

Open Access

CDH13 is Frequently Inactivated by Promoter Hypermethylation in Pediatric Acute Myeloid Leukemia (AML)

Tao Yan-Fang¹, Feng Xing¹, Wang Jian¹, Zhao Wen-Li¹, Xiao-Juan Du², Wu Shui-Yan¹, Wang Na¹, Hu Shao-Yan¹, Cao Lan¹, Li Yan-Hong¹, Ni Jian³ and Pan Jian^{1*}

¹Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China

²Department of Gastroenterology, The 5th Hospital of Chinese PLA, Yin Chuan, Ningxia Province, China

³Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China

Abstract

There is growing evidence supporting a role for tumor suppressor as targets in aberrant mechanisms of DNA hypermethylation. Methylation in the promoter of tumor suppressor always plays important roles in pediatric Acute Myeloid Leukemia (AML). CDH13 gene is a tumor suppressor involved in tumorigenesis, metastasis and apoptosis in a variety of tumors. In this study, we are trying to investigate whether CDH13 was down regulated by promoter methylation in pediatric AML. MRNA transcriptional expression levels of CDH13 were evaluated by semi-quantitative PCR and real-time PCR. Methylation status of CDH13 prompter was investigated by Methylation Specific PCR (MSP) and Bisulfate Genomic Sequencing (BGS). CDH13 mRNA transcription was inactivated in AML cell lines. Promoter of CDH13 was aberrantly methylated in 55.6% (5/9) leukemia cell lines. Promoter aberrant methylation of CDH13 was detected in 34.2% (24/70) of the cases of pediatric AML. The methylation of CDH13 promoter could be detected in all FAB subtypes. There were no significant differences in clinical features between patients with and without CDH13 methylation. Expression of CDH13 was significantly lower in AML patients group compared to normal bone marrow (NBM) control samples . The expression of CDH13 in thirty controls was significantly higher than pediatric AML patients. Both patients with CDH13 methylation (n=24) and those without CDH13 methylation (n=46) had significantly lower CDH13 transcript than controls (p<0.001). CDH13 transcript was significantly lower in patients with methylated CDH13 than those without methylated CDH13 (p=0.036). Inactivation of CDH13 by promoter hypermethylation is frequent event in pediatric AML. Our results suggest that hypermethylation of CDH13 promoter might be one of early events in the development of pediatric AML.

Keywords: CDH13; Methylation; AML; Genetics; Pediatrics

Introduction

Acute leukemia is the most common malignancy diagnosed in children, representing nearly one third of all pediatric cancers. Pediatric Acute Myeloid Leukemia (AML) comprises up to 20% of whole childhood leukemia. Pediatric AML is a heterogeneous clonal disorder of hematopoietic progenitor cells, is a complex and lifethreatening disease which lose the ability to differentiate normally [1]. Recently, epigenetic and methylation disorders, such as aberrant promoter hypermethylation and abnormal histone modifications have been implicated in the pathogenesis of leukemia [2,3]. These include aberrations in methylation, which is a key epigenetic event responsible for enhanced proliferation and self-renewal, differentiation arrest, and impaired apoptosis of leukemic cells [4]. Inactivation of tumor suppressor genes by promoter hypermethylation has been recognized as key event in the development of pediatric AML. Compared to the incidences of DNA mutations and deletions, the frequency of aberrant DNA methylation of tumor suppressor genes is high in AML. This suggests that aberrant DNA methylation has important roles in this rare cancer. Identifying these methylated genes and deeply study of these genes may provide better understanding of many tumors, including pediatric AML [5].

CDH13 (also known as H-cadherin and T-cadherin) is a member of the cadherin gene super family which was isolated and mapped to 16q24. *CDH13* hypermethylation has been documented in breast [6-8], lung cancers [9-11], pituitary adenomas [12,13], diffuse large B cell lymphoma [14], nasopharyngeal carcinoma [15-18] and cutaneous squamous cell carcinomas [19,20]. *CDH13* has been suggested as an early marker for lung cancers [21]. It is generally associated with poor prognosis of patients with lung cancers [22,23], ovarian cancers [24], basal cell cancers [20] and gallbladder carcinomas [25], cervical cancers [26-28] and prostate cancers [29-31].

There are several studies suggested that CDH13 may functions as

a tumor suppressor gene and possesses potent antitumor activity in several human cancers both *in vitro* and *in vivo*. Over-expression of *CDH13* in MDA-MB-435 (human breast cancer cells) can reduce their invasive and tumor formation potential *in vitro* and *in vivo* [32]. Loss of *CDH13* is associated with tumorigenicity of human non-small cell lung cancers. Over expression of *CDH13* in cutaneous squamous cell carcinoma cells can induce a delay in the G2/M cell cycle and inhibit the proliferation of cancer cells [20].

To date, there have been few reports in relation to the expression of CDH13 and the methylation status of its promoter in pediatric leukemia. In this study, we have provided the first evidence of CDH13 methylation in both AML cell lines and pediatric samples. These suggest that CDH13 may function as a tumor suppressor in pediatric AML.

Materials and Methods

Cell lines

Leukemia cell lines HL-60, MV4-11, SHI-1, U937, DAMI, K562 and SHI-1 were obtained from the American Type Culture Collection (ATCC). Jurkat and 697 cells lines (gifts from Professor Wang Jian-Rong, The Cyrus Tang Hematology center of Soochow University).

*Corresponding author: Pan Jian, Associate professor, Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China, Tel: (86)512-67788216; Fax: (86)512-67788216; E-mail: panjian2008@163.com

Received March 15, 2013; Accepted April 23, 2013; Published April 26, 2013

Citation: Yan-Fang T, Xing F, Jian W, Wen-Li Z, Du XJ, et al. (2013) *CDH13* is Frequently Inactivated by Promoter Hypermethylation in Pediatric Acute Myeloid Leukemia (AML). J Hematol Thromb Dis 1: 111. doi: 10.4172/2329-8790.1000111

Copyright: © 2013 Yan-Fang T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 9

The entire cell lines were maintained at 37°C in the RPMI 1640 supplemented with 10% fetal bovine serum.

Patients and samples

Bone marrow specimens were obtained at the time of diagnosis during routine clinical assessment of 70 patients with AML, who presented at the Department of Hematology and Oncology, Children's Hospital of Soochow University between 2000 and 2010. Ethical approval was provided by the Children's Hospital of Soochow University Ethics Committee (No. SUEC2000-021), and informed consent was obtained from the parents or guardians. AML diagnosis was made in accordance with the revised French-American-British (FAB) classification. Cytogenetic data were available in 64 patients. The main clinical and laboratory features of the patient cohort are summarized in table 1. Additionally, bone marrow samples from 12 healthy donors and 18 patients with Idiopathic Thrombocytopenic Purpura (ITP) were analyzed as controls. Bone marrow Mononuclear Cells (BMNCs) were isolated using Ficoll solution within 2 h after bone marrow samples harvested and immediately subjected for the extraction of total RNA and genomic DNA.

Semi-quantitative RT-PCR

RT-PCR was analyzed according to the manufacturer's instructions. Primer sequences for *CDH13* cDNA were designed according to Sun [18], generating a 203-bp PCR product: *CDH13*-RT-forward: TTCAGCAGAAAGTGTTCCATAT and *CDH13*-RTreverse: GTGCATGGACGAACAGAGT. PCR was carried out in a total volume of 20 μ l system. Glyceraldehyde-3-Phosphate Dehydrogenase (*GAPDH*) was amplified from the same cDNA sample as the internal control. The primer sequences for *GAPDH* cDNA were: GAPDH-RT-forward: AAGCTCACTGGCATGGCCTT, and GAPDH -RT-reverse:CTCTCTTCTCTCTTGTGCTCTTG, generating a 375-bp PCR product. PCR conditions were 94°C for 30 s, 58°C for 30 s (*CDH13*) or 60°C for 30 s (*GAPDH*), and 72°C for 30 s, 33 cycles for the *CDH13* gene and 24 cycles for the *GAPDH* gene. The amplified PCR products were then identified on 2% agarose gels. Images were acquired with a CCD camera (Bio-Rad, USA).

Quantitative Real-time PCR

RNA isolation and first-strand cDNA was synthesized as described

above. Real-time PCR was performed according to the manufacturer's protocol (Light Cycler 480 system, Roche). In brief, PCR mixture contained 100 pmol of each primer, Light Cycler 480 SYBR Green I Master (04 887 352 001 Roche, USA) and 2 μ l cDNA. PCR conditions were 94°C for 10 s, 60°C for 10 s and 72°C for 15 s, 45cycles for the *CDH13* and *GAPDH* gene.

Sodium bisulphite modification of genomic DNA

The sodium bisulphite modification procedure was according to the manufacturer's instructions of EZ DNA methylation Gold Kit (www. zymoresearch.com). Briefly 2 μ g of extracted DNA was bisulphite-modified with the EZ DNA methylation Kit which converted all unmethylated cytosines to uracils and leaving methylcytosines unaltered. Modified DNA was resuspended in TE buffer (10 mM Tris/HCl, 1 mM EDTA, pH 7.5).

Methylation-specific PCR

The methylation status of the CDH13 promoter region was determined by methylation-specific PCR. Primers distinguishing unmethylated (U) and methylated (M) alleles were designed to amplify the sequence: CDH13-M-forward: 5-GTTTTTTTGGTGAGTTTTCGTTTCGTTC-3; CDH13-Mreverse: 5-AATACCAAATCTCCCTATTCTCCGCG-3; CDH13-U-forward: 5-TTGTTTTTTTGGTGAGTTTTTGTTTTGTTTT-3; CDH13-U-reverse: 5-AAAATACCAAATCTCCCTATTCTCCCACA-3.

Each PCR reaction contained 20 ng of sodium bisulphitemodified DNA, 250 pmol of each primer, 250 pmol deoxynucleoside triphosphate, $1 \times$ PCR buffer, and one unit of ExTaq HS polymerase (Takara, Tokyo) in a final reaction volume of 20 µl. Cycling conditions were initial denaturation at 95°C for 3 min, 40 cycles of 94°C for 30 s, 58°C (M) or 56°C (U) for 30 s, and 72°C for 30 s. PCR products were separated on 2% agarose gels.

Bisulfite genomic sequencing

Bisulfite Genomic Sequencing (BGS) were performed as previously described [33]. BGS primers were CDH13-F1:5-AAAGAAGTAAATGGGATGTTATTTT-3 and CDH13-R1:5-ACCAAAACCAATAACTTTACAAAAC-3.

CDH13-F2: 5- GTGATGTTGTTGTTGATTTATTTGG -3 and

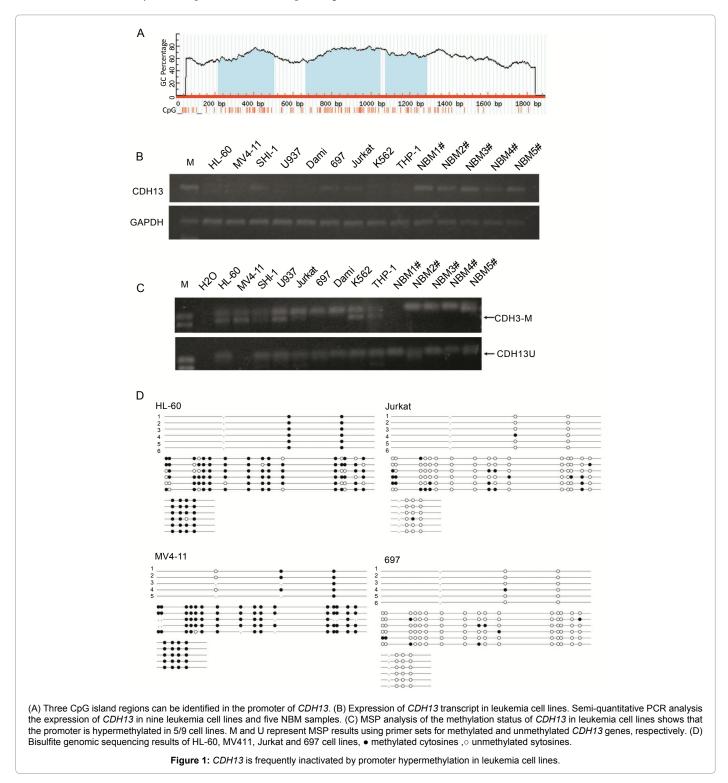
Patient's parameter	Status of CDH13 methylation					
	Methylated (n=24)	Unmethylated(n=46)	Total	p value		
Age (median and range, year)	6.30(1-13)	6.72(1-11)	6.47(1-13)	0.94		
Gender (male and female)	14/10	20/26	34/46	0.88		
Laboratory parameters (median and range)	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
WBC (10%/L)	16.72(0.8-51.1)	16.31(0.8-43.6)	16.43(0.8-51.1)	0.90		
Hemoglobin (g/L)	75.36(32-176)	72.11(32-107)	73.20(32-176)	0.83		
Platelet count (10 ⁹ /L)	68.37(12-310)	64.12(23-273)	65.54(12-310)	0.75		
FAB subtype, n						
M1	2	10	12			
M2	12	20	32			
M3	6	4	10			
M4	2	3	5			
M5	5	4	9	0.22		
Cytogenetic, n		· · · ·	· · · · · · · · · · · · · · · · · · ·			
Normal	10	13	23			
Abnormal	24	21	45	0.61		
CDH13 transcript	0.53	1.72	1.31	0.04*		

* p<0.05 FAB, French-American-British; WBC, white blood cells.

Table 1: Correlation of CDH13 methylation with clinical features in pediatric AML patients.

CDH13-R2: 5- AACCCCTCTTCCCTACCTAAAA-3. Amplified BGS products were TA-cloned and five to six randomly chosen colonies were sequenced. DNA sequences were analyzed with BiQ Analyzer (http://biq-analyzer.bioinf.mpi-inf.mpg.de). (Additional files 1 and 2).

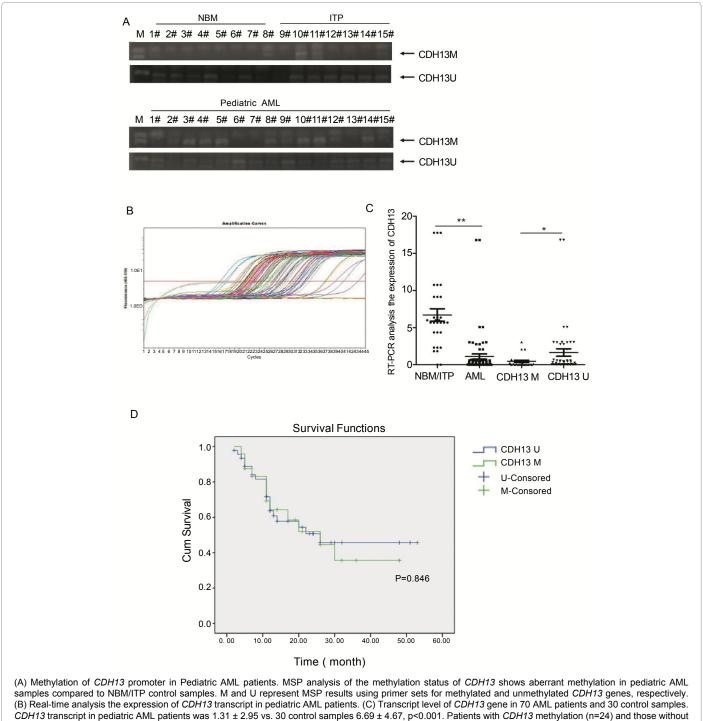
features of AML patients were analyzed by Pearson chi-square test or Fisher's exact test. p<0.05 was considered statistically significant.


Results

CpG islands in the promoter of CDH13

SPSS v11.5 (SPSS Inc., Chicago, IL) was used for statistical analysis. Association between methylated sample data and clinical pathological

Statistical analysis


Previously, we have analyzed the expression profiles of two AML cells before and after treatment with 5-Aza and found that the *CDH13*

may be related with promoter methylation in AML cells. We analyzed the sequence of CDH13 promoter and found there are three CpG island areas in the promoter of CDH13 (Figure 1A). The correlation between aberrant methylation and downregulation of CDH13 has been extensively documented in numerous cancers and cell lines, as lung caner, gastrointestinal system, reproductive system and numerous cell lines. There still rare repots about the methylation status of CDH13 in blood system, especially in the pediatric leukemia.

Expression of CDH13 transcript in leukemia cell lines

Semi-quantitative PCR analysis showed CDH13 transcript is very low in nine leukemia cell lines. The expression of CDH13 in only three cell lines can be detected (3/9). Mean while, the expression of CDH13 in NBM group is significantly higher; the expression of CDH13 in all of 5 NBM samples can be detected with PCR (Figure 1B).

CDH13 transcript in pediatric AML patients was 1.31 ± 2.95 vs. 30 control samples 6.69 ± 4.67, p<0.001. Patients with CDH13 methylation (n=24) and those without CDH13 methylation (n=46) had significantly lower CDH13 transcript than controls (p<0.001) (D) Survival analysis the Pediatric AML patients with methylated and unmethylated CDH13.

Figure 2: CDH13 is frequently inactivated by promoter hypermethylation in pediatric AML.

CDH13 promoter is hypermethylated in leukemia cell lines

Methylation-specific PCR (MSP) assays were performed to detect the methylation status of the CDH13 promoter in 9 leukemia cell lines. The MSP primer was designed using MethPrimer (http://www.urogene. org/cgi-bin/methprimer/methprimer.cgi) to encompass the CpG islands of the CDH13 promoter identified in figure 1A. The CDH13 promoter was hypermethylated in 5 of 9 leukemia cell lines (HL-60, MV4-11, U937, K562 and THP-1). SHI-1, Jurkat, 697 and DAMI cells were unmethylated representative results of MSP were shown in figure 1C. Promoter methylation of HL-60, MV4-11, Jurkat and 697 cell lines was analyzed with bisulfite genomic sequencing. And the results consistent with the MSP assay (Figure 1D). In summary, these results showed that the CDH13 promoter was consistently significantly methylated in leukemia cells, such as HL-60, MV4-11, U937, K562 and THP-1. In contrast the CDH13 promoter was unmethylated in human lymphoblastic leukemia cells, such as Jurkat and 697. Based on these findings, we proposed that the promoter of CDH13 may be methylated in pediatric AML patients.

The promoter of CDH13 is methylated in Pediatric AML patients

We next examined the methylation status of the *CDH13* promoter in pediatric AML samples and NBM/ITP (normal bone marrow/ idiopathicthrombocytopenic purpura) control samples. Aberrant methylation of *CDH13* was observed 2 (6.7%) in the 30 bone marrow samples from controls and 24 (34.3%) cases among70 pediatric AML samples (Figure 2A). Aberrant methylation of the *CDH13* gene could be detected in all FAB subtypes and in all cytogenetic risk groups. There were no significant differences in clinical features, such as sex, age, initial hemoglobin level, white blood cell counts, platelet counts, and chromosomal abnormalities between patients with and without *CDH13* methylation (Table 1). The survival time of the patients also has no relationship with the methylation status of *CDH13* (Figure 2D).

Expression of CDH13 transcript in pediatric AML patients

The transcript level of *CDH13* gene was examined in 70 AML patients with available materials using Real-time PCR. As shown in table 1, *CDH13* expression was significantly decreased in AML patients (1.31 ± 2.95) compared to 30 NBM/ITP controls $(6.69 \pm 4.67, p<0.001)$; Both patients with *CDH13* methylation (n=24) and those without *CDH13* methylation (n=46) had significantly lower *CDH13* transcript than controls (p<0.001) (Figures 2B and 2C). Furthermore, *CDH13* transcript was significantly lower in patients with methylated *CDH13* than those without methylated *CDH13* (p=0.036) (Table 1).

Discussion

CDH13, instances of both hypermethylation and loss of function have been documented in numerous cancers. In our study, hypermethylation of the *CDH13* promoter was detected in 5 of 9 (55.6%) leukemia cell lines. A high frequency (34.3%) of *CDH13* promoter hypermethylation was also found in pediatric AML primary tumor cells, which implied that silencing of the *CDH13*, may be involved in the tumorigenesis of pediatric AML. Promoter hypermethylation of *CDH13* is frequently found in AML, but it is not associated with sex, age and patient's survival in our series. This is inconsistent with observations in non-small-cell lung cancer: a high methylation rate of *CDH13* is generally associated with poor prognosis in lung cancers [23], but consistent with colorectal cancers [34].

Several reports have implied the effects of *CDH13* gene on the proliferation and apoptosis of cancer cells. Melanoma cells that re-

express *CDH13* show a reduction in the rate of tumor growth in a nu/ nu mouse tumor model [35]. *CDH13* over-expression in hepatocellular carcinoma also increases sensitivity of tumor cells to TNFa-induced apoptosis [36]. Positive relationship between *CDH13* and Cyclin D2 methylation was reported in prostate cancer [37]. There still no report about the effects of *CDH13* in leukemia cells. Leukemia cells may share the same mechanism with solid tumor cells, or maybe there is totally different molecular mechanism in leukemia cells.

Besides the methylation of *CDH13*, gene mutation and spliced mRNAs may also play important role in pediatric AML. Two single nucleotide polymorphism in distinct introns of *CDH13* have been associated with greater sensitivity of lymphoblastoid cell lines to apoptosis induced by cisplatin and daunorubicin [38]. *CDH13* produces a lot of spliced mRNAs, many of these encode proteins are predicted to be secreted and thus, like proteolytic fragments of the major *CDH13* isoforms, might function as extracellular ligands. Until now little is known about these smaller proteins. Next step, we will explore the relationship between mutation/spliced mRNA of *CDH13* and pediatric leukemia.

Conclusions

This work demonstrated that inactivation of *CDH13* by promoter hypermethylation is a tumor specific and frequent event in pediatric AML.

Acknowledgement

This work was supported by grants from the National Key Basic Research Program No. 2010CB933902, National Natural Science Foundation for youth No. 81100371, Natural Science Foundation of Jiangsu Province No. BK2011308, Universities Natural Science Foundation of Jiangsu Province No. 11KJB320014 and Talent's subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent of Jiangsu Province. No. LJ201126. Major scientific and technological special project for "significant new drugs creation" No. 2012ZX09103301-040.

Declaration of Interest statement

The authors have no conflicts of interest to disclose.

References

- 1. Estey E, Döhner H (2006) Acute myeloid leukaemia. Lancet 368: 1894-1907.
- Plass C, Oakes C, Blum W, Marcucci G (2008) Epigenetics in acute myeloid leukemia. Semin Oncol 35: 378-387.
- Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988-993.
- Boultwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138: 3-11.
- Inaba T (2009) Epidemiology of leukemia and MDS among atomic bomb survivors in Hiroshima and Nagasaki suggests how abnormal epigenetic regulation contributes to leukemogenesis. Rinsho Ketsueki 50: 1548-1552.
- Xu J, Shetty PB, Feng W, Chenault C, Bast RC Jr, et al. (2012) Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer 12: 243.
- Riener MO, Nikolopoulos E, Herr A, Wild PJ, Hausmann M, et al. (2008) Microarray comparative genomic hybridization analysis of tubular breast carcinoma shows recurrent loss of the CDH13 locus on 16q. Hum Pathol 39: 1621-1629.
- Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225: 222-231.
- Kontic M, Stojsic J, Jovanovic D, Bunjevacki V, Ognjanovic S, et al. (2012) Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathologic characteristics of primary non-small-cell lung carcinoma. Clin Lung Cancer 13: 297-303.

Page 6 of 9

- 10. Sato M, Mori Y, Sakurada A, Fujimura S, Horii A (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103: 96-101.
- Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, et al. (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61: 4556-4560.
- Hutajulu SH, Indrasari SR, Indrawati LP, Harijadi A, Duin S, et al. (2011) Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer 10: 48.
- Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, et al. (2007) Tumorspecific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20: 1269-1277.
- Ogama Y, Ouchida M, Yoshino T, Ito S, Takimoto H, et al. (2004) Prevalent hyper-methylation of the CDH13 gene promoter in malignant B cell lymphomas. Int J Oncol 25: 685-691.
- Wang Z, Yuan X, Jiao N, Zhu H, Zhang Y, et al. (2012) CDH13 and FLBN3 gene methylation are associated with poor prognosis in colorectal cancer. Pathol Oncol Res 18: 263-270.
- Konishi K, Watanabe Y, Shen L, Guo Y, Castoro RJ, et al. (2011) DNA methylation profiles of primary colorectal carcinoma and matched liver metastasis. PLoS One 6: e27889.
- Ren JZ, Huo JR (2012) 5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice. Zhonghua Zhong Liu Za Zhi 34: 6-10.
- Sun D, Zhang Z, Van do N, Huang G, Ernberg I, et al. (2007) Aberrant methylation of CDH13 gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol 43: 82-87.
- Lin YL, Sun G, Liu XQ, Li WP, Ma JG (2011) Clinical significance of CDH13 promoter methylation in serum samples from patients with bladder transitional cell carcinoma. J Int Med Res 39: 179-186.
- Takeuchi T, Liang SB, Matsuyoshi N, Zhou S, Miyachi Y, et al. (2002) Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab Invest 82: 1023-1029.
- Kim DS, Kim MJ, Lee JY, Kim YZ, Kim EJ, et al. (2007) Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features. Cancer 110: 2785-2792.
- 22. Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, et al. (2006) Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer 106: 2200-2207.
- Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, et al. (2008) DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 358: 1118-1128.

Citation: Yan-Fang T, Xing F, Jian W, Wen-Li Z, Du XJ, et al. (2013) CDH13

is Frequently Inactivated by Promoter Hypermethylation in Pediatric Acute

Myeloid Leukemia (AML). J Hematol Thromb Dis 1: 111. doi: 10.4172/2329-

- 24. Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, et al. (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636-2645.
- 25. Enzinger PC, Mayer RJ (2004) Gastrointestinal cancer in older patients. Semin Oncol 31: 206-219.
- Wentzensen N, Sherman ME, Schiffman M, Wang SS (2009) Utility of methylation markers in cervical cancer early detection: appraisal of the stateof-the-science. Gynecol Oncol 112: 293-299.
- Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, et al. (2005) Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 97: 273-282.
- Müller HM, Fiegl H, Widschwendter A, Widschwendter M (2004) Prognostic DNA methylation marker in serum of cancer patients. Ann N Y Acad Sci 1022: 44-49.
- Phé V, Cussenot O, Rouprêt M (2010) Methylated genes as potential biomarkers in prostate cancer. BJU Int 105: 1364-1370.
- Alumkal JJ, Zhang Z, Humphreys EB, Bennett C, Mangold LA, et al. (2008) Effect of DNA methylation on identification of aggressive prostate cancer. Urology 72: 1234-1239.
- Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zöchbauer-Müller S, et al. (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8: 514-519.
- Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, et al. (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10: 378.
- Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, et al. (2010) KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res 70: 6516-6526.
- Hibi K, Nakao A (2006) Lymph node metastasis is infrequent in patients with highly-methylated colorectal cancer. Anticancer Res 26: 55-58.
- Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, et al. (2009) H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma Res 22: 296-306.
- Cheng Y, Zhang C, Zhao J, Wang C, Xu Y, et al. (2010) Correlation of CpG island methylator phenotype with poor prognosis in hepatocellular carcinoma. Exp Mol Pathol 88: 112-117.
- Padar A, Sathyanarayana UG, Suzuki M, Maruyama R, Hsieh JT, et al. (2003) Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res 9: 4730-4734.
- Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME (2008) Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 18: 253-262.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:

- User friendly/feasible website-translation of your paper to 50 world's leading languages
- Audio Version of published paper
 Digital articles to share and explore

Special features:

- 250 Open Access Journals
 20,000 editorial team
- 20,000 editorial team
 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission/

J Hematol Thromb Dis

8790.1000111

Page 7 of 9

Additional file 1: Bisulfite genomic sequencing of HL-60 cells. CDH13

1#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAACGCCGCCGGGCGCTTCTAGTCGGACAAAA TGCAGCCGAGAACTCCGCTCGTTCTGGCGTTCTCGTGCCCAGGTAGGGAAGAGGGGCT GCCGGGCGCGCCTCTGCGCCCCGTTCTGCGCTCGGACCGGCACGGGCAGGGTGAGG 2#

 $\begin{array}{c} \mathsf{GGAAGTTGGTTGGTTGGCGAGGTAGAGTTTTTTTTTAAAGTTTGGTTTTACGGAAAATA\\ \mathsf{TGTTTAGTGTAGTCGCGTGTATGAATGAAAACGTCGTCGGGCGTTTTTAGTCGGATAAAA\\ \mathsf{TGTAGTCGAGAATTTCGTTCGTTTTGTGCGTTTTTGTTTTGGTTTGGGTAGGGAAGAGGGGTT\\ \mathsf{GTCGGGCGCGTTTTGCGTTTCGTTTTGTTTTGGATCGGTACGGGTAGGGTAGGG\\ \mathsf{3}^{\#} \end{array}$

. 1#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAACGCTGCCGGGCGCTTCTAGTCGGACAAAA TGCAGCCGAGAACTCCGCTCGTTCTGTGTGTTCTCCTGTCCCAGGTAGGGAAGAGGGGCT GCCGGGTGCGCTCTGTGCCCCGTTTCTGCATTCGGATCGCCCGGCACGGGCAGGGTGAGG 2#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAATGCCGCCGGGCGCTTCTAGTCGGACAAAA TGCAGCCGAGAACTCTGCTCGTTCTGTGCGTTCTCCTGTCCCAGGTAGGGAAGAGGGGCT GCCGGGCGCGCTCTGCGCCCTGTTTCTGCATTCGGATCGCCCGGCACGGGCAGGGTGAGG 3#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCTGCGTGCATGAATGAAAATGCTGCCGGGCGCTTCTAGTCGGACAAAA TGCAGCCGAGAACTCCGCTCGTTCTGTGCGTTCTCCTGTCCCAGGTAGGGAAGAGGGGCT GCCGGGTGTGCTCTGCGCCCCGTTTCTGCATTCGGATCGCCCGGCACGGGCAGGGTGAGG 4#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCCTCAAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCTGCGTGCATGAATGAAAACGCCGGCGGCGCTTCTAGTCGGACAAAA TGCAGCCGAGAACTCCGCTCGTTCTGGCGCTCTGTCCCAGGTAGGGAAGAGGGGCT GCCGGGCGCGCTCTGTGCCCCGTTTCTGCATTCGGATCGCCTGGCACGGGCAGGGGGG 5#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCACGGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAACGCCGCCGGGGCGCTTCTAGTTGGACAAAA TGCAGCCGAGAACTCCGCTCGTTCTGTGCGTTCTCCTGTCCCAGGTAGGGAAGAGGGGCT GCCGGGTGTGCTCTGCGCCCTGTTTCTGCATTCGGATCGCCCGGCACGGGCAGGGTGAGG CDH13 Bisulfite genomic sequencing of Jurkat cells

CDH13 Bisulfite genomic sequencing of Jurkat cells 1#

 $\begin{array}{c} \mathsf{GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA\\ \mathsf{TGCTCAGTGCAGCTGTGTGCATGAATGAAAACGCTGCTGGGTGCTTCTAGTTGGACAAAA\\ \mathsf{TGCAGCTGAGAACTCTGCTTGTTCTGTGTGTTCTCCTGTCCCAGGTAGGGAAGAGGGGGCT\\ \mathsf{GCTGGGTGTGCTCTGTGCCCCGTTTCTGCATTGCAATGGCCAGGGCAGGGTGAGG\\ \mathsf{3}^{\#} \end{array}$

 $\begin{array}{l} \mathsf{GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA\\ \mathsf{TGCTCAGTGCAGCTGTGTGCATGAATGAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA\\ \mathsf{TGCAGCTGAGAACTCCGCTCGTTCTGTGTGTTCTCCTGTCCCAGGTAGGGAAGAGGGGGCT\\ \mathsf{GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTGCCTGGCATGGGCAGGGTGAGG\\ \mathsf{4\#}\\ \end{array}$

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCTGCTTGTTCTGTGCGTTCTCCTGTCCCAGGTAGGGAAGAGGGGCT GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG

Page 8 of 9

E	4

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCTGCTTGTTCTGTGTGTGTCTCCTGTCCCAGGTAGGGAAGAGGGGGCT GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG 6#

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAACGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCCGCTTGTTCTGTGTGTTCTCCCTGTCCCAGGTAGGGAAGAGGGGGCT GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG CDH13 Bisulfite genomic sequencing of 697 cells

1# GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAACGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCTGCTTGTTCTGTGTGTTCTCCCGTGCCCAGGTAGGGAAGAGGGGGCT

GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCTGCTTGTTCTGTGTGTGTCTCCCGGGCAGGGAAGAGGGGGCT GCTGGGTGTGCTCTGTGCCCCGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG 3#

2#

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCCGTGTGCATGAATGAAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCCGCTCGTTCTGTGTGTCTCCCGGCCAGGTAGGGAAGAGGGGCT GCTGGGTGTGCTCTGTGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG 4#

GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAATGCTGCTGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCTGCTTGTTCTGTGCGTTCTCCTGTCCCAGGTAGGGAAGAGGGGGCT GCTGGGTGCGCTCTGCGCCCTGTTTCTGCATTCAGATTGCCCGGCATGGGCAGGGTGAGG 5#

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCCGCGTGCATGAATGAAAATGCTGCCGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCCGCTTGTTCTGTGTGTTCTCCTGTCCCAGGTAGGGAAGAGGGGGCT GCTGGGTGTGCTCTGCGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG 6#

GGAAGTTGGCTGGCTGGTGAGGCAGAGCCTCTCCTCAAAGCCTGGCTCCCATGAAAATA TGCTCAGTGCAGCTGTGTGCATGAATGAAAACGCCGCCGGGTGCTTCTAGTTGGACAAAA TGCAGCTGAGAACTCCGCTCGTTCTGTGTGTCTCCCGGCCAGGTAGGGAAGAGGGGCT GCTGGGTGTGCTCTGCGCCCTGTTTCTGCATTCAGATTGCCTGGCATGGGCAGGGTGAGG

Additional file 2: Real-time PCR analysis the expression of CDH13 gene in NBM and pediatric AML patients.

			Pediatric AML		
	NBM/ITP	Pediatric AML	CDH13 methylated	CDH13 unmethylated	
1	5.985902	0.009562268	0.009562268	0.4312417	
2	10.75226	0.008266937	0.008266937	16.81374	
3	17.77242	0.5850244	0.5850244	2.773232	
4	5.663008	3.045267	0.009562268	5.086131	
5	4.351668	0.5850244	0.5850244	0.4312417	
6	5.682669	0.2729235	0.2729235	2.094446	
7	2.307881	0.3442596	0.3442596	0.05243117	
8	0.000212032	0.0282926	0.0282926	0.05170934	
9	9.136038	0.6743495	0.6743495	0.05170934	
10	1.823321	0.008266937	0.008266937	0.07363669	
11	6.347538	0.09615919	0.09615919	0.07363669	
12	5.985902	0.3741189	0.3741189	3.045267	
13	10.75226	2.992951	0.008266937	3.045267	
14	17.77242	0.1143532	0.1143532	0.5850244	
15	5.663008	0.06990641	0.06990641	3.045267	
16	4.351668	0.003992667	0.003992667	0.5850244	
17	5.682669	0.5850244	0.5850244	0.2729235	
18	2.307881	0.01853722	0.01853722	0.3442596	
19	0.000212032	0.04057032	0.04057032	0.0282926	
20	9.136038	0.2351362	0.2351362	0.6743495	
21	1.823321	3.045267	3.045267	0.008266937	
22	6.347538	2.094446	2.094446	0.09615919	
23	5.985902	0.5402011	0.5402011	0.3741189	
24	10.75226	3.045267	3.045267	2.992951	
25	17.77242	0.4312417		0.1143532	
26	5.663008	16.81374		0.06990641	

Page 9 of 9

27	4.351668	2.773232		0.003992667	
28	5.682669	5.086131		0.5850244	
29	2.307881	0.4312417	0.01853722		
30	9.136038	2.094446		0.04057032	
31		0.05243117		0.2351362	
32		0.05170934		0.002774741	
33		0.05170934		0.0106838	
34		0.07363669		0.5402011	
35		0.07363669		0.4868565	
36		0.009562268		0.4312417	
37		0.008266937		16.81374	
38		0.5850244		2.773232	
39		3.045267		5.086131	
40		0.5850244		0.4312417	
41		0.2729235		2.094446	
42		0.3442596		0.05243117	
43		0.0282926		0.05170934	
44		0.6743495		0.05170934	
45		0.008266937		2.992951	
46		0.09615919		3.045267	
47		0.3741189			
48		2.992951			
49		0.1143532			
50		0.06990641			
51		0.003992667			
52		0.5850244			
53		0.01853722			
54		0.04057032			
55		0.2351362			
56		0.002774741			
57		0.0106838			
58		0.5402011			
59		0.4868565			
60		0.4312417			
61		16.81374			
62		2.773232			
63		5.086131			
64		0.4312417			
65		2.094446			
66		0.05243117			
67		0.05170934			
68		0.05170934			
69		2.992951			
70		3.045267			
AV	6.698232841	1.310098949	0.533199123	1.716575293	
SD	4.672074863	2.959071041	0.892060633	3.540122523	