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Abstract
Polyaromatic hydrocarbons, heterocyclic aromatic amines and dioxin-like compounds are environmental carcinogens 

shown to initiate cancer in a number of tissue types including prostate and breast. These environmental carcinogens 
elicit their effects through interacting with the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. 
Naturally occurring compounds found in fruits and vegetables shown to have anti-carcinogenic effects also interact 
with the AhR. This review explores dietary and environmental exposure to chemical carcinogens and beneficial natural 
compounds whose effects are elicited by the AhR.
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Introduction
Environmental and dietary exposures are considered risk factors 

for prostate and breast cancer. Excluding basal cell and squamous cell 
skin cancers; prostate and breast cancers are the 2 most commonly 
diagnosed cancer types and account for 28% of all new cancer cases [1]. 
Compared to cancer incidence in 2003, there is a slight increase in the 
number of new prostate and breast cancer cases without any significant 
change in death rates [2]. The increase of new cancer cases may be 
attributed to exposure to chemical carcinogens.

The relationship between diet and cancer incidence has been a 
major topic of cancer prevention. Studies showing an association 
between meat intake and prostate cancers have been inconclusive. 
Some studies reveal red meat is positively associated with increased 
prostate cancer risk with an association with more aggressive disease 
states [3-5]. Despite some studies showing a 43% elevation in prostate 
cancer risk with high consumption of red meat, others show no 
association with prostate cancer risk [6-8]. There are also conflicting 
reports concerning the association of red meat and breast cancer. Both 
case control and cohort studies have revealed an increased risk of breast 
cancer associated with meat consumption [9,10]. Conversely, others 
show no association [11]. Although the role of red meat in prostate 
and breast cancer remain inconclusive, one explanation for the possible 
associations reported is the accumulation of carcinogens during the 
cooking process.

Joshi et al. [12] showed that high fish intake was associated with an 
increased risk of advanced prostate cancer only when cooked at high 
temperatures. There was no increased risk for men who consumed fish 
cooked at low temperatures. Similar associations were found with red 
meat and poultry cooked at high temperatures. While poultry cooked at 
low temperatures showed an association with decreased prostate cancer 
risk [13]. Furthermore, data obtained via food frequency questionnaires 
revealed that consumption of French fries, fried chicken and fried fish 
at least once a week was associated with an increased risk of prostate 
cancer [14]. Consumption of well-done red meat was also associated 
with a significantly elevated risk of breast cancer within a population-
based case control study [15,16]. Although, some epidemiologic reports 
indicate no association with cancer risk and foods cooked at high 
temperatures, a vast majority have shown that high intake of well-done 

meat prepared at high temperatures may increase the risk of human 
cancers [17,18]. Despite inconsistent results of epidemiological studies 
addressing a link between diet and cancer incidence, the production of 
carcinogens in certain food types is well established. Additionally, the 
ability of these food carcinogens to induce prostate and breast cancer 
has been widely studied.

It has long been thought that diet has an influence on cancer 
development, and part of the risk may be associated with the 
consumption of mutagenic substances along with the foods. Several 
compounds, either present as dietary components or formed during 
food processing, can play a role in cancer risk [19]. After ingestion 
most food mutagens go through metabolic activation or detoxification 
by different endogenous enzymes. Most mutagens begin their adverse 
effects at the DNA level by forming DNA adducts with carcinogenic 
metabolites.

Polyaromatic Hydrocarbons (PAHs), heterocyclic aromatic amines 
and dioxin-like compounds are human carcinogens produced in the meat 
cooking process. Cooking experiments have shown that certain dioxin-
like compounds are produced during cooking at high temperatures 
[20]. Biological monitoring revealed consumption of grilled, roasted 
or boiled meat significantly elevated levels of PAHs [21]. Continuous 
and high temperature grilling was shown to directly contribute to both 
increased PAHs and heterocyclic aromatic amines accumulation in both 
fish and beef [22]. Inhalation in certain occupational settings is also 
a source of human exposure to environmental carcinogens. PAHs are 
environmental toxicants that are derived from incomplete combustion 
of organic material such as coal, wood, gasoline and tobacco. They 
are released into the environment during industrial processes such as 
paper manufacturing and waste incineration. Dioxin-like compounds 
are produced as byproducts of incomplete combustion of organic 
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of lifespan in a gene-dosage-dependent manner with a delayed onset 
of leukemogenicity than AHR-deficiencies (AhR+/−, AhR−/−) mice. 
Those data implied that AhR acts as a tumor suppressor gene under some 
conditions, but the underlying molecular mechanism is still unknown. 
Future studies are necessary to investigate the potential cell/molecular 
mechanisms through which the AhR regulates carcinogenesis, and 
how the AhR contribute to progression or prevention different kinds of 
tumors. Given the current challenges in treating aggressive metastatic 
breast cancer, the clinical development of selective AhR modulators 
may provide an effective, broad-based alternative to current adjuvant 
therapies [50].

AhR has been shown to influence a number of cellular processes 
including differentiation, proliferation and cell cycle progression 
[51-56]. Activation of the receptor by chemical carcinogens has been 
reported to antagonize androgen receptor signaling. For example AhR 
ligand, 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) inhibited 
testosterone-dependent transcriptional activity and testosterone-
regulated prostate specific antigen (PSA) expression in a dose 
dependent manner [57]. TCDD was also shown to block androgen 
dependent proliferation of prostate cancer cells [58]. Morrow et al. [59] 
demonstrated that the simultaneous activation of AhR and androgen 
receptor with TCDD and an androgen derivative respectively, decreased 
androgen receptor protein levels. This observation has been contributed 
to the ability of AhR to promote the proteolysis of androgen receptor 
through assembly of an ubiquitin ligase complex in which AhR acts 
as a substrate-recognition subunit to recruit the androgen receptor. 
This action may also explain the antiandrogenic actions of a number 
of PAHs.

Studies concerned with intrinsic functions of AhR have found 
that the receptor may promote carcinogenesis. AhR protein and 
mRNA expression is associated with phases of rapid proliferation and 
differentiation in certain tissues. AhR-defective cell lines demonstrate 
a reduced proliferation rate [60]. Ectopic over expression of AhR in 
immortalized normal mammary epithelial cells induced a malignant 
phenotype with increased growth and acquired invasive capabilities 
[61]. A separate study using a constitutively active AhR construct lacking 
a ligand binding domain revealed that AhR acts as a transcriptional co-
regulator for the unliganded estrogen receptor. These studies showed 
that the endogenous estrogen receptor along with the constitutively 
active AhR was recruited to estrogen- responsive elements to initiate 
signaling in an androgen depleted environment [62].

Several independent studies have confirmed elevated levels of AhR 
expression in malignant mammary tissue [63,64]. Elevated levels of AhR 
proteins were found in highly malignant breast cell lines compared to 
the lower basal expression found in immortalized and primary human 
mammary epithelial cells and breast cancer cell lines derived from 
early stages [64]. A separate study also demonstrated increased AhR 
protein expression in an advanced prostate cancer cell line compared 
to a less aggressive isogenic pair [65]. Together, evidence suggest that 
in advanced prostate and breast cancer AhR may function in cancer 
progression by mechanisms other than mediating the carcinogenic 
effects of a number of environmental toxins including PAHs, aromatic 
amines and dioxin-like compounds. Apart from these environmental 
contaminants, the AhR can bind with a variety of structurally diverse 
chemicals found in plants. Several investigators have observed that 
different dietary components, e.g., flavonoids, resveratrol, curcumin 
etc., bind to the AhR and exert antagonistic activity [66,67] (Figure 1).

substances in contact with chlorine. They are produced during waste 
incineration, pulp manufacturing and other industrial processes [23]. 
Aromatic amines are formed from amino acids, creati (ni) ne and sugar 
during cooking of fish and meat at high temperatures. The amount of 
aromatic amines formed varies depending on the cooking time, meat 
type and cooking method as well as temperature. Certain aromatic 
amines are also formed during combustion of organic material and are 
present in diesel exhaust particles and tobacco smoke [24,25]. Dietary 
consumption is the major sources of exposure in the general population 
to these environmental carcinogens [26]. PAHs and aromatic amines 
undergo activation by phase I and phase II drug metabolizing enzymes 
to be carcinogenic [27]. Compounds within these chemical classes 
interact with the aryl hydrocarbon receptor (AhR).

AhR is historically known for its role in mediating the toxic and 
carcinogenic effects of a wide range of environmental contaminants 
[28,29]. It is a ligand-activated transcription factor that belongs to the 
basic helix-loop-helix (bHLH), Per-ARNT-Sim (PAS) superfamily 
of transcription factors [30]. The AhR protein is predominantly 
cytoplasmic in the majority of normal tissues and binding to exogenous 
ligands such as PAHs, aromatic amines and dioxin-like compounds, 
leads to conformational changes that result in nuclear translocation 
of AhR and dimerization with the AhR nuclear translocator protein 
(ARNT) [31,32]. The heterodimer binds to a consensus DNA sequence 
xenobiotic responsive element (XRE) on the enhancer regions of target 
genes and increases their transcription. These target genes include the 
cytochrome P450-1 (CYP1) family of genes, which encode enzymes 
responsible for activation of chemical carcinogens [33,34]. Activation 
of AhR leads to induction of CYP1A1, CYP1A2 and CYP1B1 genes, 
which encode for enzymes that metabolize PAHs to mutagenic 
intermediates resulting in cancer initiation [34-36]. Ligand-dependent 
activation of AhR not only plays a role in tumor initiation but also 
in tumor progression [37-39]. Following transcriptional activation, 
the AhR is exported back to the cytoplasm where it is degraded by 
calpains and proteasomes [40,41]. Substantial evidence has shown that 
PAH-dependent activation of AhR plays a role in a variety of cancers 
including those in breast, liver and lung [35,42].

There is evidence from several labs suggesting that AhR may function 
as a tumor suppressor gene that becomes silenced during the process of 
tumor formation under certain conditions [43]. AhR was significantly 
repressed in tumors from both mice with a liver-specific retinoblastoma 
protein ablation and their wild-type littermates, supporting the concept 
that AhR silencing may be associated with cancer progression [44]. 
Activation of AhR by ligands can inhibit multiple aspects of the 
metastatic process in a panel of breast cancer cell lines. Dioxin induced 
protection against breast cancer may occur via down regulation of 
CXCR4 and CXCL12, thereby inhibiting progression of the disease, 
regardless of estrogen receptor, progesterone receptor, or human 
epidermal growth factor receptor 2 status [45]. AhR and its agonists may 
confer protective effects in multiple breast cancer subtypes by inhibiting 
invasive and metastatic features and inducing differentiation. These 
results support previous epidemiological and rodent studies showing 
a decrease in breast cancer incidence after exposure to AhR agonists. 
Another study reported that N-nitrosobutyl (4-hydroxybutyl) amine 
(BBN) can induce bladder cancer via suppression of AhR signaling 
pathway [46]. Fritz et al. [47,48] found that AhR-null (AhR−/−) (60%), 
(AhR+/−) (43%) transgenic adenocarcinoma of the mouse prostate 
(TRAMP) mice developed prostate tumors with greater frequency 
than AhR wild-type (AhR+/+) (16%) TRAMP mice. This suggests that 
AhR inhibits prostate carcinogenesis. Hirabayashi and Inoue [49] also 
found that wild- type (AhR+/+) mice showed a significant extension 
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Polyaromatic Hydrocarbons
PAHs are major class of environmental carcinogens and one 

of major health concern [68]. PAHs refer to a ubiquitous group of 
several hundred chemically related, environmentally persistent organic 
compounds of various structures and variable toxicity. PAHs are a class 
of lipophilic chemicals that consist of fused aromatic rings. They are 
solely composed of carbon and hydrogen atoms, containing two or 
more single or fused aromatic rings with a pair of carbon atoms shared 
between rings [69]. Characterized by their high hydrophobicity, PAHs 
are also highly resistant to natural degradation. Sources of PAHs can 
be both natural and anthropogenic and are largely produced as a result 
of incomplete combustion of hydrocarbon-containing fuels. The main 
anthropogenic sources of PAHs include open fires, engine exhaust 
emissions, manufactured gas plants by-products and domestic heating 
systems, and other organic substances such as tobacco and different 
food items [70,71]. Human exposure to these compounds can occur by 
the ingestion of foods, that have been contaminated by water, air, soil, 
industrial processing or cooked by different methods (frying, smoking, 
curing). The long-term intake of PAHs represents a health hazard, since 
they are considered potentially genotoxic and procarcinogenic [71]. 
PAH exposure has been linked to numerous cancer types including 
prostate, breast, skin, bladder and lung cancer [72,73]. The Internal 
Agency for Research on Cancer has classified PAH mixtures as 
carcinogens to humans [74,75].

The predominant source of PAHs exposure for the non-smoking 
general population in developed countries is the daily consumption of 
PAH-contaminated food. The different PAHs levels in food originate 
from various food processing technologies and home cooking 
procedures such as barbecuing meat and fish [76,77]. Grilling or 
broiling of meat, fish or other foods over a direct flame leads to fat 
dripping on hot fire and yielding gleams containing PAHs that deposit 
on the surface of the food materials [19,70].

The existence of PAHs has been confirmed in a wide variety of plants 
and aquatic organisms. However, leafy vegetables are a trivial source of 
PAHs in the human diet; the level of contamination is overseen by where 
the vegetables are grown, those situated close to roads or factories are 
likely to be contaminated with PAHs [76-79]. Plants may absorb PAHs 
from the air and this could be a more significant factor than PAHs 
accumulation through root absorption from soil. Also, wastewater 
treatment plants play an important role in reducing PAHs concentration 
in wastewater [80]. Incomplete combustion of hydrocarbon-containing 

fuels produces PAHs which can contaminate the air and water whereby 
plants can absorb it. In general, humans readily absorb PAHs into the 
body through the lung, gastrointestinal tract, and skin [81].

Several studies have confirmed the role of AhR in PAH induced 
toxicities and carcinogenesis. PAH exposed dams revealed extensive 
branching and enlargement of vessels accompanied by increased 
expression of antiapoptotic proteins and decreased expression of 
proapoptotic proteins. AhR-null fetuses did not exhibit these PAH-
induced growth alterations [82]. Furthermore, PAH suppression of 
testicular function, especially spermatogenesis and sperm motility 
were absent in AhR deficient mice [83]. Curran et al. [84] confirmed the 
presences of increased levels of PAHs in AhR-null pups demonstrating 
the importance of AhR-mediated expression of cytochrome P450s in 
detoxification. Shimizu et al. [85] determined that AhR is required for 
PAH tumor induction. The prototypic PAH, Benzo [a]pyrene (BaP), 
induced expression of CYP1A1 in the skin and liver of AhR positive 
mice and did not induce CYP1A1 expression in AhR-null mice. All 
AhR positive mice exposed to BaP developed subcutaneous tumors 
at the site of injection. However, there were no noticeable tumors in 
the AhR-null mice. These experiments confirmed the carcinogenic 
action of BaP is mediated by the AhR. BaP is the best-characterized 
PAHs compound found in diet [19,86]. BaP is rated as carcinogenic to 
humans by the International Agency for Research on Cancer [87]. This 
five-ring PAH is present in virtually all PAH mixtures, and is one of 
the most carcinogenic of those commonly detected. BaP is a mutagenic 
environmental pollutant, which is suspected to contribute to several 
types of human cancers [88]. Its carcinogenicity is attributed primarily 
to its genotoxicity [89]. Although AhR-null mice are protected from 
BaP induced carcinogenesis, higher levels of BaP-DNA adducts are 
formed within them than in wild- type mice. AhR positive mice have 
an effective clearance of BaP metabolites which results in reduced 
levels of DNA adducts. The lack of a functional AhR in null mice, 
results in slower clearance of BaP and higher levels of DNA adducts 
[90]. BaP exposure can impair mismatch repair, which is important in 
carcinogenesis. High exposure to BaP inhibits mismatch repair activity 
by reducing expression of mismatch repair protein mutS homolog 
6 (MSH6) [91]. It has been conclusively demonstrated in laboratory 
animal studies that BaP is a powerful carcinogen, which readily induces 
tumors in various tissues such as lung and skin at relatively low doses 
[87,92-95]. BaP requires metabolic activation to elicit its detrimental 
effects. The major end product of its diol epoxide metabolic activation 
pathway is r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]
pyrene (trans, anti-BaPT). Individual differences in exposure to, and 
metabolic activation of, carcinogenic PAHs may influence cancer risk. 
Measurement of PAHs metabolites in human urine could provide a 
direct way to assess individual differences in susceptibility to PAH-
related cancer; For example, smokers have significantly higher levels of 
trans, anti-BaPT in their urine than do non-smokers. It may be useful 
as a direct phenotyping approach to assess individual differences in 
uptake and metabolic activation of carcinogenic PAHs [81]. 

Aromatic Amines
Another class of environmental carcinogens for human is 

aromatic amines which can be classified into monocyclic aromatic 
amines, polycyclic aromatic amines and heterocyclic aromatic amines 
[2- amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx); 2- 
amino-2,4-dimethylimidazo[4,5- f]quinoline (MeIQ); 2-amino-1-
methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP)]. Most heterocyclic 
aromatic amines (HAAs), many polycyclic aromatic amines, and some 
monocyclic aromatic amines are mutagenic [96].
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Figure 1:  Molecular structures of AhR ligands (A-C) B(a)P, TCDD and PhIP. 
Molecular structures of natural compounds (D-F) genistein, resveratrol and 
curcumin.



Citation: Powell JB, Ghotbaddini M (2014) Cancer-promoting and Inhibiting Effects of Dietary Compounds: Role of the Aryl Hydrocarbon Receptor 
(AhR). Biochem Pharmacol 3: 131. doi:10.4172/2167-0501.1000131

Page 4 of 10

Volume 3 • Issue 2 • 1000131
Biochem Pharmacol
ISSN:2167-0501 BCPC, an open access journal 

The production of dyes and other complex chemicals can produce 
carcinogenic aromatic amines and exposure to them happened during 
and by their use as antioxidants in rubber-manufacturing processes 
[87,97]. Some aromatic amines produce throughout the tobacco 
burning [98,99] and arise in the cooking oils releases [100]. Some other 
HAAs are also produced when tobacco is burning in high- temperature 
[101,102]; but, consumption of well-done cooked meats is the main 
source of exposure to many HAAs [103,104]. We can find HAAs also 
in pan-fried residues used for gravies [105,106], and arise in vapors 
of cooking oils [107] as well in the air during the frying or grilling of 
meats [108]. By using experimental laboratory animals and exposing 
them long-term by carcinogen bioassays, scientists found chemicals 
from both classes of compounds can initiate tumors at multiple sites. 
Certain aromatic amines are classified as human carcinogens (Group 
1), and some HAAs have been recorded as probable or possible human 
carcinogens (Group 2A and 2B) [98,109]. 

HAAs for producing arylnitrenium ion (major metabolite 
implicated in toxicity and DNA damage) should undergo metabolic 
activation by N-hydroxylation of the exocyclic amine group [110,111]. 
During common household cooking, more than 25 HAAs have been 
shown to form in meats, fish, and poultry [104,112]. The concentrations 
of HAAs which can be created have a range from around 1 ppb (parts 
per billion) to more than 500 ppb [103,104,113-115]. The type of 
meat and the method of cooking also temperature and the duration of 
cooking are important factors which have effect on amount of HAAs 
formation during cooking [114,116]. Two major classes of HAAs 
which produce during heat processing of muscle foods are “pyrolytic 
HAAs” and “aminoimidazoarenes (AIAs)”. Pyrolytic may arise during 
the high-temperature pyrolysis (>250°C) of some individual amino 
acids, including glutamic acid and tryptophan, or during the pyrolysis 
of proteins [101,103,117], similarly at the low ppb concentrations, 
pyrolytic HAAs can form, in some cooked meats [118]. On the other 
hand, AIAs are formed in meats that are cooked at lower temperatures 
(150 - 250°C) more usually used in household kitchens. One of the 
most important way for formation many AIAs is the Maillard reaction 
(form of nonenzymatic browning resulting from a chemical reaction 
between an amino acid and a reducing sugar, usually requiring heat) 
[104,119,120]. During Maillard reaction N-methyl-imidazole-2-yl-
amine (portion of the molecule) can produce from creatine, and the 
other portions of the AIAs are supposed to arise from pyridines or 
pyrazines degradation [119,121]. An aldol condensation is thought 
to link the two molecules, to form 2-amino-3-methylimidazo [4,5-f]
quinoline (IQ) and 2-amino-3- methylimidazo [4,5-f]quinoxaline 
(IQx)-ring-structured HAAs [122]. It should be noted that the presence 
of carcinogens in human’s food generation during frying and grilling, 
has been showed in the number of epidemiological studies. Exposure to 
meat carcinogens like HAAs or PAHs may increase the risk of a number 
of common cancers such as breast, prostate and colorectal cancer 
[4,18,123]. 2-amino-1- methyl-6-phenylimidazo [4,5-b]pyridine 
(PhIP) is one of the most abundant HAAs detected in cooked meat.

PhIP can form in a model system containing phenylalanine, 
creatinine, and glucose [124]. However, PhIP can also form in the 
absence of sugar [104,122]. PhIP is formed in well-done cooked meats 
and poultry, where the concentration can reach up to 500 ppb [104,114-
116,118,120,125].

The most significant gene expression changes in response to PhIP 
and MeIQx concern members of the AhR gene battery, including 
CYP1A1 and CYP1A2, which encode two enzymes closely involved in 
HAAs bio activation [126]. In addition, a number of genes with lower 

fold changes, including cancer- related genes, whose expression was 
differentially targeted by PhIP and MeIQx, were observed. HAAs may 
act in concert with other AhR-activating chemicals found in significant 
amounts in food and the environment, including PAHs [103,126].

Meat consumption, particularly red and processed meat 
consumption, has been linked to the increased risk of colorectal cancer 
in many epidemiological studies [127]. Mutagens such as HAAs and 
PAHs are formed during high-temperature cooking of meats [128]. 
These compounds are mutagenic in Ames/Salmonella assays and 
cause colon tumors in laboratory animals [129]. To exert their mutagenic 
action, HAAs require enzyme-catalyzed activation consisting of N-oxidation 
by hepatic CYP1A2 and other extrahepatic P450 isozymes, followed by 
O-acetylation by N-acetyltransferase 1 (NAT1) and 2(NAT2) [130]. The AhR 
is an important mediator for xenobiotic signaling to enhance the expression of 
phase I and II enzymes which affects HAAs metabolism [131].

In order to better understand the molecular basis of HAAs 
toxicity, Dumont et al have analyzed gene expression profiles in the 
metabolically competent human Hepa RG cells using pangenomic 
oligonucleotide microarrays, after either a single (24 hr) or a repeated 
(28-day) exposure to 10 μM PhIP or MeIQx. The most responsive 
genes to both HAAs were downstream targets of the AhR: CYP1A1 
and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 
28 days. Accordingly, CYP1A1/1A2 induction in HAAs-treated Hepa 
RG cells was prevented by chemical inhibition or small interference 
RNA-mediated down-regulation of the AhR. Consistently, HAAs 
induced activity of the CYP1A1 promoter, which contains a consensus 
AhR-related xenobiotic-responsive element (XRE). In addition, several 
other genes exhibited both time-dependent and compound-specific 
expression changes. These changes concerned genes mainly related 
to cell growth and proliferation, apoptosis, and cancer. These results 
identify the AhR gene battery as the preferential target of PhIP and 
MeIQx in Hepa RG cells and further support the hypothesis that intake 
of HAAs in diet might increase human cancer risk [103,126]. CYP1A2 is 
one of the major enzymes that bioactivate a number of procarcinogens 
including heterocyclic aromatic amines/amides and some natural 
compounds such as aristolochic acids present in several Chinese herbal 
medicines. Similar to CYP1A1 and 1B1, CYP1A2 is primarily regulated 
by the AhR [132].

Derivatives of PhIP were shown to be potential carcinogens for the 
prostate [133]. PhIP induced prostate carcinogenesis in mice carrying 
humanized CYP1A2, which activates PhIP to a carcinogen. Low grade 
prostatic intraepithelial neoplasia (PIN) was seen 20 weeks following 
administration of PhIP and high-grade PIN 30 to 50 weeks after initial 
dosage. The lesions induced by PhIP administration were androgen 
receptor positive and featured the loss of expression of the basal cell 
marker p63 and the tumor suppressor PTEN [134]. These studies show 
direct induction of prostate carcinogenesis by PhIP.

Dioxin-Like Compounds
 Dioxin-like compounds are a diverse group of synthetic 

chemicals such as dichlorodiphenyltrichloroethane (DDT), dieldrin, 
hexachlorocyclohexane isomers (HCH), toxaphene, polychlorinated 
biphenyls (PCBs) and dioxin. Dioxins are a class of polyhalogenated 
compounds and belong to a group of halogenated aromatic 
hydrocarbons (HAHs), which have a similar chemical structure 
and biological effects. They include polychlorinated dibenzodioxins 
(PCDD), polychlorinated dibenzfurans (PCDF) and polychlorinated 
biphenyls (PCB). TCDD is identified as the most potent dioxin and 
is classified as a class I human carcinogen that has been implicated 
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in a number of cancers [135,136]. TCDD exposure was shown to 
produce quinonoid metabolites of estrogen and the subsequent 
formation of oxidative DNA lesions through alteration of CYP1A1 
and CYP1B1 expression in human breast cancer cells [137]. Kang et 
al. [138] demonstrated that TCDD significantly increased BaP- DNA 
adduct formation in the absence of BRCA1. These results imply that 
oxidative stress is correlated with increased DNA damage in BRCA1 
defective cells. Evidence suggests that TCDD might increase the risk of 
tumorigenesis in BRCA1 defective breast epithelial cells.

Dioxins are derived from the combustion process (e.g., incineration 
and burning of fuels), during production and utilization of chlorinated 
compounds (e.g., PCBs) and bleaching of paper-pulp. PCBs enter 
the air, water and soil during manufacturing, use and disposal. The 
common features of all these above-mentioned compounds are their 
persistence in the environment, their bioaccumulation in adipose tissue 
and in food chains due to their lipophilic character, and their resistance 
to metabolism. Humans are exposed to dioxins mainly through the 
consumption of contaminated foods [139]. Among these compounds, 
TCDD is the most persistent lipophilic environmental contaminant 
(half-life ~7years) and considered as the prototype chemical [19].

TCDD has the ability to bind to and activate the ligand-activated 
transcription factor, AhR. Structurally related compounds that 
bind to the AhR and exhibit biological actions similar to TCDD are 
commonly referred to as dioxin-like compounds. Ambient human 
exposure to dioxins occurs through the ingestion of foods containing 
residues that bioconcentrate through the food chain. The main sources 
of TCDD released into the environment are from metal smelting, 
refining, and processing; combustion and incineration sources; 
chemical manufacturing and processing; biological and photochemical 
processes; and existing reservoir sources that reflect past releases [140]. 
Toxic chemicals like TCDD, BaP and PCBs can activate AhR, which 
subsequently induce CYP1A1 and CYP1B1 expression. Interestingly, 
estradiol is metabolized by CYP1A1 and CYP1B1, which also activate 
BaP to reactive DNA-binding intermediates [141-143].

Dietary Antagonists of AhR
Several classes of beneficial dietary compounds have been 

described as health-promoting or disease-preventing. Interestingly, 
many dietary compounds that have chemopreventive properties have 
been found to also act as antagonist of the AhR signaling pathway. 
The chemopreventive effect may be due to inhibiting the effects of 
environmental and food carcinogens. Therefore, dietary ligands could 
be effective tools in reducing cancer incidence.

Flavonoids are naturally occurring polyphenols present in many 
fruits and vegetables [144]. These polyphenolic compounds have 
attracted renewed attention as potential anticarcinogens, and the 
molecular mechanisms of their anticarcinogenic effects and their 
bioavailability have been extensively explored. The major dietary 
flavonoids are flavones, flavonols, and flavan-3-ols (catechins), and 
they play important roles in cancer prevention. After absorption with 
or without metabolic conjugation, flavonoids are transported to target 
organs where they exert their anticarcinogenic activity. The molecular 
mechanisms of the anticarcinogenic effects of flavonoids include their 
antagonistic effect on the AhR, and regulation of phase I and II drug 
metabolizing enzymes and phase III transporters. 

Experimental evidence suggests that flavonoids modulate signal 
transduction pathways at each stage of carcinogenesis [145]. Dietary 
flavonoid 5,7, dimethoxyflavone significantly inhibited BaP-induced 

adduct formation and CYP1B1 expression [146]. Heiden et al. [147] 
investigated the genetic-, time-, dose-, species- and tissue-dependent 
AhR-mediated agonistic/antagonistic activities of three food flavonoids: 
quercetin, chrysin and genistein. Human hepatoma (HepG2-Luc) and 
human breast tumour (T-47D- Luc) cells were compared for tissue-
dependent effects. Rat hepatoma (H4IIE-ULg) and human hepatoma 
(HepG2-Luc) cells were compared for species-dependent activities. 
Evidence showed that quercetin, chrysin and genistein act in a time-, 
dose species- and tissue-specific way. For example, genistein displayed 
agonistic activities when exposed to rat hepatoma cells during 6h but 
not after 24 h.

Flavonoids displayed agonistic/antagonistic activities in human 
breast tumour cells, depending on the exposure time, while in human 
hepatoma cells, only antagonistic activities of flavonoids were measured. 
Induction of CYP1A1 by flavonoids proceeds by various mechanisms, 
including the direct stimulation of gene or mRNA stabilization. Some 
flavonoids induce CYPs through binding to AhR. Generally, substrates 
for AhR are planar aromatic compounds with few bulky substituent 
groups. That might partly explain the activity of flavonoids, which have 
similar planar structures as AhR ligands.

Other flavonoids have been shown to directly inhibit CYP1A1 
activity, commonly demonstrated to be a competitive-type of inhibition, 
and to affect CYP1A1 transcription. The most abundant flavonoids, 
flavonols quercetin and kaempferol, are both dietary ligands of the 
AhR, but they exert different effects on CYP1A1 expression. Treatment 
of MCF-7 cells with quercetin resulted in a concentration and time 
dependent increase in the amount of CYP1A1 mRNA. Kaempferol, by 
itself, does not affect CYP1A1 expression, but it can interact with the 
AhR, and act as an antagonist of TCDD induced CYP1A1 transcription. 
Despite the structural similarity between quercetin and kaempferol, 
their differential effects might be due to the absence of an additional 
hydroxyl group on kaempferol, preventing it from achieving an optimal 
fit into the binding site on AhR to produce transcriptional activation. 
The binding of kaempferol may block the binding of AhR ligands, and 
thus inhibit the activity of other ligands such as TCDD [148,149].

Prenylflavone, icaritin, suppressed estrogen stimulated cell 
proliferation and gene expression in breast cancer cells. Icaritin 
exposure destabilizes estrogen receptor protein and restricts estrogen 
receptor-positive cell growth through direct interaction with AhR [150]. 
4’,5,7-trihydroxyisoflavone, also known as genistein, is considered 
a major soy isoflavone. Genistein directly interacts with AhR to 
inhibit cytochrome P450 enzyme expression [150]. Via this direct 
interaction, genistein decreased viability of prostate cancer cells [151]. 
3,4,5-trihydroxystilbene (resveratrol) a natural component of grape skin 
and wine, is also a dietary ligand for AhR [152]. Activation of AhR in 
breast cancer cells inhibits estrogen dependent transcription of tumor 
suppressor, BRCA1. The addition of resveratrol prevents AhR-mediated 
epigenetic silencing of BRCA-1 by promoter hyperphosphorylation 
[153]. Resveratrol regulation of AhR signaling is estrogen receptor 
independent. Resveratrol inhibited dioxin induced CYP1B1 expression 
in estrogen receptor-positive and estrogen receptor-negative breast 
cancer cells [154].

Diferuloylmethane, also known as curcumin is a dietary yellow 
pigment of Curcuma longa. The anti-carcinogenic properties of 
curcumin have been established but the mechanisms of action are 
not fully understood [155-157]. Evidence suggests that curcumin’s 
beneficial effects may be mediated through the AhR. Pretreatment 
of mice with curcumin inhibited BaP induced CYP1A1 expression. 
Decreased CYP1A1 transcription was attributed to decrease nuclear 
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translocation and DNA binding of AhR [158]. Curcumin was also 
shown to induce significant inhibition of androgen receptor expression 
in a hormone sensitive prostate cancer cell line. Curcumin attenuated 
phosphorylation of Akt but increased phosphorylation of beta-
catenin. Also beta-catenin target genes, cyclin D1 and c-myc, were also 
decreased in these studies, suggesting that curcumin’s inhibitory effect 
is through modulation of the Wnt/beta-catenin signaling pathway, 
possibly following direct interaction with AhR [159].

Ligands for the AhR have been shown to influence cell proliferation, 
differentiation and apoptosis. Typically, environmental toxins increase 
proliferation and differentiation while inhibiting apoptosis. Conversely, 
dietary antagonists for AhR inhibit proliferation and differentiation 
and induce apoptosis (Figure 2). However, the mechanism used by 
AhR to exert these effects is not known and cannot be attributed to its 
ability to induce drug metabolizing enzymes. The consumption of diet 
containing carcinogens, including PAHs, dioxin-like compounds and 
heterocyclic aromatic amines is associated with increased cancer risk. 
Increasing evidence suggests the consumption of dietary compounds 
found in fruits and vegetables can decrease cancer incidence. The aryl 
hydrocarbon receptor is a highly conserved transcription factor whose 
activity is regulated positively by environmental toxins and negatively 
by dietary antagonist. However, more studies are needed to confirm the 
species and tissue specific role of AhR and the dietary compounds that 
interact with the receptor in cancer initiation and progression.
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Figure 2:  AhR signaling is activated by environmental carcinogens (e.g. PhIP) 
and inhibited by natural compounds (e.g. resveratrol).
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