton, cell communication, adherence junction, focal 
adhesion, leukocyte migration, antigen processing and folding/sorting/
degradation. Furthermore, it was proposed that such observations 
‘indicate an underlying evolutionary pressure to which cancer genes, as 
genes of central importance, are subjected.’ Linking these claims with 
previous proposals by Wuchty [275] that globally central proteins 
form an evolutionary backbone of the proteome and are essential to 

http://ophid.utoronto.ca/
http://ophid.utoronto.ca/
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the organism, (and also with the conjecture made by Wachi et al. [262], 
discussed here). Jonsson and Bates suggested that cancer proteins may 
generally be older than the non-cancer ones in evolutionary age [3]. 
Moreover, they also suggested that the somatically mutated cancer 
proteins may be of somewhat younger evolutionary average age in 
comparison with those from the germline, as a consequence of the 
evolutionary selection pressure postulated to affect germline mutated 
proteins. Note also that the previous study of (SCC) human lung cancer 
by Wachi et al. also reported in [262] increased interaction connectivity 
in differentially expressed proteins in human lung cancer tissues. 

Epigenomics in Mammalian Cells and Multi-Cellular 
Organisms
Epigenetic controls

Upon completion of the US Human Genome Mapping Project 
and related studies, it became increasingly evident that a sequence of 
30,000 or so ‘active’ genes that encode and direct the biosynthesis of 
specific proteins could not possibly exhaust the control mechanisms 
present in either normal or abnormal cells (such as, for example, cancer 
cells). This is even more obvious in the case of developing embryos or 
regenerating organs. Subsequently, in a 2004 editorial in Nature more 
than 120,000 genes were suggested to be active in the human genome. 
Furthermore, specific control mechanisms of cellular phenotypes and 
processes were recently proposed that involve epigenetic controls, 
such as the specific acetylation <—> de-acetylation reactions of DNA-
bound histones. Such controls intervene from outside the genome but 
ultimately they also affect gene expression. Therefore, gene profiling 
techniques would need to be combined with epigenomic tools and 
analysis in order to gain an improved understanding of functional 
genomics and interactomics. Epigenomic tools and novel techniques 
begin to address the complex and varied needs of epigenetic studies, as 
well as their applications to controlling cell division and growth. Such 
tools are, therefore, potentially very important in medical areas such as 
cancer research and therapy, as well as for improving ‘domestic’ animal 
phenotypes without involving genomic modifications of the organism.

Novel tools in epigenomics: Rapid and ultra-sensitive analyses 
of nucleic acid –protein interactions

Several novel techniques could also be applied for the highly-
selective detection of epigenomic changes in mammalian cells 
related to diseases such as individual types of cancer [150,215]. Such 
novel tools are likely to be utilized in a wide range of applications in 
biotechnology research related to Post-Genomics and Epigenomics. 
Tumor suppressor genes are transcriptionally silenced by promoter 
hypermethylation that also appears to lead to alterations in chromatin 
structure- a possible mechanism for such repression of the suppressor 
genes. In contrast to the genetic mutation or deletion mechanism 
of tumor suppressor gene inactivation, epigenetic inactivation of 
tumor suppressor genes would occur via methylation of specific 
DNA regions that could be prevented by DNA methyl-transferase 
or histone deacetylase inhibitors. Aberrant CpG--island methylation 
has non-random/tumor-type-specific patterns [87]. Such patterns 
can be identified by employing methylation--specific PCR (MS-PCR; 
[135]), and can also be employed either for tumor class prediction by 
microarray-based DNA methylation analysis or for high-throughput 
microarray-based detection and analysis of methylated CpG islands 
[276]. Hypermethylation profiling is important for both accurate 
diagnosis and the development of optimal strategies in cancer therapy. 

Gene promoter hypermethylation has been reported in both tumors 
and serum of patients diagnosed with several types of cancer: head and 
neck cancers, nasopharyngeal carcinoma [273] non-small cell lung 
cancer [39] gastric carcinoma, liver, prostate, bladder and colorectal 
cancers [170,190]. Substantial efforts are being made recently for the 
development of new methods and tools that are capable of sensitive 
and quantitative DNA methylation analysis, as well as early and 
accurate diagnosis of cancer. Among such tools are: Fluorescent 
methylation--specific polymerase chain reaction assay (FMS-PCR; 
[122]), SNIRF [55,56] (and references cited therein), indocyanine 
green-labeling (IGL) for human breast carcinomas, ConLight-MSP 
[6], COBRA [275], Methylation-Sensitive Single Nucleotide Primer 
Extension (Ms-SnuPE; [123]), DNA microarray sensitive detection 
by Metal-Enhanced Fluorescence (MASD/MEF; [168,181]), and NIR 
Fluorescence Microspectroscopy (NIRFMS) for single cancer cell 
detection [56,58]

Specific molecular markers of cancer [242] hold the promise to 
identify those molecular signatures that are unique to specific types of 
cancer, and are essential for the early accurate diagnosis and treatment 
of cancer. Such novel molecular tools and methodologies could be 
employed to rapidly and accurately identify molecular signatures of 
cancer and aging-related diseases in mammalian cells in culture in 
order to determine how specific epigenomic mechanisms involved in 
the control of cell division and apoptosis operate throughout the cell 
cycle. Among the specific epigenomic control mechanisms that one 
could investigate with such new tools are: CpG-island methylation, p15 
(INK4b) and p16 (INK4a) hyper-methylation (in synchronous hepatic 
carcinoma cells), GSTP1 methylation in non-neoplastic/ synchronous 
cells, as well as histone-deacetylation and its effects on histone- nucleic 
acid interactions in stable synchronous cell populations in culture. 
Both cancer and aging were found to involve DNA methylation of 
specific genome regions. 

Potential Applications and Discussion: Potential 
Improvements of Cancer Clinical Trials with Signaling 
Payhways Inhibitors (SPIs)

Based on the model in (Figure 3), and the data available from the 
clinical trials and results cited in the Introduction, one has the following 
potential application strategies to optimizing clinical trials:

A1. One needs to test through quantitative modeling the combined 
effects of cytostatic anticancer drugs combined in different proportions 
with the new signaling-based anticancer complement drugs;

A2. The second drug of the SPI type is Cetuximab (C225) that is 
going to Phase II and III clinical trials.

A3. Pre-clinical studies with C225 showed that Cetuximab results 
in cell cycle arrest, as well as apoptosis in several types of tumors, and it 
had synergistic effects with cytotoxic chemotherapy.

Such synergistic effects are readily understood with the modular 
network in Figure 3 by considering the interconnections between the 
last two modules at the bottom right of Figure 3.

A4. Flavopiridol applications and potential problems in cancer 
clinical trials:

a. Flavopiridol causes cell-cycle arrest at G1/S phase transition and 
G2/M phase transitions and also slows the progression of the 
cell cycle through the S phase [15,79]
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b. The goal was to develop new STKAs that would be similar to 
flavopyridol, or HMR 1275

c. Some STKAs act as blockers of Cyclin D1, therefore causing 
cycle arrest by direct transcription repression of cyclin D1 
mRNA , and in mantle cell lymphoma, flavopyridol delayed 
significantly progression of disease in 84% of patients [15,79,97]

d. Cytostatic effects are significant and were observed with the 
flavopyridol in colorectal and prostate carcinoma xenograft 
models [86,97]; these findings prompted an evaluation of 
cyclin-dependent kinases, recognized as responsible for 
governing the orderly transition from G2 to M phase (CDK1) 
and G1 to S phase (CDK4 or 6 with CDK2). Indeed, flavopiridol 
inhibits all CDKs known so far (IC50 100 nM), inhibiting CDK1, 
CDK2, and CDK4 with a similar potency [79].

e. Undesirable side effects: the risk of thrombosis (among others) 
makes this drug less than optimal. Preclinical studies of 
flavopiridol revealed wide differences in growth inhibition 
between cell types depending on the duration of exposure and 
concentration of the drug. Significant cytostasis was observed 
when flavopiridol was administered in protracted fashion to 
colorectal (colo 205) and prostate (LnCap/DU145) carcinoma 
xenograft models [97,238]. Shorter “bolus” administration of 
flavopiridol to a lymphoma/leukemia (HL60) cell line had a 
higher degree of apoptosis and cytotoxicity [40]. Some cases 
of partial responses and stable disease have been reported in 
various phase I studies, but several phase II studies revealed 
few ‘conventionally defined’ responses in several tumor types, 
except for the mantle cell lymphoma [22,23,25,86]. In the 
future, flavopiridol might be tested in combination with other 
agents, such as: taxol [194], irinotecan [195] and gemcitabine 
[15], as well as other signal transduction modulators [12,278-
279].

f. Despite a number of such issues, it has become apparent that 
cancer treatments with medicines that control signaling 
pathways in cancer cells and tumors is a turning point in cancer 
therapeutics that defines new path for further progress in 
cancer treatments. One looks forward to future clinical trials in 
cancer that are optimized, for example, by combining correctly 
cytotoxic agents with rationally-based signaling strategies that 
provide the maximum possible benefits to the cancer patients.

g. Assessment and prediction of the effects of therapy with 
a flavopiridol combination with other SPIs and signal 
transduction modulators is another example of the potential 
applications of the modular network model in Figure 3 to 
achieve rational, individualized cancer therapy in clinical 
trials. The modular network simulations combined with data 
obtained from cancer patients undergoing individualized 
therapy can effectively predict the outcomes of the selected drug 
combination treatments, thus allowing for the optimization of 
the cancer clinical trials at the level of individual patients and 
significantly improve their change of survival through such 
individualized cancer therapy. 

Conclusions
Sample analyses in recent clinical studies have shown that gene 

expression data can be employed to distinguish between tumor types as 
well as to predict outcomes. Important, potential applications of such 

results are individualized human cancer therapy (Pharmacogenomics) 
and ‘personalized medicine’ that could result in optimized clinical 
trials in cancer with maximum survival rates of the cancer patients. 

Especially relevant are the clinical trials involving ‘inoperable’ lung 
cancers in which a decade ago survival rates have been unacceptably low 
and prognosis has been poor. There is a clear need for individualized 
cancer therapy strategies and pharmacogenomic decisions [284] based 
on high-throughput microarray information recorded for isolated 
tumor cell lines from stage I through stage III cancer patients. Gene 
profiling expression, proteomic, interactomic and tissue array data is 
essential for improving the survival rate of stage III cancer patients 
undergoing clinical trials with novel signaling pathway inhibitors/
blocker medicines, such as those discussed in some detail in Section 3, 
(especially subsection 3.2) and Section 6. 

Several technologies in conjunction with theoretical models 
aimed at applications in oncogenesis are currently under development 
both in the direction of improved detection sensitivity and increased 
time resolution of cellular events, with the limits of single molecule 
detection and picosecond time resolution already being reached. 
Gene expression profiling and epigenomic testing can be carried out 
with both ultra-sensitive, novel Human and Mouse microarrays. 
Powerful spectroscopic and microspectrosopic techniques can be then 
employed for the analysis and further improvement of such tools for 
the investigation of nucleic ccid-protein interactions. 

Novel translational oncogenomics research is rapidly expanding 
with a view to the application of such new technologies, findings and 
computational models in both pharmaceutical and clinical areas. 
Studies of Differential Gene Expression (DFG) in human cancer cell 
lines are clearly required for developing new strategies for efficient 
cancer therapies for patients whose tumors have developed resistance 
to existing therapies. 

The urgency for sufficient funding and carrying out complete 
mappings of highly complex human cancer interactomes in a rationally 
designed, multi-disciplinary Human Cancer Genomes and Epigenetics 
(HCGE) Project is pointed out here for the first time.

Such an applied and potentially important project would address the 
urgent need for rational designs of clinical trials in cancer. The project 
should be carried out with the help of novel, high-efficiency/low-cost 
and ultra-sensitive techniques that allowed numerous recent findings 
in translational oncogenomics. The proposed HCGE project could also 
greatly benefit from pharmacogenomic approaches and theoretical 
modeling, computer simulations and predictions of expected, varying 
structures of human cancer interactomes, The proposed project’s 
ultimate goal is to optimize clinical trials in cancer and maximize the 
survival rates of cancer patients treated in such clinical trials.
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