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Abstract
Treatment of articular cartilage injury is challenging due in part to the paucity of potential repair cells within 

articular cartilage. While chondrocytes can be expanded in culture and returned to the site of injury, autologous 
applications require removal of healthy articular cartilage - a limited resource. Additional sources of chondrogenic 
progenitor cells that may be suitable for articular cartilage repair include Mesenchymal Stem Cells (MSCs) isolated 
from more abundant tissues such as bone marrow, synovium, infrapatellar fat pad, subcutaneous fat, periosteum, 
perichondrium, and muscle.
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Introduction
Articular cartilage has a unique functional architecture that permits 

movement and load transmission with exceptionally low coefficients of 
friction. Traumatic and degenerative lesions to articular cartilage heal 
poorly due in part to the relative paucity of resident repair cells and the 
absence of a blood supply for recruitment of cells and bioactive factors 
necessary for repair [1]. While partial thickness chondral lesions do 
not heal [2], full thickness lesions that penetrate the subchondral 
bone access the blood supply resulting in an influx of repair cells 
which contribute to the formation of fibrous or fibrocartilaginous 
repair tissues. However, the resulting repair tissue lacks the structural, 
biochemical, and biomechanical properties of age-matched normal 
articular cartilage [3,4]. 

While chondral lesions are often left untreated, due to both limited 
treatment options as well as a seemingly non-progressive course, there 
is now evidence that even small lesions may lead to osteoarthritis (OA). 
Some reports reveal that a high proportion of articular cartilage lesions 
result in clinical symptoms or radiological changes when observed for 
more than 10 years [4,5]. For this reason, there is strong interest in 
whether early treatment of cartilage lesions can prevent or delay the 
onset of osteoarthritis.

Current treatment techniques include microfracture, chondrocyte 
implantation, and osteochondral grafting. Microfracture, in which 
small perforations are made through the subchondral plate to facilitate 
entry of repair cells from the underlying bone marrow, is simple and 
commonly performed. The influx of mesenchymal stem cells (MSCs) 
and blood clot into the defect produces type I and II collage and 
proteoglycans, but the reparative cells fail to organize a healthy layered 
structure. The resulting fibrocartilage shows a variable architecture that 
is biochemically and biomechanically different from healthy articular 
cartilage [3].

Symptomatic chondral lesions can be also treated with structurally 
normal articular cartilage through transplantation of osteochondral 
grafts. A shortage of available tissue limits the use of both osteochondral 
allografts and autografts. Autograft tissue is in such short supply that 
it is an option only for relatively small lesions. Additional limitations 
include the potential for donor site morbidity and difficulty healing 
between osteochondral grafts when multiple smaller diameter plugs are 
used to fill a larger defect. For large defects, allograft tissue is available 
but expensive and carries risks of disease transmission as well as loss of 
viable donor cells during storage [6].

Consequently, there has been longstanding interest in improving 
articular cartilage repair through the implantation of chondrocyte 
progenitor cells into symptomatic chondral defects. Chondrocytes 
function to restore the extracellular matrix [7], and thus have potential 

in recreating a type II collagen dominant hyaline repair cartilage to 
restore the joint surface. During embryogenesis, articular cartilage 
forms through the condensation of MSCs, which then undergo 
differentiation to chondrocytes. The articular cartilage formed has an 
abundance of type II collagen and proteoglycans, which serve to protect 
the ends of bones and articulate movement. Chondrocytes make up a 
small component of the tissue, with chondrocytes embedded within the 
matrix at a low density. Homeostatic matrix turnover is coordinated 
by the chondrocytes through tightly regulated anabolic and catabolic 
processes and involves growth factors, cytokines, and matrix degrading 
enzymes [8].

Autologous Chondrocyte Implantation (ACI) aims to provide 
complete hyaline repair tissues for articular cartilage repair. In this 
technique, normal articular cartilage is harvested arthroscopically from 
a non-weight-bearing area, the cells are expanded in vitro, and then the 
chondrocytes are applied on the damaged area during a second knee 
surgery [9]. Although good results have been reported with ACI [10,11], 
the quantity of harvested chondrocytes from non-weight bearing areas 
of cartilage is limited. Consequently, the chondrocytes harvested from 
small biopsies must be culture expanded where dedifferentiation 
occurs. Dedifferentiated cells exhibit a reduction of collagen II, IX, XI 
and aggrecan production and an increase of collagen I and III that are 
typical of unhealthy cartilage or fibrocartilaginous tissues [12].

Given the challenges of current treatment modalities for cartilage 
repair, there is intense interest in stem cell mediated therapies. A 
chondrocyte progenitor cell is any cell that may transform into a 
chondrocyte. Stem cells, the term often used interchangeable with 
progenitor cells, can be described by their potency. Pluripotent stem 
cells can differentiate into cells derived from any of the three germ 
layers. Multipotent stem cells can give rise to cells from multiple, but 
a limited number, of lineages; i.e., can produce only cells of a closely 
related family of cells [8]. Mesenchymal stem cells (MSCs), an example 
of multipotent stem cells, can differentiate into a number of tissues, 
including bone, adipose tissue, and cartilage. This review will focus on 
a number of MSCs locations that are potential sources of chondrogenic 
cells.
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Chondrocytes and their Ability for Repair
Previously it had been thought that chondrocytes have no ability to 

self-repair. This poor capacity for self-repair of articular cartilage has 
been explained by cell senescence and the lack of chondroprogenitor 
cells [2,13]. However, it has recently been demonstrated that human 
articular chondrocytes cultured in vitro display phenotypic plasticity 
with chondrogenic, adipogenic and osteogenic potential [14-16].

The surface of mature articular cartilage contains chondrocytes as 
well as collagen fibrils that run parallel to the joint surface. This surface 
layer serves a unique role, as it maintains the mechanical response of 
articular cartilage to load. The superficial surface is the first layer to 
degrade due to shear forces. This has brought about a specific interest in 
regeneration of the surface zone layer of cartilage [17-20]. Hayes et al. 
[19], was able to isolate progenitor cells from the surface zone of 7-day-
old bovine calf articular cartilage. Karlsson et al. [13], then studied 
the origin of these progenitor cells. Using BrdU injections to label 
progenitor cells, the authors demonstrated two important findings in 
3-month old Monodelphis domestica (opossum) [13]. First, there are 
slow-cycling cells in the surface zone of the articular cartilage. Second, 
a stem cell niche was noted in the perichondrial groove of Ranvier, an 
area near the physis of the joint. The authors suggest that the cells in the 
perichondrial groove of Ranvier may function as a reservoir of MSCs. 
Further, it is also possible that these cells can migrate to the surface of 
the articular cartilage [13].

Specialized cells with chondrogenic progenitor properties have 
also been identified by another group [21]. The cells, termed “Side 
Population” (SP) cells, are based on a characteristic pattern by flow 
cytometry analysis to discriminate SP cells based on the differential 
efflux of Hoechst 33342 dye by a multi-drug-like transporter [21,22]. 
Hattori et al. [21], isolated SP cells from the superficial zone articular 
cartilage, and then demonstrated the presence of progenitor cells that 
can differentiate towards superficial articular chondrocytes.

Despite these new studies that show chondrogenic potential with 
articular cartilage, injury to the cartilage, ranging from focal cartilage 
defects to tricompartmental osteoarthritis, still show little innate 
ability for repair. Further, cartilage injury disrupts the surface layer of 
cartilage, where progenitor cells are found. Therefore, other sources 
of chondrocyte progenitor cells may be useful in treatment of these 
injuries. 

Other Potential Sources of Chondrocyte Progenitor 
Cells

Most studies involving chondrocyte progenitor cells focus on 
new techniques for cartilage repair. The goal has been to find easily 
accessible stem cells that, under optimized conditions, can differentiate 
into chondrocytes that function to restore the articular cartilage surface. 

Bone marrow

The best characterised populations of MSCs are those originating 
from bone marrow. Under appropriate culture conditions, bone 
marrow derived MSCs have been shown to selectively form adipocytes, 
osteoblasts, fibroblasts, and chondrocytes in vitro [4,23,24]. Multiple 
studies have shown that bone marrow derived MSCs differentiate into 
cells with chondrogenic progenitor cell properties, and some even show 
their superiority over other stem cell sources, such as adipose tissue 
derived MSCs [25] and fetal lung and placental-derived MSCs [26].

Bone marrow derived MSCs have been used in vivo. Wakitani et 
al. [27], implanted bone marrow derived stem cells embedded into a 

collagen gel into full-thickness osteochondral defects in the medial 
femoral condyles of rabbits and showed that there lesions were 
histologically superior according to the total histologic grading, and 
mechanically stiffer and less compliant compared to empty defects. 

Further, this technique has been used in multiple human studies. 
Patients with medial unicompartmental knee osteoarthritis underwent 
high tibial osteotomy and bone marrow MSC transplantation [28]. 
Bone marrow MSCs were aspirated from the iliac crest, expanded in 
vitro, embedded within a collagen scaffold, and then transferred into 
the defect and covered with autologous periosteum. Post-operatively, 
compared to cell-free controls, the lesions were arthroscopically and 
histologically superior based upon quantitative scoring of the reparative 
tissue, although there were differences in clinical outcome. In a similar 
study [29], this technique was used in two patients who presented with 
knee pain due to cartilage defects. Two years after surgery, the authors 
concluded that autologous bone marrow MSC transplantation was 
an effective approach for promoting the repair of articular cartilage 
defects. However, the authors note that upon arthroscopic follow-
up, the defects had been repaired with fibrocartilage. In 2007, the 
authors used bone marrow MSC transplantation to repair lesions of 
the patellofemoral joint, noting improved patient outcomes but also 
reporting fibrocartilaginous tissue at the defect site [30]. Similarly, 
Kuroda et al. [31], used bone marrow MSCs for repair of a full thickness 
cartilage defect of the medial femoral condyle. The authors’ again 
aspirated bone marrow from the iliac crest, expanded the cells in vitro, 
embedded the cells within a collagen scaffold, and then transferred this 
scaffold into the defect. The patient reported return to previous level of 
activity without pain, and unlike the previous two studies that showed 
unhealthy tissue, histology showed hyaline-like cartilage tissue within 
the defect.

Using a variation of the technique, Haleem et al. [32], culture 
expanded autologous bone marrow MSCs, intra-operatively placed 
them on platelet rich fibrin glue, and then positioned the construct into 
full-thickness cartilage defects of femoral condyles and covered them 
with an autologous periosteal flap. Clinically, all patients had significant 
improvement, and 12 month post-operative MRI revealed complete 
defect fill and complete surface congruity with native cartilage, whereas 
that of 2 patients showed incomplete congruity.

Wakitani et al. [33], subsequently evaluated the safety of all patients 
that had undergone bone marrow MSCs transplants, and reported no 
infections or tumor growths. Bone marrow derived MSCs have other 
advantages. Unlike microfracture, which delivers a limited source of 
MSCs to the defect area, bone marrow derived MSCs can be expanded 
in vitro. 

Additionally, as opposed to ACI, the use of bone marrow MSCs 
does not require more than one surgery. However, given that the bone 
marrow may not be the optimal source of MSCs due to the painful and 
risk-containing sampling procedure, isolation of stem cells from other 
sources would bring an attractive alternative. Over the past several 
years, other sources of MSCs with chondrogenic potential have been 
identified. 

Synovial cells

Synovial cells are reported to have good capacity for differentiating 
into cartilage [4,34]. In 2001, De Bari et al. [35], isolated MSCs from 
the synovial membrane of human knees. Under the appropriate 
culture conditions, the authors were able to induce the differentiation 
of synovial membrane-derived cells to chondrocytes, osteocytes, and 
adipocytes. Since this initial development, the chondrogenic potential 
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is often completed during arthroscopy to enhance visualization, and 
thus this option may be feasible in patients already undergoing surgery 
[47]. In fact, in patients with osteochondral defects, diagnostic or 
therapeutic arthroscopy may be the ideal time to obtain tissue since 
there is minimal additional morbidity associated with obtaining this 
tissue. Further, it may be possible to perform a biopsy of the IFP in 
order to obtain mesenchymal stem cells to treat young patients. 

In addition to ease of access and lower donor site morbidity, 
especially compared to bone marrow aspiration and liposuction, some 
suggest that IFP offers greater potential due to its larger tissue mass. 
Therefore, it may be used without the need for tissue culture expansion. 
Also, the tissue is more consistent than synovial tissue, which can 
become inflamed or fibrotic in certain disease states. 

The fat pad as a source of MSCs may also be especially important 
in patients with advanced OA, as English et al. [48], has shown that 
stem cells isolated from the fat pad of patients with OA have good 
chondrogenesis while these same patients have poor chondrogenesis 
from harvested OA cartilage. Khan et al. [49], additionally showed 
that MSCs from the IFP do have chondrogenic potential, and this is 
increased at a lower oxygen tension (5% oxygen). 

In vivo studies have used adipose derived MSCs from the IFP 
in prevention of OA. Toghraie et al. [50], obtained MSCs for the 
IFP of rabbits and expanded the cells in vitro. The expanded MSCs 
were later injected into the knee joints of the rabbits 12 weeks after 
anterior cruciate ligament transection. Rabbits receiving MSCs showed 
lower degree of cartilage degeneration, osteophyte formation, and 
subchondral sclerosis than control group at 20 week after surgery. 
Further, the quality of cartilage was significantly better in MSC-treated 
group compared with control group after 20 weeks, leading the authors 
to conclude that IFP derived MSCs could be the promising cell sources 
for the treatment of OA.

In addition to the chondrogenic potential of adipose derived 
MSCs harvested from the IFP, Lee et al. [51], showed that Superficial 
Zone Protein (SZP) is expressed by IFP obtained from bovine knees. 
Superficial zone protein is known to be produced by chondrocytes and 
synovial cells, and acts as a lubricant within the joint. The discovery of 
SZP expression by IFP provides further potential for IFP as a source of 
MSCs, since it may be able to stimulate the superficial zone of articular 
cartilage.

Subcutaneous fat

In addition to adipose tissue obtained from IFP, MSCs can also be 
isolated for subcutaneous fat. Liposuction is readily performed, and 
an isolation procedure for the isolation of MSCs from adipose tissue 
has been described [52-54]. Human liposuction aspirates contain 
multipotential cells, often known as processed lipoaspirate cells [47].

While adipose derived stem cells, either from IFP or subcutaneous 
fat, are an easily accessible and plentiful cell source, how to better 
promote chondrogenesis is warranted. Some authors have shown that 
fat derived MSCs are equal to bone marrow derived MSCs [55]. Others 
have demonstrated that the two populations are difficult to compare 
due to unique responses to growth factor chondrogenic induction [45] 
or higher initial cell numbers with adipose derived MSCs that may 
distort results [56]. Overall, however, most studies have shown that fat 
derived MSCs have inferior chondrogenic potential in comparison to 
bone marrow derived MSCs [25] [57-60]. 

Periosteum

Periosteum has been studied as a source of chondrogenic progenitor 

of MSCs in the synovial membrane have been explored in multiple 
studies. Yoshimura et al. [36], showed superior chondrogenic potential 
in in vitro pellet culture in rat MSCs taken from synovial membrane 
compared to that taken from bone marrow, periosteum, adipose 
tissue, and muscle tissue [36]. The same group also compared the 
chondrogenic potential of human MSCs derived from bone marrow, 
synovium, periosteum, adipose tissue, and skeletal muscle of patients 
undergoing anterior cruciate ligament reconstruction. Synovium-
derived cells had the greatest ability for chondrogenesis [34,37]. To 
further distinguish an optimal source of chondrogenic progenitor cells, 
the group compared cells derived from fibrous synovium, adipose 
synovium (also known as the infrapatellar fat pad), and subcutaneous 
fat. The authors showed comparable chondrogenic potential in the 
fibrous synovium- and adipose synovium-derived cells, and higher 
chondrogenic potential in both compared to subcutaneous fat [38].

These ideas were carried on to an in vivo model by Koga et al. [39]. 
The authors transplanted MSCs derived from bone marrow, synovial 
membrane, adipose tissue, or muscle tissue, mixed in a collagen gel 
and covered with a periosteal patch, into rabbit cartilage defects. After 
four weeks, rabbits transplanted with BM and synovial membrane had 
superior cartilage matrix within the defect.

Tissue from the synovial membrane can be harvested from the 
knee during arthroscopy with minimal complications. Synovial tissue 
has high self-regenerative capability, as show by its ability to fully heal 
after synovectomy in animals [40,41].

Adipose tissue

Adipose-derived stromal cells have been studied more recently. 
They are more readily available than bone marrow derived stem cells, 
which involves aspiration of bone marrow cells in a procedure that 
has risks and complications. Under specific and controlled culture 
conditions, adult human adipose tissue can be induced to express the 
phenotypic characteristics of chondrocytes, osteoblasts, adipocytes, or 
neurons [42-45].

While the tissue described as fat, apidose, or lipoaspirate can 
often be lumped together for simplicity, adipose tissue obtained from 
subcutaneous fat and Infrapatellar Fat Pad (IFP) differ. The IFP is a 
heterogeneous and fibrous structure, and histologic studies show that 
much of the fat pad is dense collagenous tissue [46]. However, the IFP 
contains the cell surface markers used to identify MSCs, although they 
are not identical to those of subcutaneous fat or bone marrow derived 
stromal cells. This may be a reflection of the significant numbers of 
fibroblasts since it can be described as dense connective tissue. As such, 
some authors [38] refer to the IFP as adipose synovium. Overall, it is 
important to consider that although subcutaneous fat and IFP may be 
described synonomously, the two tissues may have different properties 
and produce differences in chondrogenesis.

Infrapatellar fat pad

There are many advantages of IFP as the source of MSCs. In 
humans, obtaining IFP tissue may be more feasiable in certain patients. 
IFP resection is well tolerated in patients undergoing total knee 
arthroplasty, as the fat pad is easy to resect and is no longer necessary 
following replacement. Additionally, patients with chronic fat pad 
impingement and fibrosis (Hoffa’s disease) undergo complete resection 
of the IFP as treatment for their disease process. Despite the ease of 
access to the IFP, both of these patient populations may have unhealthy 
cells given the chronicity of their disease. In young, active patients, 
resection of the fat pad is invasive. An important part of the surgical 
technique is to maintain the anterior capsular layer. Partial resection 
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cells for nearly two decades. As described above, Wakitani et al. [27], 
collected both periosteal and bone marrow-derived cells from rabbits, 
cultured the cells in vitro, and then used the cultured cells embedded in 
a collagen gel to fill full thickness osteochondral defects of the medial 
femoral condyle. The authors concluded that hyaline-like cartilage 
developed in the defects filled with either periosteum or bone marrow, 
with no differences between the two cell sources. 

Further work to characterize periosteum-derived stem cells has 
been developed by O’Driscoll’s group. They describe the cambium layer 
(the inner layer) of the periosteum as the location of chondrogenic 
precursor cells [61]. In an additional study, similar to other sources of 
MSCs, the group showed that chondrogenic potential decreases with 
age [62]. In an effort to maximize chonogenic potential, Fukumoto 
et al. [63], showed that the addition of IGF-1 and TGF-β1 can help 
regulate the differentiation of periosteal MSCs during chondrogenesis 
[63].

Perichondrium

Perichondrium has also been explored as a source of chondrogenic 
precursors. Doenchis et al. [64], characterized the chondrocytic 
phenotype of perichondrium-derived cells, noting that exogenous 
TGF-β1 upregulates the expression of type II collagen in vitro. Chu 
et al. [65], evaluated osteochondral repair after implantation of an 
allogenic perichondrium cell polylactic acid composite graft into full 
thickness defects of the medial femoral condyle in rabbits. While none 
of the specimens returned to normal at one year, hyaline like tissue 
was dominant at one year, and compressive properties were similar to 
untreated controls.

The chondrodgenic potential of MSCs from periosteum/
perichondrium, bone marrow, and fat was evaluated by Park et al. [66]. 
Using MSCs isolated from adult rats, the authors showed periosteum/
perichondrium and bone marrow derived MSCs to be superior to fat 
derived MSCs both in vitro and in vivo, with impressive upregulation 
of type II collagen mRNA, high levels of type II and IX collagen in the 
in vitro work.

Muscle

Adachi et al. [67], looked at implantation of muscle derived 
MSCs or chondrocytes embedded in collagen gels into full thickness 
articular cartilage defects of the trochlea of rabbits. In vitro, following 
4 weeks of culture, the muscle derived MSC group had a siginificantly 
higher number of cells. In vivo, at 4, 12, and 24 weeks post-operative, 
the muscle derived MSC and chondrocyte groups were similar and 
superior to the gel control group. Following this study, the same group 
also demonstrated that sex influences chondrogenic differentiation 
and cartilage regeneration potential, with male muscle derived MSCs 
superior over female [68]. To understand muscle derived MSCs 
further, Li et al. [69], isolated both fascia derived cells from the gluteus 
maximus muscle fascia and muscle derived cells from the muscle body 
of rats. Both populations alone had chondrogenic potential, and mixed 
pellets of the populations indicated that the chondrogenic potential 
decreased with the increased ratio of myogenic cells to fascia derived 
cells, suggesting that non-myogenic cells residing in the fascia of skeletal 
muscle have a strong chondrogenic potential and may represent a novel 
donor cell source for cartilage regeneration and repair.

Embryonic stem cells

In addition to the multiple sources of adult MSCs described above, 
Embryonic Stem Cells (ESCs) are an additional source of stem cells. 
Unlike multipotent MSCs, ESCs are pluripotent and can potentially 

provide an unlimited supply of cells. However, this also means that 
undifferentiated ECSs are tumorigenic. Therefore, in vitro work 
to direct differentiation and expansion of ESCs is very important, 
including precision regarding growth factors, signaling, additives, 
small molecules, and media conditions [70]. 

A myriad of studies have used in vivo models of ESCs applied 
using hydrogels or polymer scaffolds. Wakitani et al. [71] transplanted 
ESCs into articular cartilage defects in immunosuppressed rats, 
with the ESCs producing cartilage which resulted in repair of the 
defects at 8 weeks after the transplantation without formation of any 
teratomas. Hwang et al. [72] treated rat osteochondral defects with 
chondrogenically committed human ESC derived MSCs. At 8 weeks 
post-operative, the authors described normal cartilage architecture. 
Similarly, Toh et al. [73], filled rat osteochondral defects with human 
ESC derived chondrogenic cell-engineered cartilage and noted 
regenerated osteochondral tissue resembled closely that of age-matched 
unoperated native control. Overall, these studies suggest the potential 
of ESCs in the treatment of articular cartilage defects, although there is 
much work ahead before this cartilage regeneration can be employed.

Conclusions
Chondrogenic potential in vitro and in vivo treatment options

The in vitro chondrogenic potential of MSCs is well established. 
Pittenger et al. [42], demonstrated the chondrogenic potential of 
MSCs during pellet culture, and numerous other methods have since 
been described, from culture in alginate and agarose gels [8,74] as 
well as tissue engineering biomaterials that promote chondrogenesis. 
Culture media, substrate, cell density [75], growth factors, oxygen 
tension [8,44,76,77] and methods for improved cell selection require 
optimization to support consistent chondrocyte differentiation and 
improved cartilage repair. Using well described in vitro laboratory 
techniques of Ficoll gradient followed by monolayer culture to assist 
in isolating MSCs, both large animal [78,79] and human [32] studies 
show potential for improved cartilage repair through the addition 
of cultured MSCs. However, the major barriers toward improving 
cartilage repair clinically in humans remains the extreme low numbers 
of pluripotential progenitor cells within minimally manipulated 
mesenchymal cell preparations as well as the difficulty in assessing 
clinical outcomes following cartilage repair procedures. The in vitro 
and preclinical promise of stem cell and chondrogenic progenitor cell 
therapies to promote chondrogenesis will need to be tempered against 
these barriers to clinical translation in future research and development 
of new treatment options for symptomatic chondral defects.
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