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Abstract

Objective: The use of therapeutic immune cell subsets is becoming an increasingly cost-effective and attractive
strategy for the treatment of cancer. Nonetheless, the field of cell therapy is hampered by the inability to consistently
generate and expand sufficient numbers of high quality cells from a majority of patients. To address this critical
issue, the investigators developed a sophisticated bioreactor technology that maximizes metabolic support and
minimizes the damaging shear-stress forces, automatically monitors functional correlates to allow cell harvest at
peak functional capacity, and permits cell sorting in situ to minimize cell loss and microbial contamination. In current
study, the established cancer-specific CTL expansion system will be tested for its potency of cancer cell killing both
in vitro and in vivo.

Methods: To test the cell expansion efficiency of ZYX Bioreactor, the CD8+ T cells expanded in different culture
systems were enumerated by flow cytometry and the Cancer-specific cytotoxic T lymphocyte (CTL) activity was
measured for their cytokine production and against autologous tumor targets by CTL cytotoxicity assay in vitro and
in vivo as well as Annexin V staining to detect low-level cytolytic activity. In the in vivo CTL assay, mouse cancer cell
line was used as stimulators and targets for the expanded mouse CTL evaluation in BALb/c mice and human lung
cancer cells and expanded human CTL were injected into immunodeficient mice for human CTL evaluation.

Results: In comparison of other cell culture systems, ZYX Bioreactor has significantly higher efficiency in the
cancer specific CD8+ T cell expansion, and these CD8+ T cells expanded in ZYX Bioreactor exhibited higher specific
CTL cytotoxicity in both in vivo and in vitro studies.

Conclusion: ZYX Bioreactor can provide the adequate metabolic support to the growing cancer-specific CD8+

CTLs and the proper condition for the stimulation of cancer cell-carried antigens to the CTLs.

Keywords: Cancer immunotherapy; Bioreactor; Cell culture and
expansion; Animal experiment; Cellular immunology; Cytotoxic T
lymphocyte; Adoptive transfer

Introduction
The elimination of cancer cells in vivo at least partially relies on the

role of immunocytes. There exist a variety of innate and adaptive
immune cell subsets that are currently in use for cell therapy of cancer
[1-8]. Currently, CD8+ cytotoxic T lymphocytes (CTL), natural killer
(NK) cells, dendritic cells (DC), mixed cell populations such as
cytokine-induced killer (CIK) cells and tumor infiltrating lymphocytes
(TIL), and genetically engineered immunocytes such as CAR-T cells
have exhibited effective anti-cancer activity in clinical trials [9-15]. In
addition, hematopoietic stem cell (HSC) transplantation has been
successfully used for immune reconstitution of cancer patients and
prevention of relapse of various cancers following intensive
myeloablative chemotherapy. However, most clinical trials conducted
using adoptive transfer of anti-cancer immunocytes has been largely
unsuccessful. Since target cell lysis in both CTL and NK cell lytic assays
correlates with the effector/target ratio at the log phase, increasing the
cell number of CTL and NK cells in the therapy could reduce the cases
of failure and increase the anti-cancer effectiveness of these cells. It is

of little doubt that all anti-cancer cell therapies experience this
common challenge and will benefit from a more efficient expansion of
higher quality cells.

Although a variety of tumor-specific mechanisms have been
reported to mediate micro-environmental inhibitory effects on CTL
activation [16-18], our recent studies have shown that irradiated or
mitomycin C-treated cancer cells no longer inhibit CTL activity and
the strength of the CTL inhibitory effect of unmanipulated cancer cells
is positively correlated with the ratio of CTL cells/cancer cells. This is
consistent with the findings of Ramakrishnan et al. in which
chemotherapy was shown to enhance tumor cell susceptibility to CTL-
mediated killing during cancer immunotherapy in mice [19].
Additionally, application of anti-CTLA-4, anti-CD137, and anti-PD1
has been shown to reverse inhibition of cancer cells to CTL killing
[20,21]. These results further suggest that (1) increasing the effective
CTL cell number can overcome or reduce the inhibitory effect of
cancer cells on the CTL in cancer cell therapy, (2) ex-vivo treatment of
cancer cells could eliminate their inhibitory effects on CTL activity,
and (3) cancer cells treated in this manner might serve as better
stimulators for cancer-specific CTL proliferation ex vivo. Hence an in
vitro expansion protocol modified according to these criteria could be
an effective strategy to generate enhanced numbers of high quality,
tumor-specific CTL.
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Recently, some cancer-specific peptide antigens has been identified
and used to stimulate CTL, and CAR T cells are developed. They
exhibit great potential and advantage. However, these methods can
only be used in the patients with the cancer which specific antigen has
been identified. In clinic, the cancer-specific antigens of most patients
are often unknown. Therefore, using inactivated cancer cells as a
stimulator to expand antigen-specific CTL is more feasible, more
reliable and easier for clinical application. This is the reason for us to
use the inactivated cancer cells to stimulate CTL in this study.

Currently, immunocytes are predominantly expanded in traditional
static cultures such as flasks and plates. Bioreactors have also been
tested for immunocyte expansion. In static culture, cells often suffer
from poor metabolic support, especially when the cells reach higher
densities. Tumor recognition and killing functions of the CTL cells are
significantly diminished after expansion under such conditions. The
application of bioreactor systems such as WAVE Bioreactor, rotation
wall vessels, magnet stirring bioreactors, and micro-carrier bioreactors
during expansion of immunocytes can significantly improve metabolic
support for expanding cells by maintaining suspension status.
However, continuous cell re-suspension greatly diminishes the
stimulation of cancer cells to CTL by reducing the opportunity of cell
contacts and creates strong shear-stress forces on the cells and results
in cell damage and death by accelerating apoptotic processes. These
bioreactors definitely do not provide the basic condition for cancer
cells to stimulate antigen-specific T cells. Therefore, there is a clear
need for a bioreactor to provide cells with ideal metabolic support with
concomitant minimization of shear-stress and ensure that effector cells
and stimulator cells can make the sufficient contacts.

The ZYX Bioreactor (ZYX Btr) allows cells to be alternatively
cultured under both static and kinetic conditions, allowing cells evenly
distributed on the bottom of culture chamber or along the surface of
the agitators during the change from the kinetic to the static state so
that cells receive maximum metabolic support and minimal shear-
stress. Such conditions are important during the activation and
expansion of immunocytes such as CD8+ CTL in which contact
between the effector and stimulator cells is essential.

The expansion of anti-cancer CD8+ CTL requires the stimulation of
the TCR by means of MHC class I complex with specific peptide
antigens. Since most cancer-specific antigens for patients in clinics are
unknown, inactivated cancer cells from patients’ cancer tissue provide
the optimal potential peptide antigens for specific CTL stimulation.
For close contact between CTL effectors and tumor stimulators, a
suitable proportion of CTL and cancer cells at high density are
required. Under such conditions, traditional static culture cannot
provide adequate metabolic support for the rapid growth of high
density CTL. Kinetic cultures with commercially available bioreactors
maintain cells in permanent suspension, minimizing opportunities for
meaningful cell to cell contact. The critical disadvantage of bioreactors
available in the current market is the lack of a mechanism allowing
cells to be evenly distributed, resulting in cell accumulation in the cell
culture container when kinetic culture ceases. Cell accumulation
significantly inhibits CTL growth, yet kinetic bioreactors available in
market do not stop running during cell culture process. Therefore, the
cells have no opportunity to make contact. In contrast, the ZYX Btr
provides alternative culture between static and kinetic modes allowing
CTL to receive the optimal metabolic support and the proper
stimulation from inactive cancer cells by effective cell contact.
Additionally, the ZYX Btr has a function that permits cell sorting and
cell culture in the same chamber to allow separation of CTL from

tumor cells in a highly efficient fashion and also almost entirely
eliminate contamination risks. The combination of cell sorting and cell
culture in a single chamber also benefits all lymphocyte expansion and
can upgrade a variety of mixed cell expansions. For example, CD8+

CTLs can be isolated from total TILs. The ZYX Btr also has many other
advantages that can enhance all types of anti-cancer immunocyte
expansion (for more details about the ZYX Btr structure and working
principles, see our published patent information: PCT/
US2012/000182).

ZYX Btr has been tested for the expansion of hematopoietic stem
cells and it has exhibited many advantages over other cell culture
methods by reducing the non-specific differentiation and providing
more effective metabolic support. In current studies, ZYX Btr is further
investigated for its potency in expansion of anti-cancer specific CTLs.

Methods
The evaluation of expanded CTL consists of two main aspects,

quantity and quality. For its quantity evaluation, the expanded cell
number will be counted, and for its quality evaluation, the specific-
killing function of expanded CTL to target cells, which includes classic
CTL assays and Annexin V binding assay, and IFN-γ production level
of expanded cells was accessed. First, the expanding CTLs were
counted and characterized using flow cytometry to enumerate cells
with a characteristic marker expression (CD8) as per established
protocols [22-24]. As our routine procedure, all cells were also counted
by Trypan Blue staining for live and died cells. Secondly, expanded
CTLs were functionally characterized to determine the target cell
killing potential. CTL lytic assays [22-25] were used for in vitro target
cell killing functional evaluation and defined cancer animal models
were used for functional evaluation of cancer cell killing in vivo. In the
in vivo experiments of this study, BALb/c mice received cancer cell
lines and mouse CTL injection, while NOD/SCID mice [26-29] were
inoculated with cancer cells from human patients after which CTLs
from the same individual were used for adoptive transfer.

Mice and grouping
BALB/c (H-2d) mice (4 months) and NOD/SCID mice (4 weeks)

were purchased from Charles River Labs. These animals were housed
in specific pathogen-free environment and cages were covered with
barrier filters with sentinel cages in Lamina Hoods (Lab products Inc.).
The Zyxell Animal Protocol and Research Committee approved the use
of animals according to principles expressed in the National Institutes
of Health, USPHS, Guide for the Care and Use of Laboratory Animals.

In the in vivo mouse CTL study, each BALB/c mice (male, 4 in each
group) received 0.2 × 106 or 1 × 106 Renca cells by subcutaneous
injection and 2 × 106 above expanded CD8+ T cells by intravenous
injection. Tumor size were measured double-blinded each week for 6
weeks. In the in vivo human CTL study, human lung cancer cells were
used as stimulator cells (irradiated at 20 Gy) for CTL expansion and as
target cells for the subcutaneous inoculation, and the T cells were from
the peripheral blood of the same patient. Irradiated (3.5 Gy) NOD/
SKID mice (6 in each group) were used as the recipients.

Enumeration of cells: Total cells were counted using two standard
methods: trypan blue dead cell exclusion and flow cytometry PI
staining. The enumeration of CD8+ CTLs, CD3+ T cells, CD33+ cells,
CD20+ cells and Annxin V+ cells was conducted using flow cytometry,
and cell markers were stained by means of established standard
protocols [22-25]. All staining reagents were from BD Pharmingen.
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CTL expansion and CTL assay: Commercially available human
cancer cells and the autologous mononuclear (Buffy coat cells from
peripheral blood, ZYX Biotech Company, Texas, USA) were used for
human CTL evaluation. Renca cells (mouse cancer cell line from
ATCC) and splenocytes from Renca cell-primed BALB/c mice were
used for mouse CTL evaluation. Mononuclear cells were isolated and
seeded in a ZYX Btr (ZYX Biotech Company, Texas, USA) cell culture
chamber and 6-well plates at 106/ml and cultured for 6 days with an
RPMI1640 containing FBS or mouse serum, 8 ng/mL IL-2 and 10
ng/mL IL-7 (4 cytokines for either human or mouse, all from
PeproTech, Rocky Hill, NJ, USA), and irradiated cancer cells (seeding
density determined by surface area, 80% confluent). Cancer cells were
used as stimulators and target cells and mononuclear cells as effectors.
Established protocols [22-25] with slight modification were used in
this study. In brief, (1) cancer cells were grown and enriched in vitro.
(2) Some of these cells were treated with mitomycin C and cultured
with the mononuclear cells from the same patient in static culture,
continuous suspension bioreactors and ZYX Bioreactors with IL-2 and
IL-7 for 6 days as determined by the computer program in the ZYX Btr
control system. Cells in static culture and continuous suspension
bioreactors (controls) were harvested on the same day. (3) CD8+ cell
isolation was accomplished using the cell sorting program in the ZYX
Btr or using a Miltenyi cell separation device for the controls.
Additional controls were consist of con A-treated CD8+ cells, un-
stimulated CD8+ CTL and/or the CD8+ cells stimulated with different
tumor types. (4) In vitro CTL assay were performed as previously
described [22-25] in which target cells were the cancer cells. Different
cancer cells will also be used as control targets. Based on our
preliminary studies, E:T ratios of 8:1, 16:1, and 32:1 were used for
setting the cell lysis tests. LDH Cytotoxicity detection Kit (Clontech,
Cat#630117) was used for the CTL Cytotoxicity analysis by following
the Manufacturer’s instructions with a slight modification as in our
previous description [23-25], except that the cell lysis occurred in the
culture with the T cells not stimulated by cancer cells as background
was subtracted. In more detail, 2x, 4x, or 8x 105/well effector cells were
added into 25,000/well target cells in triplicate and incubated for 4 hrs.
Supernatants were then harvested for LDH detection. CTL activity (%
lysis) was calculated using the formula (Test cell mix-Effector control-
spontaneous release)/(maximum release-spontaneous release). (5) For
the in vivo CTL assay, cancer cells were enriched and injected into
mice as described in (1) and (2); cancer-specific CTL were prepared as
described in (3) and (4) and were adoptively transferred into mice in
the tail vein on day 3 following cancer cell injection. On the day 21,
mice were euthanized, and the numbers of lung metastasis were
counted and subcutaneous cancer nodes were measured in a double-
blinded fashion. The animal experiments were performed in the
animal facility of Zyxell Inc.

Test early stage apoptotic cells: Annexin V banding assay were done
with established protocols [24]. It was assessed by the percentage of
Annexin V positive cells/CD3-CD20-CD33- cells, in which the
percentage of Annexin V positive cells for the culture with the T cells
not stimulated by cancer cells as background was subtracted.

Interferon gamma (IFN-γ) examination: TFN-γ is the critical
cytokine in regulating CTL killing function. ELISA (R&D) was used
for the IFN-γ detection of the supernatant from CTL expanding
culture. Flow Cytometry will be used for intracellular IFN-γ analysis,
which was analyzed by the percentage of IFN-γ and CD3 double
positive/CD3 positive cells. These assays were done by following the
manufacturers’ instruction as described before [22-25].

Comparison with other cell expansion systems: Since there is no
bioreactor that combines static and kinetic cultures and combines the
cell culture and cell sorting (see our published patent information:
PCT/US2012/00086), we selected two kinetic bioreactor systems,
which are commercially available, and the traditional static culture,
which has most commonly been applied in CTL expansion, to be
control groups (6 in each group) in our comparison studies as
described in the “CTL expansion and CTL assay” section.

Data analysis: ANOVA was used to compare the CTL cell number
and the % of cell lysis between different groups. Simple and polynomial
regression analyses were used for the establishment of the regression
functions for the relationship between cell fold-expansion and the ratio
of cell-fold expansion versus the % of cell lysis. SAS and SAS Statview
were used for statistical analysis.

Results

Improvement of mouse cancer cell-specific CD8+ cytotoxic T
lymphocyte expansion by ZYX Btr

Splenocytes from cancer cell-primed BALB/c mice were isolated
and seeded in a ZYX Btr cell culture chamber and 6-well plates at
106 /ml and cultured for 6 days with an RPMI containing mouse
serum, IL-2, IL-7, and irradiated (20 Gy) cancer cells (Renca cells,
seeding density determined by surface area, 80% confluent). On day 6,
suspension cells in the ZYX Btr were processed for CD8+ cell isolation
using a positive selection program and then cultured with the same
medium for 3 more days. CD8+ cells in a static culture were isolated
using a Miltenyi device and then placed back in plate to culture with
the same medium for 3 more days. Following the expansion, the CD8+

cells were counted by flowcytometry (Figure 1a), and in vitro (Figure
1b) and in vivo (Figure 1c), CTL assays were conducted. The figure 1a
shows that the number of CTLs expanded in ZYX Btr was significantly
higher than that in static culture. The figure 1b indicates that when the
effector cells were stimulated in the ZYX Btr, the CTL fold-expansion
folds overall lytic activity were significantly higher than those in the
static culture (p<0.05). In the in vitro CTL assay (Figure 1c), the
growth of tumors of the mice received CTLs expanded in ZYX Btr was
suppressed greatly when compared to the static culture.

Improvement of human cancer cell-specific CD8+ cytotoxic
T lymphocyte expansion by ZYX Btr

Peripheral blood from a patient with small cell lung cancer was used
for the CTL expansion. On the day 6 of the buffy coat cell culture with
the irradiated (20 Gy) cancer cells from the same individual, the CD8+

cells were isolated and further expanded in the media containing
human IL2 and IL7. The procedure of cell counting and CTL assays
were the same as for the mouse CTL assay except that the stimulator
cells, effector cells and target cells are human cells. For the in vivo CTL
assay, the recipient mice were the irradiated NOD/SCID mice. Similar
to above mouse CTL assay, ZYX Btr also significantly increased the
expanded human antigen-specific CTLs in both their number (Figure
2a) and their cancer cell killing function (Figure 2b), in comparison
with the static culture. Consistent to the in vitro assay and mouse in
vivo experiments, the average size of the tumors of the mice that
receive the CTLs expanded in ZYX Btr was significantly smaller than
that of the controls. These results demonstrate that ZYX Btr provides
better growth condition to human antigen-specific CTL both for their
proliferation and for their cytotoxicity.
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Figure 1: Comparison of expanded mouse cancer-specific CTL between ZYX bioreactor and static culture. Splenocytes from BALB/c mice
primed with Renca cells were expanded in ZYX bioreactor or static culture with the media containing mouse IL2 and IL7 for 6 days, then the
CD8+ cells were isolated and further cultured for 3 more days. Then the cells were counted and in vitro and in vivo CTL assays were
conducted. A. Significantly increased total cancer-specific CTL expansion in ZYX Bioreactor culture when compared to static culture (P<0.01,
n=6). B. In vitro CTL assay showed the enhanced cancer-specific CTL cytotoxicity to cancer cells expanded in ZYX Bioreactor in comparison
to static culture (P<0.01 for all E:T ratios, n=6). C. In vivo CTL assay: two different doses (0.2 and 1 × 106/0.2 ml) of cancer cells were
inoculated subcutaneously and mice respectively received cancer-specific CTL expanded in ZYX bioreactor and static culture. Six weeks later,
tumor size was measured. For the non-specific expansion, cells were cultured in ZYX Bioreactor but no stimulator cells were added. Compared
to the non-specific expansion, the tumor size was significantly smaller (P<0.01, n=6) in the mice received CTL stimulated by irradiated cancer
cells, and compared to static culture, the tumor size of the mice who received CTL stimulated and expanded in ZYX bioreactor was further
reduced (P<0.05, n=6).

Figure 2: Comparison of expanded human cancer-specific CTL between ZYX bioreactor and static culture. Buffy coat cells from peripheral
blood were expanded in ZYX bioreactor or static culture with the media containing human IL2 and IL7 for 6 days, and the CD8+ cells were
isolated and further cultured for 3 more days. Then the cells were counted and in vitro and in vivo CTL assays were conducted. A. Significantly
increased total cancer-specific CTL expansion in ZYX Bioreactor culture when compared to static culture (P<0.01). B. In vitro CTL assay
showed the enhanced Cancer-specific CTL Cytotoxicity to cancer cells expanded in ZYX Bioreactor in comparison with static culture (P<0.01
for all E:T ratios, n=6). C. In vivo CTL assay: two different doses (0.2 and 1 × 106/0.2 ml) of cancer cells from the same individual were
inoculated subcutaneously and NOD/SCID mice respectively received cancer-specific CTL expanded in ZYX bioreactor and static culture. Six
weeks later, tumor size was measured. For the non-specific expansion, cells were cultured in ZYX Bioreactor but no stimulator cells were
added. Compared to the non-specific expansion, the tumor size was significantly smaller (P<0.01, n=6) in the mice received CTL stimulated
by irradiated cancer cells, and compared to static culture, the tumor size of the mice who received CTL stimulated and expanded in ZYX
bioreactor was further reduced (P<0.01, n=6).

Increased Annexin V expression on the target cells attached
by in vitro expanded human antigen-specific CTL

Annexin V positive indicates early stage of cell apoptosis. After the
in vitro CTL assay, cells were examined by Annexin V binding assay
for CD8 negative (CD8-) cells. The T cells without stimulators and the
T cells expanded in static culture were served as controls. The results
exhibited in figure 3 showed that the more target cells were positive for
Annexin V in the group with the T cells expanded in ZYX Btr

compared to other groups, suggesting these expanded CTLs function
by accelerating the apoptosis of target cells.

Elevated Interferon- γ level in the CTL expanded in ZYX Btr
in comparison to the static culture
• INF-γ level was higher in the cell culture media of ZYX Btr than

that in static culture.
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• INF-γ level in the culture media was assessed by ELISA. As shown
in figure 4, the culture with ZYX Btr contains the highest level of
INF-γ.

• Intracellular INF- γ expression was higher in the CTL expanded in
ZYX Btr then that in static culture.

Cells were also double-stained for CD8-FITC and Intracellular INF-
γ-PE. As shown in figure 5, the CD8 and INF-γ double positive/CD8
positive ratios are at similar level among all groups, but the PE mean
intensity for ZYX Btr group is significantly higher than controls.

Figure 3: CTL expanded in ZYX Bioreactor leads more Annexin V
expression of target cells. Annexin V banding assay were conducted
with flowcytomety. It was assessed by the percentage of Annexin V
positive cells/CD3-CD20-CD33- cells, in which the apoptosis
occurred in the culture with the T cells not stimulated by cancer
cells as background was subtracted. The CTL expanded in ZYX
Bioreactor induced more Annexin V expression of target cells in
comparison with static culture at all E:T ratios (P<0.01, n=6).

Figure 4: Human CTL culture media in ZYX Bioreactor contains
more Interferon-γ (IFN- γ). Buffy coat cells from peripheral blood
of a patient with lung cancer was Cell expansion media collected on
day 6 was used for IFN-γ analysis with ELISA. IFN-γ in the culture
of ZYX Bioreactor has significantly higher level in comparison with
static culture (P<0.01, n=6).

Figure 5: More Interferon-γ (IFN- γ) was expressed in human T
lymphocytes expanded in ZYX Bioreactor. Cells were collected on
day 6 and stained with IFN-γ-FITC and CD3-PE. The percentage of
IFN-γ and CD3 double positive/ CD3 positive cells was obtained
from flow cytometry analysis. The significantly more T cells in ZYX
Bioreactor culture expressed INF-γ than static culture (P<0.01,
n=6).

Discussion
Several bioreactor systems currently exist, and some have been

considered as candidates for immunocyte expansion [30-39]. However,
these systems all have specific disadvantages. One of these cell culture
systems is prepared using gel or gel-like cell support materials such as
hydrogel [31-34] to maintain a 3D growth environment for cells. These
materials are non-physiologic; their static nature impedes the growth
of suspension cells such as lymphocytes and HSCs. Rotation–based 3D
culture systems [35,36] do not require gel-like materials to support
cells. Their slow vertical rotation maintains the suspension of cells or
the bead-attached cells in 3D growth states. However, the rotation–
based 3D culture leads to cell accumulation at the curved bottom when
the rotation ceases. This accumulation prevents normal cell growth.
Moreover, rotation systems maintain high shear-stress forces, which
result in significant immunocyte damage. Cells in suspension state also
seldom have the opportunity to make contact, including contact
between effector cells and stimulator cells in CTL expansions. Other
kinetic cell culture bioreactors can exert even higher levels of shear-
stress on cells in suspension and also cannot avoid cell accumulation
and aggregation when the suspension motion ceases. Definitely, the
cell accumulation and aggregation have harmful effects on cell
expansion, while continuous stirring maintains constant shear-stress
[40-44]. Hence, these kinds of bioreactors are suboptimal for CTL
expansion.

When hydrogel technologies are combined with scaffolds or
rotational wall technologies, the disadvantages common to kinetic
bioreactors are recapitulated [30-34,45-49]. The ZYX bioreactor allows
alternating culture between static and kinetic states so that cells can be
evenly distributed at the bottom or the surfaces of the agitators during
the change from kinetic to static states. This feature permits maximum
metabolic support, minimal shear-stress forces, and allows opportunity
for cell to cell contact.

Our previous studies demonstrated that CTLs gradually losing their
killing function after in vitro culture. The killing capacity per million
effector cells on culture days 12, 18, 24, and 30 dropped by
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approximately 1/3, 1/2, 7/8, and 19/20, respectively, in comparison
with day 6 in spite of continuous increases in cell number. It was also
discovered that total CTL killing capacity has a peak time period
during the expansion and decreases very quickly after the peak time
period. This suggests that expanded CTL or NK cells should be
harvested at or near the peak time point for maximum killing
effectiveness. Our studies also revealed a correlation between the cell
expansion fold and the cell killing capacity; therefore, the peak time
can be estimated according to the cell density. Figure 6 illustrates the
relationship between cell density and the total cytotoxic killing
effectiveness. These discoveries allow the ZYX bioreactor to
automatically determine the optimal cell culture duration. The
bioreactor monitors cell growth, estimates cell function at the peak
time, and terminates the culture at that peak time to maximize the
efficacy of the expanded immunocytes.

Figure 6: Relationship between cell activity and cell number in
expanding cells. This is a strategy for ZYX Btr to harvest cells at
their peak activity point. Many cells gradually lose their functions
or activities (eg. CTL reduces its cytotoxicity, hematopoietic stem
cell loses its engraftment potential) during their in vitro expansion.
At early stage of the expansion, the cell number increases faster
than the activity decreases, which results in total activity increases.
Afterwards, the individual cell-based activity drops very fast and
leads the total activity decreases. Therefore, the best cell harvest
time should be at the time point right before the total activity
decreases.

The ZYX bioreactor has a perpendicular re-suspension system
controlled by a computer, allowing for the vertical re-suspension of
cells by means of magnetically-controlled agitators in conjunction with
buoyant and gravitational forces. This process creates even cell
distribution on the bottom of the cell culture container and/or the
surface of the agitators when agitation ceases. This allows cells to be
cultured in alternative states (i.e., between static and kinetic states) so
that cells can grow in an optimal metabolic environment with minimal
shear-stress. Also, ZYX Btr allows the cell sorting and cell culture to be
conducted in the same container in which cell transfer between
containers is not needed and so it greatly reduces the cell loss and
avoids the possible contamination during the cell transfer between the
two processes and regular cell sorting process.

With these advantages, ZYX Btr has been successfully used for
hematopoietic stem cell expansion, in which the non-specific
differentiation was significantly reduced and cell engraftment potency
was greatly enhanced. In the current studies, ZYX Btr was further

tested for its potential in the expansion of cancer-specific CTL. The
results in the mouse CTL expansion showed the CTL expanded in
ZYX Btr did not only exhibit higher cell density but also stronger
specific cytotoxicity to cancer cells both in vitro and in vivo. Although
mouse in vivo CTL assays can reveal the cytotoxic killing function of
CD8+ t cells in the body of same species, the expanded human T cells
need to be further examined for their function before they can be used
to clinical trial. In this study, a classic animal model [26-29] for human
cell transplantation was used to evaluate the cancer killing function of
the expanded cells. In addition to significantly increased cell number
and in vitro cytotoxicity to cancer cells, the human CTL expanded in
ZYX Btr more effectively inhibit the in vivo growth of lung cancer cells
obtained from the same individual in comparison with the static
culture. These data indicates that ZYX Btr can provide better condition
for the CTL expansion. In our experiments, the cultures without
stimulator were also observed as controls. However, cells without
cancer cell stimulation exhibited the least (if any) cancer cell killing
function, suggesting that the specific stimulation to CTL play a critical
role in the effective antigen-specific CTL expansion. Considering the
controls with continuous cell suspension showed the similar level (data
not shown) of tumor growth inhibition of cells without specific
stimulation and similar to the control without cell adoptive transfer
(data not shown), the cell contact between effectors and stimulators is
required for inducing and keeping specific cytotoxicity of CTL.

The of target cell lysis related to CTL cytotoxic cell killing involves a
mechanism of apoptosis [24]. Annexin V is a cell membrane marker of
apoptosis which appears at the early stage of apoptosis. In order to
confirm that the cell lysis caused by expanded CTL is still mediated by
apoptosis, Annexin V on the target cells was examined. Consistent to
the CTL assays, the expression of the Annexin V on the target cells of
the CTL expanded in ZYX Btr were enhanced. It suggests that the CTL
expanded in ZYX Btr were still functioning by triggering out the
apoptosis of target cells.

INF-γ is an up-regulator of Th1 immune response and correlated to
CTL activity [23-25]. Therefore, INF-γ level can also reflect the quality
of the in vitro expanded cells. In our current studies, the intracellular
INF-γ level and INF-γ concentration in the culture media are all
higher in the CTL expanded in ZYX Btr than in controls, suggesting
that ZYX Btr provided a more suitable condition for cells to produce
and secrete INF-γ.
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