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Abstract

From a basic biological point of view, genetic traits from the human genome have been selected during a long
evolution in the fight for fitness. Since the susceptibility for CLL has a genotype, a theoretical question about its
advantage is relevant. This is a question about mutated monoclones and whether they are an advantage to man.
We suggest that the genetic capability to provide such monoclones could be explained as reminiscence from the
fetal life like a “Bad for the postnates, good for the prenates” principle. Some examples are described, e.g. the feto-
maternal processing of endogenous retrovirus in the production of placenta-specific transcripts of several genes in a
ceasefire balance with potential infectious exogenous retrovirus. The regulation of some cytokine reactions affected
lymphocytes and monocytes around the trophoblasts, which clearly has a specific clonal pattern. Feto-maternal
microchimerism with longstanding implanting of clonal maternal stem cells or lymphocytes in the offspring is yet
another example giving rise to later autoimmune reactions both in the mother and in the adult life of the offspring.
Based on the clinical association between CLL and the other malignant hematological disorders, seen as an
increased frequency of the diagnoses in affected families, a genetic linking of their susceptibility seems likely. This
entity of clonal disorders may then perhaps be seen as a previous feto-maternal genetic repertoire.

Keywords: Chronic lymphocytic leukemia; Malignant hematological
disorders; Genetic susceptibility; Placenta; Feto-maternal reactions;
Cancer genetics.

Introduction 
It is a basic biological matter of fact that organ structures and organ

functions, “form and function”, are subjects to a constant evolutionary
selection. In this process, traits of importance for the fitness, i.e. the
ability to reproduce in the present environment, are maintained and
further evolved while traits of no importance become rudimentary and
deleted. Diversification and production of new species are part of this
process [1,2]. Hence, an organism with a long evolution like Homo
sapiens has been through a long accumulation of traits in benefit for
the species under the given environmental conditions along with the
deletion of traits, which have been useful at earlier stages but are no
longer of importance for the fitness. From such a generalization, the
question arises whether man in the modern, protected society is still
influenced by evolutionary forces [3,4], and consequently whether
Chronic Lymphocytic Leukemia (CLL), which is the most common
type of leukemia among Caucasian and clearly a disease with
congenital risk [5-8], is influenced by evolutionary forces. The point
here is that the present day man certainly is a product of a long
evolutionary selection and hence that the “form and function” of the
modern man hardly present genetic traits without some importance,
or rather: traits, that have been selected for the human genome
because of an advantage [1-4].

CLL raises the question whether the genetics behind the disease, the
genotypic congenital susceptibility, is the result of selection of genes
which are an advantage to man? One would perhaps immediately
think that CLL is the result of an error mechanism late in life caused
by “age-dependent” mutations in lymphocytic progenitor cell at the

differential pathway from where the CLL monoclone is generated.
However, with the increasing knowledge on the genetics of CLL, and
with CLL as the prototype of malignant lymphoproliferative disorders,
we know today that CLL is no random-mutation disease [5-9]. A
number of congenital risk alleles have been shown to represent the
inborn susceptibility in the form of the genetic code necessary for the
mutation [10-14]. From all what we know today the mutation behind
the generation of the malignant CLL monoclone depends on the
presence of this inherited genotype of susceptibility which seems to
have a non-Mendelian segregation in affected families [15], a marked
male predominance [16], ethnic predisposition [16], and signs of
epigenetic parental imprinting [17-21]. The association between CLL
and other malignant lymphoproliferative disorders [22,23], and a
small, yet significant number of myeloproliferative disorders [15]
indicate that most likely, a linked multi-risk gene complex is on
question. This explains perhaps why no clear Mendelian pattern can
be seen in the transgenerational inheritance of these disorders, because
a clear Mendelian mode of segregation (dominant, recessive, X- or Y-
linked etc.) was originally related to monogenes with marked
penetrance.

This, indeed, is far from a random-error mutation disease, but
clearly shows signs of a complex genetic master. It is nearly
unthinkable that such a system in a species like man, at a top position
of the natural selection, should have no beneficial effect, and no
positive selective force to fitness. Therefore, it is relevant to put the
question, where in life is the mobilization of a lymphoid monoclone
advantageous? One obvious answer is the fetal life and the increasing
focus on physiological viral affinity for placenta. One example is the
physiological expression of retrovirus in fetal trophoblasts and the
fascinating effect of endogenous retrovirus in the production of
placenta- specific transcripts of several genes [24-26]. In this process
the RNA of endogenous retrovirus undergo revers transcription into
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double stranded DNA and become part of the genome of the germ
lines of egg and sperm. Without further infection, endogenous
retrovirus is able to transfer via gamets from parent to offspring in
many generations. In contrast, exogenous retrovirus is present in the
genome of somatic cells. Since the production of sperms is a
longstanding process while the production of eggs is restricted to a
short period of female embryonic life, males are supposed to be more
exposed to the effect of endogenous retrovirus and thus more prone to
provide placenta specific transcripts of genes promoted by retrovirus if
no parental genomic imprinting takes place [26-28]. The presence of
endogenous and exogenous retrovirus and monogenic transcripts in
the placenta together with transgenerational transcripts from many
generations of affected families undoubtedly represent a tolerated
balance between genes from mother-fetus and fetus-mother with a
pronounced risk of infection if no very sufficient immunological
surveillance were present [29-31]. Innate immunological defects, e.g.
lack of mannan-binding lectin prove the relationship between such
immunological defects and abortions [32,33]. In this scenario, the
interaction of gene specific, monoclonal lymphocytes in the form of
mature maternal lymphocytes seem indispensable and lymphocytic
infiltrates in the infected placenta are seen accordingly (Figure 1).

Figure 1: Severe chronic lymphocytic villitis in a third trimester
placenta. Arrows show agglutinated terminal villi with necrotic
trophoblast and infiltration by lymphocytes . Hematoxylin-eosin x
200

There is a striking match between the genetics of CLL [15,17,18]
and the way genes can use retroviral promotors for the production of
placenta specific transcripts (non-Mendelian transgenerational
segregation, male predominance, and epigenetic parental imprinting).
That may be interpreted as a “form and function” in common. “Bad
for the postnates, good for the prenates” is the title of a textbook
chapter dealing with genetic functions [34], e.g. type I diabetes
mellitus, that is bad for postnates but maintained at high frequency
because at some stages of the fetal life, a diabetogeneic growth pattern
represent a selected advantage to the fetus [34,35].

CLL may well be seen by analogy with this mechanism: a feto-
maternal need for monoclonal reaction or at least monoclonal
surveillance of the physiological processing of retrovirus and their
transcripts, and the risk later in life to express these genes. A need so
strong that natural selection has preserved this function in spite of the

risk for CLL later in life but mainly after fertile age. We are just at the
beginning of this area, and many questions are awaiting an answer but
both examples concern induced patterns of growth factors with a
crucial fetal function.

The interaction between the potent immune system of the mother
and the delicate innate system of the fetus provide defense and
reactions against each other at the same time. If no tolerance were
achieved, mother would destroy fetus. Tolerance denotes here
regulation or silence of a great number of immune functions.
Examples are the maternal production of antibodies against the
paternal HLA of the fetus which are, however, not harmful. Down
regulation of cytokine reactions affecting the cytotoxic T lymphocytes,
killer NK lymphocytes and macrophages in the placenta, together with
a number of other very specific functions, for review see [36]. In the
normal polyclonal immune response of the pregnant woman, a
number of humeral and cellular functions here and there at different
clonal levels in the polyclonal symphony are orchestrated in such a
way that mother and fetus tolerate the antigens of the feto-maternal
complex, and that mother and fetus are protected from infections. The
repertoire of infectious antigens is smaller in fetal life than after birth
[36]. However, protection against specific and highly potent antigens
such as lymphotropic herpes virus and unbalanced endogenous-
exogenous retrovirus is highly needed. Instead of a general
mobilization of the whole interacting immune system of the mother
coordinated with the innate immune system of the fetus, a restricted
purposive defense involving only those clones relevant to the specific
antigen would case less systemic danger. Thus, not all, but only
specific immune functions are regulated into beneficial monoclonal or
oligoclonal functions during the pregnancy.

A bi-directional traffic of lymphocytes between mother and fetus is
well described in the normal pregnancy [37,38]. In some cases, this
traffic cause fetal engraftment with maternal stem cells and lifelong
feto-maternal microchimerism [39-41]. In this way the mother can
transfer specific, clonal traits from her own “self” to the offspring
which later in adult life has been attributed to the pathophysiology of
autoimmune, connective tissue diseases [39-41]. This could be yet
another beneficial oligo- or monoclonal reminiscence from fetal life.

From knowledge available today, CLL and the other malignant
lymphoproliferative disorders are linked with regard to their inherited
susceptibility, seen in affected families as an increased frequency of all
the diagnoses and even with a slightly increased frequency of
myeloproliferative disorders. In familial CLL for instance, defined as a
family with two or more cases of CLL, we also see an increased
frequency of other malignant hematological disorders [15]. Familial
malignant non-Hodgkin’s lymphoma has a diversity of subsets of
lymphomas [22], and familial Hodgkin’s lymphoma is mixed with CLL
and other lymphoproliferative disorders [42,43]. Multiple myeloma
related to CLL has been discussed [44]. This pleiotropic co-expression
may well be interpreted as a linked, congenital predisposition to
monoclonal lymphocytic growth. In agreement with hereditary linked
co-expression, genome-wide association studies confirm the existence
of a mosaic of susceptibility loci to CLL [45], shared susceptibility to
follicular lymphoma and diffuse large B-cell lymphoma [46], and
specific risk loci for Hodgkin’s lymphoma [47] associated with HLA
[48]. Genetic anticipation [49] may be the mechanism to preserve
these advantageous and selected traits down through the generations.
If so, this linking between the malignant hematological disorders may
then perhaps reflect a united genetic repertoire from the feto-maternal
period of life.
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