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Introduction
The reduction of nitroarenes is an important process as the 

products, aromatic amines carrying chloro-, carbonyl, cyano, etc. 
groups are important intermediates in the synthesis of chemicals such 
as antioxidants, dyes, pigments, photographic, pharmaceutical and 
agricultural materials [1-3]. Several reviews and book chapters have 
covered the continuous progress in this field of reduction of nitroarenes 
to aromatic amines [4-7]. Aromatic amines can be produced from the 
corresponding nitroarenes by catalytic hydrogenation [8-15]. Catalytic 
hydrogenation is a clean and convenient method, but when other 
reducible groups are present in the molecule, it is difficult to reduce 
the nitro group selectively in a catalytic hydrogenation. Alternative to 
catalytic hydrogenation; the catalytic transfer hydrogenation (CTH) has 
been also used for nitro reductions in which alcohols, hydrocarbons, 
hydrazines, organic acids and their salts etc. are employed as hydrogen 
source with a wide range of metal-based catalysts [16-23]. The 
nitroarenes reduction using reducing metals such as zinc, tin and 
iron has been reported in presence of an acid [24,25] or salts [26,27]. 
However, notable disadvantages to these methods include high reaction 
temperatures, incompatibility of acid-sensitive functional groups, 
lack the chemoselectivity over other functional groups and reduction 
of aromatic nitro compounds often yield a mixture of products [28]. 
The notable applications of in-situ generated carbonic acids (from CO2 
and water) in conjunction with Fe/Zn as reducing metals have been 
recently demonstrated in the reduction of nitroarenes [29,30]. However 
necessary requirement of CO2 pressure to activate iron through in-situ 

generated carbonic acid (using water) and high reaction temperature 
(120°C) (to achieve high yields) were drawbacks of these methods 
[29,30]. An efficient catalytic reduction of water for generation of 
hydrogen is one of the most challenging transformations in chemistry 
[31]. Recently our research group has demonstrated that water 
activated through reducing metals (Zn, Mg) act as green source of 
hydrogen including for hydrogen transfer reactions [32,33]. Poliakoff 
and Boix [34] have tried the reduction of nitroarenes using a metallic 
reducing reagent directly in pure water at 250°C. The yield of aniline 
was only 10% using iron powder under the given reaction conditions. 
Wang et al. [35] applied nano-sized activated metallic iron powder for 
the reduction of nitroarenes directly in water, and good reaction yield 
can be achieved at 210°C. However, nano-sized metallic iron powder is 
expensive and also high reaction temperature is a limiting factor [35]. 
Ranu et al. [36] developed elegant method for reduction of nitroarenes 
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to aromatic amines using pre-synthesized iron nanoparticle. However, 
such pre-requisite synthesis of iron nanoparticle (using iron sulfate as 
iron precursor, sodium borohydride as reducing agent and citric acid 
as stabilizing agent) imposes additional chemicals and their cost, post 
processing problems and chemical wastes in the process. In above cases 
[34-36], an efficient reduction of nitroarenes using commercial metallic 
iron was in-effective. Moreover the search for new, mild, and selective 
reduction methods for nitro compounds to amines is still an active area 
of research. Herein, we are pleased to disclose a novel and mild reaction 
protocol for reduction of nitroarenes using cheap, non-hazardous, 
abundant, and eco-friendly “water-iron” pair as hydrogen donor 
(Scheme 1) without any external catalysts or additives. stoichiometric 
of the reaction can be formulated as follows (Scheme 1).

R NO24 + 9 Fe + 4 H2O R NH2 + 3 Fe3O44Water

50 °C, 29h  

Scheme 1

Experimental
General

Chemicals were purchased from commercial firms [Nitroarenes 
purchased from Sigma Aldrich and iron powder (about 90 mesh) from 
BDH Chemicals] and used without further purification. Reactions 
were performed in a 30 Cm or 20 Cm pressure glass tube with closing 
cap. GC analyses were performed using Focus GC from Thermo 
Electron Corporation, equipped with low polarity ZB-5 column. GC-
MS analyses were performed using Trace 1300 Gas Chromatograph 
model from Thermo Scientific, equipped with the Rxi-1ms (crossbond 
100% dimethyl polysiloxane) column. 1H-NMR spectra were recorded 
with Bruker DRX-400 instrument in CDCl3. XRD measurements were 
performed on a D8 Advance diffractometer (Bruker AXS, Karlsruhe, 
Germany).

Experimental procedure for nitroarenes hydrogenations 
reactions

In a typical reaction; 0.23 g (4 mmol) iron powder, water (10 mL) 
and 0.14 g p-nitrotoluene (1 mmol) was placed in a pressure glass tube 
equipped with a magnetic stirrer. The tube was sealed and heated with 
stirring for 29 hours at 50°C. At the end of reaction, the reaction glass 
tube was allowed to come at room temperature. The product p-toludine 
was extracted with diethylether (15 × 3=45 mL) followed by filtration 
using Whatman paper, dried with magnesium sulphate and analyzed 
by GC. The GC analysis shows >99.9% of p-nitrotoluene conversion to 
p-toludine. The residue after solvent (diethylether) evaporation affords 
the desired p-toludine product of good purity (Isolated yield=90%). 
The isolated product was further characterized by NMR (1H).

Results and Discussion
In a typical example a mixture of 1 mmol p-nitrotoluene (0.14 

g), iron powder (4 mmol, 0.22 g), and 10 ml of water was placed in a 
pressure glass tube equipped with a magnetic stirrer. The tube was sealed 
and heated with stirring at 50°C for 29 hours. After cooling the reaction 
mixture was found to contain 0.1 g of p-toludine and >99% yield (based 
on GC area) and 0.28 g (crude weight) of Fe3O4. p-Nitrotoluene was 
selected as model substrate for optimization study in the present work 
(Table 1). Initially reaction temperature was optimized while other 
reaction parameters [4 equivalent of iron, water (10 mL), 29 h] kept 
constant (Table 1). The reduction of p-nitrotoluene was carried out at 

room temperature (RT) showed 64% conversion of p-nitrotoluene to 
p-toludine (Table 1, entry 1). In the next step reaction temperatures were 
increased from RT to 50°C (Table 1, entries 2-3); at 50°C (Table 1, entry 
3) the quantitative and selective conversion (>99%) of p-nitrotoluene 
to p-toludine was observed. Further study for increase of reaction 
temperature upto 100°C reveals that, the reaction was selective below 
80°C temperature (Table 1, entry 5) while at 100°C product selectivity 
was slightly decreased to 98% (Table 1, entry 6). It should be noted 
that the selective reduction of a nitro group to corresponding amine is 
a difficult task because reduction of aromatic nitro compounds often 
stops at an intermediate stage, producing hydroxylamines, hydrazines 
and azoarenes as side products [37]. Next various amount of iron 
powder from 4 equivalent to 2 equivalent (Table 1, entries 3, 8-9) 
were tested. The 4 equivalent of iron was sufficient for quantitative 
and selective reduction of p-nitrotoluene 1 to p-toludine 2 (Table 1, 
entry 3). Using 3.0 and 2.0 equivalent of iron, incomplete reduction 
of p-nitrotoluene was observed (Table 1, entries 8-9). In the complete 
absence of iron (Table 1, entry 11) or water (Table 1, entry 12), a 
neglible or no conversion of p-nitrotoluene to p-toludine was observed. 
The decrease of reaction time to less than 29 h resulted into incomplete 
p-nitrotoluene conversion (Table 1, entry 4). An effective stirring was 
found critical for the reaction to achieve quantitative conversion of 
nitroarenes. Finally 4 equivalent of iron, 50°C reaction temperature 
and 29 h reaction time set as optimum reaction parameters to achieve 
desired conversion and selectivity for nitro reduction under given 
conditions (Table 1, entry 3). Under the optimized reaction conditions 
(Table 1, entry 3), we performed hydrogenation of nitroarenes with 
diverse substituent groups. Importantly, the present reaction protocol 
was found to be a highly active and almost exclusively selective for the 
hydrogenation of substituted nitroarenes. Apart from p- nitrotoluene 
(Table 2, entry 1), other substituted nitrobenzenes having electron-
donor or electron-withdrawing groups were also furnished with better 
to excellent yields (Table 2). Notably, halogen-substituted nitroarenes 
proceeded smoothly to the respective haloaromatic amines without 
any dehelogenation (Table 2, entries 4-6). Moreover, present reaction 
system also showed remarkable chemoselectivity in the hydrogenation 
of the challenging substrates bearing other easily reducible functional 
groups. The reducible functional groups in aromatic nitro substrates 
such as ether (Table 2, entries 7-8), nitrile (Table 2, entry 9), alkene 
(Table 2, entry 10), and ester (Table 2, entry 11) remained unaffected, 
thus giving the corresponding amines selectively. Moreover, bicyclic 
2-nitronaphthalene also successfully reduced to corresponding 
2-aminonaphthalene (Table 2, entry 12). We assert that the described 
system is composed of consecutive steps of hydrogen generation 
followed by hydrogenation rather than direct transfer hydrogenation 
(TH) from water to nitroarenes. This is supported by experimental 
observations. Under closed vessel conditions p-nitrotoluene was 
quantitatively converted to p-toludine (Table 1; entry 3). However; the 
reaction in an open tube showed only 41% conversion of p-nitrotoluene 
to p-toludine (Table 1, entry 12). In addition we found that iron is 
readily oxidized to magnetite even in the absence of p-nitrotoluene. 
The amount of hydrogen evolved from iron oxidation only with pure 
water was measured (for example; 2.9 mmol of hydrogen was evolved 
starting from 5 mmol of iron (0) powder under given conditions) [38]. 
It is well known fact that dissolved CO2 may accelerate the water-iron 
reaction to generate the hydrogen [29,30]. To exclude the presence of 
CO2 in water; we have used degassed distilled water (water was purged 
with nitrogen for 5 minutes before use) for p-nitrotoluene reduction 
under optimized reaction condition (Table 1, entry X). Here also 
reaction resulted into similar output (>99% conversion and selectivity) 
and rule out the role of dissolved CO2 in the activation of water-iron 
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and waste-free approch towards reduction of nitroarenes.
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