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Abstract
Citrullinated histone epitopes are involved in the very early stages of inflammatory responses. An important early 

event is the activation of neutrophils. It has been shown that Peptidyl Arginine Deiminase (PAD) expression levels 
increase upon pro-inflammatory signalling followed by activation of neutrophils. Subsequently, PAD enzymes cause 
histone citrullination in the activated neutrophils. Histone citrullination is involved in various processes. One of the 
most important is NETosis, which results in the release of citrullinated histones to the extracellular space. There, 
they are involved in Neutrophil Extracellular Trap (NET) formation, which intensifies the inflammatory response. The 
central role of citrullinated histones in early inflammation makes NETs an attractive target for inflammatory disease 
intervention. Moreover, the safety profile is expected to be superior to immune-suppressing biologicals, like anti-
Tumour Necrosis Factor (TNF) drugs. It is anticipated that shielding citrullinated histone epitopes from the immune 
system, as well as interfering with their putative roles in the inflammatory response, will have a broad applicability in 
preventing and treating various inflammatory diseases, including multiple sclerosis.
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Introduction 
Protein citrullination, a post-translational modification (PTM) of 

peptidylarginine, plays an important role in the normal functioning 
of the immune system, and in physiological processes such as skin 
keratinization, the insulation of neuronal axons, the plasticity of the 
central nervous system (CNS), and in gene regulation [1]. Recently, 
citrullination has become an area of significant interest, because of its 
suspected role in various pathological conditions, such as rheumatoid 
arthritis (RA), multiple sclerosis (MS), psoriasis, chronic obstructive 
pulmonary disease (COPD), and neurodegenerative diseases like 
Alzheimer’s disease (AD) [2]. Moreover, citrullination plays an 
important role in human and animal cancers through its role in gene 
regulation [1,3,4]. It is unclear whether citrullination is the cause or the 
consequence of these pathological disorders [1]. In recent overviews by 
Baka et al. [1] and Mohanan et al. [4], important aspects of citrullination 
under both physiological and pathological conditions are discussed. 
Here, we discuss various aspects of citrullination and the possibility 
to target the citrullination process as a therapeutic approach to treat 
inflammatory (autoimmune) diseases.

The basics of citrullination

Citrullination is a PTM that is catalysed by peptidylarginine 
deiminases (PADs). PADs are calcium-dependent enzymes that convert 

peptidylarginine into peptidylcitrulline [5]. During this reaction, the 
targeted protein loses a positive charge (Figure 1A), and resulting 
conformational changes may change the binding properties, promote 
unfolding, and alter the function and half-life of the protein (Figure 
1B). 

Five PAD isoforms are distinguished, which have different tissue-
specific expression patterns. PAD1 is expressed in the epidermis 
and uterus, although RT-PCR and EST data suggest a broader tissue 
distribution [6]. PAD2 is the most widely expressed type of PAD. 
The most abundant expression is observed in skeletal muscle, spleen, 
secretory glands, and the central nervous system [5]. Citrullination by 
PAD2 is proposed to play a role in the pathogenesis of MS and AD 
[2]. PAD3 shows co-expression and co-localization with its natural 
substrate, trichohyalin, which is a major structural protein of the inner 
root sheath cells of hair follicles [7]. PAD4 is mainly expressed by cells 
of the hematopoietic lineage and can therefore be detected in a variety 
of tissues [5]. It is the only type of PAD that resides in the cell nucleus 
[8]. PAD4-mediated citrullination of histones may participate in the 
altered gene regulation in tumourigenesis [9], and is required for the 
generation of neutrophil extracellular traps (NETs), which is a common 
feature of the innate immune response to bacteria and fungi. NETs are 
formed early in inflammatory processes [10] and have been linked to 
several inflammatory diseases [11] and to various human autoimmune 
disorders, including systemic lupus erythematosus (SLE) [12]. 
Increased PAD2 and PAD4 expression, accompanied by the production 
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of anti-citrullinated protein antibodies (ACPAs) has been observed 
in the inflamed synovium of RA patients [13]. PAD6 is found in early 
embryos and ovaries [5,14], and has been less intensively investigated 
than PAD2 or PAD4. To date, only a single prokaryotic enzyme that can 
citrullinate proteins has been identified in Porphyromonas gingivalis. 
This enzyme (AAF06719), however, is not evolutionarily related to the 
vertebrate PAD enzymes, can convert both peptidylarginine and free 
L-arginine, is not dependent on Ca2+, and shares sequence homology 
with several arginine deiminases [15]. Recently, a possible connection 
between P. gingivalis and RA was proposed [16].

Citrullination in normal physiology

Skin keratinization: In the skin, proteins are altered by cleavage, 
cross-linking, and by amino acid side chain modifications (e.g. 
citrullination) that help to create a matrix, which is resistant to insults 
(Table 1). To date, three molecules are known to be citulinated in the 
epidermis: (pro)filaggrin and keratins K1 and K10. Cytokeratins (CKs) 
constitute the main intermediate filament produced by keratinocytes 
building up keratin filaments in the skin, hair, and nail. Citrullination 
enables these proteins to bind to each other by changing the charge of 
the interacting surfaces. Native CK and loricrin have very low affinity for 
each other, since both proteins are very basic [17]. Citrullinated CK on 
the other hand, binds well to loricrin and possibly also to desmoplakin. 
Desmoplakin is a desmosomal protein that helps the keratin matrix to 
extend transcellularly [40]. CK citrullination has also been implicated 
in the pathogenesis of psoriasis (as discussed later in this review).

Citrullination of profilaggrin facilitates its cleavage by proteases 
into smaller filaggrin units [17]. The modified filaggrin molecules can 
bundle keratins into a three-dimensional structure. 

Myelin formation in the central nervous system (CNS): In the 
CNS, PAD2 is mainly expressed by oligodendrocytes, astrocytes and 
microglia. The enzyme citrullinates myelin basic protein (MBP), glial 
fibrillary acidic protein (GFAP), and other proteins [17]. Citrullination 
of MBP was suggested to be essential for the plasticity of the CNS 
at young age, since the level of MBP citrullination changes rapidly 
postnatally [17] (Table 1).

Gene regulation: Gene regulation is the major focus of epigenetic 
research. It is fine-tuned by PTMs of histones and coordinated by 
counteracting enzymes such as histone acetyltransferases, histone 
deacetylases, methyltransferases, demethylases, and PADs (Figure 2). 

In contrast to other PADs, only PAD4 has been proposed to localize 
to nuclei and contains a putative nuclear localization signal, which 
is consistent with a role in gene regulation [5]. PAD4 can citrullinate 
arginines and methylarginines of histone 3 and histone 4 and, as a 
consequence, prevents or reverses methylation of these histone residues 
[41]. Citrullination may be one of the crucial epigenetic regulatory 
mechanisms (Table 1 and Figure 2).

Immune functions: The cells of the hematopoietic lineage 
(especially monocytes and granulocytes) express PAD4, suggesting 
that citrullination has a key role in the physiology of these cells. One 
of the mechanisms by which neutrophils trap and kill bacteria is by 
forming highly decondensed chromatin structures, termed NETs [42] 
(Table 1). Histone hypercitrullination catalysed by PAD4 is essential 
for this process, since PAD4 knockout mice cannot form NETs after 
stimulation with chemokines or incubation with bacteria, and are 
deficient in bacterial killing by NETs [26].

Results obtained from studies with macrophage cell lines suggest 
that PAD2 interacts with κB kinase, and suppresses NF-κB activity after 
lipopolysaccharide stimulation, indicating the involvement of PAD2 
in innate immune defense [27]. Furthermore, naturally occurring 
citrullinated chemokines have been shown to be less potent than the 
arginine-containing variants [28] (Table 1). Citrullinated CXCL8 
(IL-8) has reduced affinity for heparin, is resistant to thrombin- or 
plasmin-dependent cleavage into a more potent CXCL8 fragment, 
and is unable to attract neutrophils to the peritoneum. In contrast, 
citrullination of CXCL8 significantly increases the chemokine’s ability 
to recruit neutrophils from the bone marrow into the blood circulation, 
and impairs its clearance from the circulation, thereby maintaining 
serum leukocyte levels [29]. Modification of CXCL12 by one citrulline 
severely impairs CXCR4 binding and signalling (calcium mobilization, 
phosphorylation of ERK and protein kinase B), while maximally 
citrullinated CXCL12 is inactive [30]. Citrullination also reduces the 
chemoattractive and signalling capacity of CXCL10 and CXCL11 on 
CXCR3, and impairs T cell activation. Cytokines may influence PAD 
activity as well. For example, TNF treatment induces the translocation 
of PAD4 from the cytosol to the nucleus in oligodendroglial cell lines 
[31]. Transgenic mice overexpressing TNF have increased levels of 
citrullinated histones and nuclear PAD4. These examples illustrate the 
versatility of PADs with regard to predominantly anti-inflammatory 
and antibacterial effects (Table 1).
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Figure 1: The process and the effects of citrullination.

Watermelon (Citrullus lanatus L.) contains abundant arginine and citrulline as free amino acids. A) Peptidylarginine deiminase (PAD) enzymes convert 
peptidylarginine to peptidylcitrulline in a process called citrullination. The difference between arginine and citrulline is depicted in the red circles. B) The effects 
of PAD-catalysed citrullination. Loss of ionic interactions due to citrullination may destabilize intra- and intermolecular interactions, leading to the disruption of 
protein complexes and/or protein unfolding.
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Female reproduction: PAD6 was found to be mainly expressed 
in ovary, oocytes, and the early embryo. PAD6 is essential for female 
fertility and in PAD6-null mice developmental arrest was observed at 
the two-cell stage. In addition, PAD6 is essential for the formation of a 
cytoskeletal structure (termed lattices) in oocytes and early embryos. 
Given the abundance of PAD 1-4 in the female reproductive tissue and 
the regulation of their expression by estrogen [2], it seems very likely 
that, in addition to PAD6, the other PAD enzymes play important roles 
in the female reproductive system as well.

Other functions: PAD expression has been detected in other tissues 
as well. For example, PAD1 is also expressed in uterus. In addition to 
the CNS, PAD2 is expressed in various other tissues, including skeletal 
muscle, uterus, salivary glands, pancreas, bone marrow, macrophages, 
and epidermis. PAD3 has been detected in hair follicles and epidermis, 
while PAD6 expression was detected in ovary, peripheral blood 
leukocytes, and testis. The activities and functions of PADs in these 
tissues largely remain to be elucidated.

Citrullination and disease

The first disease for which a close linkage between citrullination 
and pathophysiology was established is RA. RA is a multifactorial 
disease in which genetic and environmental factors play an important 
role. Specific HLA-alleles, more precisely HLA-DRB1 alleles encoding 
the shared epitope (SE), result in RA-risk motifs on the HLA molecule 
[36]. Another example of a significant genetic predisposition is a 
polymorphism of PTPN22 that increases RA-risk in SE carriers [37]. 
Various environmental factors are suggested to influence disease 
development, the best documented of which is smoking [38].

Citrullinated proteins present in the joints are supposed to be a 
factor that causes ongoing inflammation in RA [43,44]. Moreover, anti-
citrullinated protein antibodies (ACPAs) are a diagnostic marker for 
RA, which can be found long before the onset of the disease [45].

Recently, we generated a subset of human recombinant ACPAs, 
termed ModiQuest-ACPAs (MQ-ACPAs), which prevent the onset 
of arthritis in both collagen-induced arthritis and collagen-antibody- 
induced arthritis mouse models [46]. Therapeutic administration of 
these antibodies results in the arrest of joint inflammation and prevents 
a further increase of the inflammatory response. The differentiating 
epitope that is recognized by MQ-ACPAs is the citrullinated N-terminus 
of histone 2A [46]. Next to RA, citrullination has been linked to various 
other diseases such as:

Periodontitis: Periodontitis is a chronic progressive inflammation 
that leads to bone resorption in the oral cavity. The major causative 
agent of the disease is P. gingivalis, especially in genetically predisposed 
individuals (HLA DRB1*04 alleles). Wegner et al. reported that P. 
gingivalis PAD rapidly citrullinates both bacterial and host peptides 
(fibrinogen and α-enolase) [47]. The citrullinated immuno-dominant 
epitope region (CEP-1) is 100% identical to an epitope present in P. 
gingivalis enolase, and antibodies to CEP-1 (found in 40–60% of 
RA patients) react with both human and P. gingivalis enolase [48]. 
Moreover, citrullinated α-enolase is found in RA synovial fluid [49], 
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Figure 2: PAD-mediated histone tail citrullination leads to chromatin 
decondensation.
PAD-mediated histone tail citrullination of positively charged arginines leads to 
uncharged citrullines, and subsequently to chromatin decondensation. Figure 
reproduced with permission from Mohanan et al. [4].

Citrullination in normal physiology
Epidermis

-   Keratinization (keratin, trichohyalin, filaggrin) [17]

Nervous system
-   Myelin sheath stability
-   Plasticity of the brain [17]

Gene regulation
-   P53 pathway [18-23]
-   Estrogen pathway [24,25]

Citrullination in pathophysiology
Innate immune responses

-    PAD4-catalysed histone hypercitrullination is essential in NET formation [26]
-  PAD2 interacts with inhibitor κB kinase, and suppresses NF-κB                                                                                                                                            

         activity in macrophages after lipopolysaccharide stimulation [27]

Chemokines
-   Citrullinated CXCL8
           1) has reduced affinity to glycosaminoglycans
           2) is resistant to thrombin/plasmin-dependent cleavage
           3) is unable to attract neutrophils to the peritoneum
           4) can more efficiently recruit neutrophils into the blood circulation [28]
-   Citrullinated CXCL12 has reduced effects through CXCR4 [29]
-   Citrullinated CXCL10 and CXCL11 have decreased chemoattracting and                                                                                                                                              

        signalling capacity through CXCR3 [30]

Effects of cytokines
-    TNF induces the translocation of PAD4 to the nucleus [31]

Psoriasis
-    Hypocitrullination of CK1 [27]

Tumorigenesis
-    Increased tissue citrullination [9]
-    Increased tissue and serum PAD4 [32,33]
-    PAD4 interference with p53 pathway [34]
-    Citrullination alters AT and CK [9,32,35]

Rheumatoid arthritis
-   Triggering of protein citrullination, followed by ACPA generation and disease                                                                                                                                          

         onset, induced by
           1) Genetic factors (HLA-DRB1, PTPN22)[36,37]
           2) Environmental factors (infection, smoking) [16,38]

Multiple sclerosis
-    Hypercitrullination of MBP [39]

Table 1: Roles of PADs and citrullination in (patho) physiology.
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MBP molecules resulting in a more open conformation. Although 
MBP-cit6 is capable of forming lipid complexes more rapidly than 
non-citrullinated MBP, these hypercitrullinated proteins are unable to 
organize lipid bilayers into compact multilayers, which in turn lead to 
instability of the myelin sheath [59]. The stability of the myelin sheath 
is further compromised due to an increased susceptibility of MBP-cit6 
to proteases such as cathepsin D [60]. The cause of hypercitrullination 
may be increased PAD2 and PAD4 expression levels [31] and/or 
hypomethylation of the PAD2 promoter [61]. In PAD2-knockout 
mice, CNS citrullination is abolished and demyelination is not seen 
[62]. Also, protein-hypercitrullination is reversed by inhibition of 
PAD2 in autoimmune MS mouse models [63]. Modulation of the 
activity of PAD4 by means of small molecule inhibitors indicates the 
potential therapeutic use for PAD inhibitors in MS pathology [64]. In 
a transgenic mouse line containing multiple copies of PAD2 cDNA, 
increased severity of clinical symptoms of MS is observed, in line with 
increased PAD2 expression and MBP citrullination [65]. Citrullinated 
peptide fragments from MBP elicit a Th1-polarized response of T cells 
isolated from MS patients [66]. Recently, PAD2 was shown to be located 
in the nucleus of mammary epithelial cells and in neuronal cells. Like 
PAD4, PAD2 may citrullinate histones [67,68], and therefore may play 
a role in gene regulation. In a transgenic mouse model overexpressing 
TNF, an elevated nuclear presence of PAD4 as well as increased levels of 
citrullinated histones were detected in the CNS prior to demyelination 
[31]. Taken together, increasing evidence indicates that (early) 
inflammatory responses play a role in the onset and progression of 
neurodegenerative diseases, though a causative role for citrullination in 
these conditions remains to be established.

Citrullination plays a fundamental role in inflammatory 
events

Historically, PAD activity is strongly associated with the regulation 
of autoimmune-mediated inflammatory events. The presence of 
citrullinated proteins prior to the onset of RA [69] indicates the 
contribution of PAD-mediated citrullination in autoimmunity. In MS 
patients, both PAD2 and PAD4 are significantly upregulated if compared 
to healthy individuals, possibly contributing to the development of the 
autoimmune responses in MS [70].

Recent studies suggest that PAD-mediated citrullination is elevated 
in a variety of inflammatory diseases, which lack a strong autoimmune 
component, such as COPD and chronic tonsillitis [51,71,72]. Perhaps 
the best demonstration that PAD-mediated citrullination can facilitate 
non-autoimmune inflammatory events is the recent finding that PAD 
activity is strongly up-regulated in inflamed tissue, following a sterile 
skin punch biopsy procedure in mice [73]. Thus, it can be inferred that 
citrullination plays a critical and fundamental role in inflammatory 
events induced by a range of pathologies, both infectious and non-
infectious.

It has become clear that citrullination is not a particular disease-
related event, but an inflammation-dependent process occurring in 
various inflamed tissues [51], like MS, RA, osteoarthritis, psoriatic 
arthritis, juvenile idiopathic arthritis, spondyloarthropathy, Parkinson’s 
disease, psoriasis, AD, autoimmune hepatitis, Lewy body dementia, 
and multiple system athrophy.

PAD4, expressed by infiltrating immune cells, plays an important 
role in (early) inflammatory processes. The activation of PAD4 and the 
subsequent citrullination of histones are involved in the inflammatory 
process. Citrullination of histones might result in the exposure of 

suggesting molecular mimicry (enolase) in the pathogenesis of RA.

Psoriasis: Psoriasis is a chronic immune-mediated disease, 
characterized by red scaly plaques on the skin, which sometimes is 
accompanied by arthritis. In psoriasis, keratinocytes proliferate very 
rapidly and travel from the basal layer to the surface in only about four 
days. This process normally takes about a month. The skin cannot shed 
these cells quickly enough so they accumulate in thick, dry patches or 
plaques. In normal keratinocytes, keratin 1 (CK1) is citrullinated by 
PAD1 during terminal differentiation. This process causes the keratin 
filaments to become more compact, which is essential for the normal 
cornification process of the epidermis. The keratinocytes in the psoriatic 
hyperproliferative plaques do not contain citrullinated CK1 [17] (Table 
1). It is intriguing that a small percentage of psoriasis patients with 
arthritis have ACPA, however, the presence of ACPA did not relate to 
radiological changes and/or deformity and functional impairment [50].

Inflammatory bowel disease (IBD): IBD, mainly Crohn’s disease 
and ulcerative colitis, is a dynamic, chronic inflammatory condition 
that is associated with an increased risk of colon cancer. Inflammatory 
cell apoptosis is a key mechanism for regulating IBD. PAD levels, as well 
as the levels of citrullinated proteins are elevated in mouse and human 
colitis [51,52]. Recently, Chumanevich et al. showed that the inhibition 
of citrullination results in a decreased inflammation in IBD [52].

Systemic lupus erythematosus (SLE): SLE is a systemic 
autoimmune disease that can affect any part of the body. As in other 
autoimmune diseases, the immune system attacks the body’s cells 
and tissues, resulting in inflammation and tissue damage. Inflamed 
tissues of SLE patients show increased levels of citrullinated proteins, 
including NET-associated histones [9]. Citrullination of histones 
arising from PAD4 activity during NETosis was recently shown to be 
a specific marker of NETs and necessary for NET formation [41,53]. 
Specific PTMs of histones within NETs may drive the process by which 
tolerance to NET-associated proteins is broken.

Alzheimer’s disease (AD): Abnormal accumulation of citrullinated 
proteins, such as GFAP, is found in the hippocampus of AD brains and 
these modified proteins show increased immunoreactivity, compared 
to proteins from normal brain. Recently, selective expression of PAD2 
and PAD4 in astrocytes and neurons was reported [54]. Citrullination 
of cerebral proteins by PAD2 occurs in regions undergoing 
neurodegeneration, suggesting that citrullination may promote the 
progression of neurodegenerative diseases [55,56].

Multiple sclerosis (MS): MS is an autoimmune demyelinating 
disease of the CNS with multifactorial etiology. Demyelation causes loss 
of nerve signals, which in turn results in many clinical manifestations 
(e.g. visual loss, extra-ocular movement disorders, paresthesias, loss 
of sensation, weakness, dysarthria, spasticity, ataxia, and bladder 
dysfunction). The development of MS might involve epigenetic 
changes, which are passed from parent to offspring, and are highly 
sensitive to environmental influences, such as smoking or vitamin D 
deficiency. These epigenetic mechanisms include DNA methylation, 
histone modification and microRNA-associated post-transcriptional 
gene silencing [57]. Moscarello et al. proposed that myelin damage in 
MS white matter results from a failure to maintain the myelin sheath, 
due to enhanced citrullination of MBP [39] (Table 1).  In approximately 
18% of the MBP molecules of healthy adult humans, 6 out of 19 
arginines are citrullinated (MBP-cit6: R25, R31, R122, R130, R159, R267). The 
remaining MBP molecules do not contain citrulline. In MS patients, 
the proportion of MBP-cit6 is increased to 45% of total MBP [58]. The 
decreased net positive charge of MBP-cit6 causes partial unfolding of 
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and optimization (including humanization), a number of antibody 
candidates were generated and their epitope target, a citrullinated 
histone, was identified. Some of these recombinant monoclonal ACPAs 
were tested for efficacy in two RA mouse models and the MQ-ACPA 
with the highest efficacy in the animal models is currently in preclinical 
development [46].

Mice studies have shown that this innovative approach prevents 
the onset of the inflammatory response and the progression of the 
inflammation. Also, these animal studies showed that during full-
blown arthritis, combination treatment with steroids and MQ-ACPA 
reduces joint swelling and subsequent flares, and further prevents joint 
damage to near normal levels without detectable side effects [46]. It is 
anticipated that in patients, after a limited period of treatment with 
MQ-ACPA, the immune system activation will have decreased to 
normal levels. Interference at an early stage will result in long-term 
remission and provide considerable cost benefits over current long-
term treatment regimens. For patients this means fewer side effects, no 
further joint damage, less pain, and a significantly improved quality of 
life.

Future anti-inflammatory therapeutics

As reviewed in this manuscript, citrullination of proteins has many 
physiological functions. Aberrant citrullination however, can play a 
role in the pathology of various diseases. Citrullinated histone epitopes 
are involved in the onset of the inflammatory responses.

Recently, various studies have shown that interfering with protein 
citrullination results in the attenuation of symptoms in several 
inflammatory disease animal models. In mouse models for IBD and 
RA it was demonstrated that the inhibition of PAD enzymes reduces 
inflammation [16,48-50].

Moscarello et al. recently reported that the amount of PAD enzymes 
and protein-citrullination in normal-appearing white matter of MS 
patients is enhanced, as compared to healthy individuals [63]. Protein-
hypercitrullination in neurodegenerative as well as autoimmune MS 
mouse models strongly correlates with disease severity and progression. 
Treatment with PAD inhibitors decreases PAD enzyme activity in the 
brain and in the spinal cord of these mice, resulting in lower amounts of 
citrullinated proteins and in remyelination of the CNS [63].

Inhibition of the PAD enzymes that are responsible for 
citrullination is a rational approach by which one can interfere with 
the protein citrullination pathway and thus with its various roles in 
inflammation [49,50]. Specific targeting of PAD inhibitors to cells or 
tissues may reduce the risk of negative side effects and cytotoxicity of 
these compounds. An alternative, more focussed approach, avoiding 
potential side effects and toxicity of PAD inhibitors, is the use of 
antibodies to block specific citrullinated epitopes that play critical roles 
in the inflammatory process.

Currently, the therapeutic needs in MS are largely unmet. Most 
therapies are based on modulation of a particular aspect of the immune 
system, without addressing the underlying causative process. Although 
some improvement in relapse rates has been observed, the basic 
causative pathology continues to exist.

Here, we propose that interfering with PAD enzyme activity and/
or citrullination may serve as a novel treatment strategy to enhance the 
MS patients’ quality of life.

neo-epitopes to the immune system, and aid to the many processes 
in which citrullinated histones play a role, such as the formation and 
stabilisation of NETs [74]. In addition, citrullination may be involved 
in anchoring various molecules to NETs, such as immune response 
stimulators (LL37, HMGB-1, elastase, and myeloperoxidase), and may 
thus promote the recruitment of phagocytes and other inflammatory 
immune cells. Finally, different histone modifications in NETs may 
activate or dampen the inflammatory response by acting on innate 
pattern recognition receptors [10].

Interfering with citrullination as a novel therapeutic approach 
for inflammatory diseases

Recently, various studies have shown that interfering with 
citrullination diminishes inflammation under various inflammatory 
conditions [45,52,75,76], and may be applicable in cancer therapy [34]. 

There are some obvious approaches to interfere with citrullination 
and its various roles in inflammation. One approach would be the use 
of PAD inhibitors [64,77-81]. It will be clear from the complex and 
diverse processes mediated by PAD enzymes that interfering with the 
activity of these enzymes provides serious challenges in regard to the 
specificity and potential toxicity of such inhibitors. PAD inhibition 
might induce severe adverse effects in skin physiology, development 
of CNS, gene regulation, the function of immune system, the female 
reproductive system, etc.

Targeting of PAD inhibitors to specific cells or tissues may reduce 
the risk of negative side effects and toxicity of these compounds. For 
instance, inhibiting PAD activity in tumour cells, via tumour cell- 
specific internalizing antibodies, might be a means to cause cytotoxic 
effects specifically in these tumour cells. Systemic application of PAD 
inhibitors requires a favorable balance between health benefit obtained 
and negative side effects introduced. This problem will be more 
pronounced when non-isoform-specific PAD inhibitors are used.

An alternative approach, avoiding the above-mentioned pitfalls, is 
the use of antibodies to block specific citrullinated epitopes that play a 
critical role in the inflammatory process.

As described above, various studies show that PAD enzyme 
expression is elevated upon initial inflammatory stimuli. This may 
cause (aberrant) citrullination of target molecules, which subsequently 
leads to pathogenic effects. In RA, increased PAD levels in the vicinity 
of citrullinated fibrin deposits are thought to be responsible for, and 
contribute to, the exacerbation of the disease [82]. PAD expression in 
neutrophils increases upon pro-inflammatory signalling, activating 
these cells. Subsequently, in activated neutrophils, PAD enzymes cause 
histone citrullination during NETosis, as described above [83]. The 
central role of citrullinated histones in early inflammatory responses 
makes it an attractive novel target for inflammatory disease intervention 
[46,84]. Indeed, specific citrullinated histone epitopes appear to be 
the differentiating epitopes for interference with the inflammatory 
response in animal models for arthritis using citrullinated histone-
specific antibodies (MQ-ACPAs) [46].

MQ-ACPAs were identified by screening recombinant human 
antibody phage display libraries made from antibody-producing cells 
obtained from RA patients. This yielded a subset of ACPA molecules 
recognizing a specific citrullinated peptide, which were subsequently 
tested in an arthritis animal model for their capacity to prevent the onset 
of inflammation and avoid joint damage. Only a very limited subset of 
antibodies showed a therapeutic effect. In a reiterative process of testing 



Citation: Chirivi RGS, van Rosmalen JWG, Jenniskens GJ, Pruijn GJ, Raats JMH (2013) Citrullination: A Target for Disease Intervention in Multiple 
Sclerosis and other Inflammatory Diseases? J Clin Cell Immunol 4: 146. doi:10.4172/2155-9899.1000146

Page 6 of 8

J Clin Cell Immunol                         ISSN:2155-9899 JCCI, an open access journal Multiple Sclerosis

The efficacy of antibodies (MQ-ACPAs) to block specific 
citrullinated epitopes that play critical roles in the inflammatory process 
was recently demonstrated in arthritis mouse models. MQ-ACPAs 
block a specific citrullinated histone epitope that is only present during 
inflammatory processes, resulting in the prevention of inflammation 
onset in RA animal models [46].

We anticipate that MQ-ACPAs, and other compounds that shield 
citrullinated epitopes from the immune system, will have a broad 
applicability in the prevention and treatment of various inflammatory 
diseases, such as MS and RA.
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