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ABSTRACT
Recent work by Ciernia et al. (2020) identified how genetic and epigenetic mechanisms interact to regulate innate

immune memory in bone marrow derived macrophages. The authors examined the BTBR strain, a naturally

occurring mouse model of Autism Spectrum Disorder (ASD) that captures the complex genetics, behavioral and

immune dysregulation found in the human disorder. Immune cell cultures from the BTBR strain compared to the

standard C57 showed hyper-responsive immune gene expression that was linked to altered chromatin accessibility at

sites with genetic differences between the strains. Together, findings from this work demonstrated that multiple levels

of gene regulation likely dictate the formation of innate immune memory and are likely disrupted in immune cells in

ASD. Future work will be needed to extend these findings to immune gene regulation in the brain and how changes

in immune function are related to abnormal behaviors in brain disorders.
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COMMENTARY

Autism spectrum disorder (ASD) currently affects 1 in 66
children in Canada, making it one of the most prevalent forms
of childhood neurodevelopmental abnormalities. ASD is
characterized by impairments in social communication and the
presence of restricted interests and repetitive behaviors [1].
Symptoms are highly heterogeneous varying from mild to severe
and are further complicated by the frequent occurrence of
comorbidities [2]. The underlying etiology of ASD is equally as
complex and involves both environmental and genetic risk
factors [3-5]. While ASD is highly heritable, the genetic
architecture is complex with hundreds of gene variants and copy
number variants (CNV) associated with ASD [6]. Together,
genetic analysis can currently only identify a potentially causative
genetic abnormality in 20% of clinically diagnosed ASD cases
[7]. However, these genetic studies have identified several
categories of genes that have been implicated in ASD, including
synaptic genes and regulators of chromatin structure and
transcription [8]. A variety of epigenetic mechanisms appear
disrupted in ASD including DNA methylation [9-11], post-

translational modifications of histone tails [12], and non-coding
RNAs [13]. Studies identifying differentially expressed genes in
postmortem ASD brain samples have identified misregulation of
both neuronal and immune genes [13-16], suggesting that
epigenetic regulation of interactions between innate immune
responses and neuronal activity play a critical role in the etiology
of ASD.

Children with ASD often display a variety of immune related
abnormalities [17] including altered brain, cerebral spinal fluid,
and blood cytokine expression [18], as well as changes in both
peripheral immune cell populations [19] and alterations in
microglia morphology and density [20-24]. Together, this
evidence suggests a disruption in the critical link between the
developing immune system and fetal brain. There has been
growing investment in understanding how microglia, the
resident innate immune cells of the brain, are impacted in brain
disorders like ASD. Microglia are uniquely long-lived cells that
self-renew over the lifespan [25,26], suggesting that processes
dictating early microglial development can have long-lasting
impacts on cellular function and disease development. In
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addition to their role as the brain’ s resident immune cells,
microglia play critical roles in maintaining normal brain
function through interactions with other brain cell types to
regulate neuronal cell number [27], shape brain circuitry [28,29],
and fine-tune neuronal connections [30-32] throughout life.

In reaction to an inflammatory event, microglia rapidly
upregulate expression of pro-inflammatory genes and adopt a
less-ramified morphology conducive for increased phagocytosis.
After the resolution of the inflammatory event, microglia can
remain “ primed ”, a permissive state in which subsequent
immune challenges produce exacerbated inflammatory
responses. Microglial priming has been observed to exacerbate
pathology in mouse models of aging [33,34], Multiple Sclerosis
[35], Parkinson’s Disease [36], stroke [37,38], and Alzheimer’s
Disease [39-41]. In contrast to priming, repeated exposure to
pathogens or other infectious agents can produce a subsequent
repression of immune activation (tolerance), preventing the
development of chronic inflammation or sepsis. While the
mechanisms regulating innate immune memory in microglia are
poorly understood [38,42,43], more easily accessible peripheral
macrophage populations have served as model systems for
identifying epigenetic regulators of innate immune memory.

Recent work from our lab describes how changes in chromatin
accessibility contribute to altered innate immune memory in the
bone marrow derived macrophage (BMDM) cultures from the
BTBR T+Itpr3tf/J (BTBR) mouse strain, a common model for
ASD. BTBR mice were derived from an inbred strain carrying
the at (nonagouti; black and tan) and wild type T (brachyury)
mutations that were crossed with mice with the tufted (Itpr3tf)
allele. This mouse strain shows impairments in social behaviors,
increased repetitive behaviors [44-48], and numerous genetic
[49] and anatomical [50] alterations compared to the standard
C57BL/6J mouse, making it a widely used model for ASD [51].
In addition, there is increasing evidence that BTBR mice also
show increased baseline inflammation similar to that observed
in children with ASD [51-54] and hence may serve as a more
representative model of multiple genetic hits combined with
environmentally driven inflammation. BTBR mice show
increased levels of multiple cytokines in the brain (IL-1β, IL-18,
IL-33, IL-6, and IL-12) [52] as well as increases in microglial
numbers [55] and expression of microglial activation markers.

The complexity of the BTBR model allowed us to examine how
differences in strain genetics and epigenetics potentially
combine to impact immune gene regulation. We specifically
examined how BMDM from each strain responded to repeated
treatments with lipopolysaccharide (LPS), a component of the
outer wall of gram-negative bacteria. Repeated low dose
exposures to LPS has previously been shown to induce an
endotoxin tolerance [56], in which repeated exposures result in
blunted pro-inflammatory gene expression responses. This
paradigm has been widely used to study immune gene
regulation, and suppression of pro-inflammatory genes during
the formation of tolerance requires epigenetic regulation [56,57].
Following repeated treatment with LPS to mimic repeated
bacterial infections, we validated previously observed hyper-
responses in immune gene expression in the BTBR compared to
C57. Many of the genes that were tolerized (repressed) in

expression in response to repeated LPS in C57, failed to fully
attenuate in the BTBR. To begin to identify potential
mechanisms underlying the differences in gene regulation
between the strains, we profiled chromatin accessibility using
ATAC-sequencing. Previous work examining nucleosome
positioning at the Il6 promoter region demonstrated that
changes in chromatin accessibility were key for induction of
immune tolerance of Il6 expression [56]. Consequently, we
sought to test the hypothesis that differences in chromatin
accessibility between the strains would help explain differences
in gene expression.

We identified differentially accessible regions (DARs) between
strains and LPS treatments. The majority of LPS responsive
regions were similar between strains, but there was a significant
subset that showed differential levels of accessibility in response
to LPS between strains. For example, several hundred regions
showed either higher or lower accessibility at baseline between
the strains. These same regions then showed altered responses to
subsequent LPS treatment. For example, these inaccessible
regions in the BTBR at baseline failed to open in response to
LPS. These baseline DARs were enriched for markers of active
enhancers, suggesting that they are regulatory regions with
differential regulation between strains. Similarly, a subset of
regions that changed chromatin accessibility in response to
repeated LPS in the C57, failed to change in the BTBR. There
were also regions that were uniquely responsive in the BTBR to
LPS, together indicating both a failure in chromatin dynamics in
some regions and abnormal chromatin dynamics in others.
These regions were significantly enriched for strain-specific
genetic variants, supporting the hypothesis that differences in
the BTBR genome underlie at least some of the altered
chromatin responses to LPS treatment. The strain-specific
genetic variants were predicted to alter transcription factor
binding of a few known regulatory factors, but the majority of
motifs were similarly represented between the strains across LPS
treatments. This suggests that changes in chromatin accessibility
may contribute to altered gene expression through mechanisms
beyond simple transcription factor accessibility, such as altered
histone modifications or long-range chromatin interactions.

Histone modifications have been demonstrated to play
important roles in the regulation of innate immune memory
[56-58]. In a model of β-glucan induced immune priming,
H3K4me1 (monomethylation of the 4th lysine residue of histone
3), a hallmark of enhancer regions [59-61], has been shown to
increase in parallel with de novo H3K27ac (acetylation at the 27th

lysine residue of histone 3) marks at distal regulatory regions in
macrophages [58]. Interestingly, H3K4me1 marks remained
elevated despite the return of H3K27ac to baseline at these
regions [43,58]. Histone methylation relaxes local chromatin
structure, allowing for steric accessibility to transcriptional
machinery and increased gene expression. Thus, the persistent
accumulation of H3K4me1 has been implicated as an epigenetic
mechanism of establishing long-term innate immune memory
[43,57,58]. In another study, treatment with LPS delayed the
deposition of H3K27ac and H3K4me3 (trimethylation of the 4th

lysine residue of histone 3), which predominantly marks active
promoter regions [5961], in macrophages at promoters of pro-
inflammatory genes, which attenuated responses to a secondary
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LPS challenge and contributed to immune tolerance [57,62].
However, how well these findings translate to microglia is
uncertain. Transcriptomic and epigenomic (ATAC-seq and
ChIP-seq) analysis of resident macrophage populations across
numerous tissues, including brain microglia, revealed tissue-of-
origin specific signatures [63-65], indicating that microglia have
unique epigenetic profiles that differentiate them from other
macrophages.

Figure 1: Genetic variation influences differential epigenetic
regulation (histone modifications, long-range chromatin
interactions) that shapes innate immune phenotypes in Autism
Spectrum Disorder.

While the literature surrounding histone modifications
regulating innate immune memory has thus far focused mainly
on H3K27ac and H3K4me3, there are undoubtedly numerous
additional histone modifications and other epigenetic
mechanisms that act in concert to regulate gene transcription.
For example, long-range chromatin interactions have recently
been shown to play important roles in various central nervous
system disorders [66,67] and in innate immune memory [68]. In
a foundational study of brain cell-type specific promoter-
enhancer interactions, Nott et al. (2019) found that microglial
enhancers were significantly enriched for Alzheimer’s Disease
(AD) risk variants identified in two landmark large-scale
genome-wide association studies [69,70]. Proximity ligation-
assisted ChIP-seq (PLACseq), a method which identifies long-
range chromatin interactions between specific regions, revealed
that AD-risk variants were linked to distal active promoters
rather than simply the most proximal gene promoter, as had
been previously assumed. Furthermore, enhancers harboring
AD-risk variants were PLAC-linked to active promoters of both
known AD genes from GWAS studies and an extended subset of
novel genes [66]. In ASD, genome-wide profiling of enhancer
marks (H3K27ac) of 257 postmortem ASD and matched control
brain samples, showed increased acetylation for genes involved
in synaptic function and neuronal excitability and decreased
acetylation for genes involved in immune process related to
microglia [12]. ASD has also been linked to polymorphisms in
enhancer regions including the 5p14.1 locus, a region that
exhibits enhancer activity that regulates expression of neurons in
an autism-associated mouse model [71,72]. These findings
highlight the importance of interpreting changes in histone

modifications in the larger context of promoter-enhancer
interactions in establishing innate immune memory and
immune gene regulation abnormalities in ASD.

Repeated exposure to LPS has been shown to result in priming
and tolerance of responses to subsequent immune challenges
[38,43,57], thus serving as a valuable model for studying basic
mechanisms of innate immune memory. Microglia also appears
to show both priming and tolerance to repeated peripheral
injections of LPS, leading to changes in cellular morphology,
phagocytosis activity and gene expression [37,38]. Innate
immune priming and tolerance in the brain also appear to rely
on epigenetic regulation of microglia [38]; however, how well
these mechanisms mirror those observed in peripheral
macrophages or cultured immune cells is unclear. Together the
findings of Ciernia et al. (2020) help lay the ground work for
understanding how genetics and epigenetics combine to alter
immune function in cultured macrophages. Future work will be
needed to mechanistically test how epigenetic mechanisms
coordinate gene expression in microglia and how these
mechanisms may be perturbed in brain disorders such as ASD.
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