
Gomes et al., Cell Dev Biol 2012, 1:5 
DOI: 10.4172/2168-9296.1000106

Volume 1 • Issue 5 • 1000106Cell Dev Biol
ISSN: 2168-9296 CDB, an open access journal

Open AccessReview Article

Cancer Metastasis
Carlos Augusto Gomes1*, Cleber Soares Junior2, Juliana Almeida do Valle3, Carolina Teixeira de Assis Lopes3, Andressa Barra3, Camila 
Couto Gomes4, Thiago Henrique Ladeira do Carmo4 and Felipe Couto Gomes5

1Adjunct Professor, Department of Surgery, Hospital Universitário (HU), Universidade Federal de Juiz de Fora (UFJF). Hospital Universitário (HU) - Faculdade de 
Ciências Médicas e da Saúde de Juiz de Fora – (SUPREMA), Brasil
2Assistant Professor, Department of Surgery, Hospital Universitário (HU), Universidade Federal de Juiz de Fora (UFJF) Hospital Universitário (HU) - Faculdade de 
Ciências Médicas e da Saúde de Juiz de Fora – (SUPREMA) – Brasil.
3MD, Surgery Unit, Hospital Universitário (HU) - Faculdade de Ciências Médicas e da Saúde de Juiz de Fora – (SUPREMA), Brasil
4Medicine Student, Internal Medicine Departament, Hospital Universitário (HU), Universidade Federal de Juiz de Fora (UFJF), Brasil
5Medicine Student, Morphology Department, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora (SUPREMA), Brasil  

Abstract
With the aging population and an increased incidence of neoplastic diseases, the study of the etiology of tumors 

and the mechanisms involved in the process of metastasis has increased significantly. Although there has been 
remarkable progress in this area and many proposed theories, several questions still remain. The factors associated 
with the emergence of the primary tumor and the mechanisms of metastasis are difficult to understand for many 
surgeons and clinicians because of the involvement of complex genetic, biochemical and molecular models.

The tumor metastasis is responsible for approximately 90% of all cancer-related deaths. The cancer metastatic 
process occurs in a series of progressive steps, which called “metastatic cascade”. Its occurrence is a necessary 
break of the normal homeostatic mechanisms, leading to a rearrangement of the stromal tissue adjacent to the primary 
tumor. It is now well established that for this process, cancer cells need to acquire additional properties, which confer 
the capacity to invade the extracellular matrix, migrate, invade blood and lymph vessels, adhere, survive in target 
organs, grow and promote “organogenesis” in this new environment.

The aim of this study, therefore, is to provide a didactic review and accessible information on ways and mechanisms 
involved in the genesis of the primary tumor and metastasis process, which may contribute to treatment of these 
tumors.
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Cancer
Genetic predisposition

The relationship between genetic predisposition and development 
of cancer is also well established. The familial cancer occurring due to 
mutations, which are genetically inherited, constitutes a small fraction 
(5%) of malignant tumors, but it creates high-risk for family members. 
Examples of the risks are retinoblastoma, breast carcinoma, Li Fraumeni 
syndrome (autosomal dominant disorder that predisposes to multiple 
forms of cancer, including breast, soft tissue sarcomas, brain tumors, 
osteosarcoma, leukemia, and adrenal carcinoma), and the syndrome 
of multiple endocrine neoplasms type 2 (MEN 2 – medullary thyroid 
carcinoma and pheochromocytoma, associated to mucosal neuromas or 
hyperplasia of the parathyroid). Recommendations for early diagnosis 
along with preventive examinations should be systematically applied 
and constitute the fundamental point to control the disease [1].

Genetic susceptibility
More than 110 different types of cancer have already been described, 

and the role of genetic susceptibility to carcinogenesis process is quite 
complex. It is known, however, that malignant tumor is a result of 
both genetic mutations and epigenetic changes, which interact, mainly, 
causing activation of proto-oncogenes and inactivation of suppressor 
genes of tumor [2].

Furthermore, because of the reduced visibility of cancer, all 
information necessary for the transformation of a normal cell in 
neoplastic must be attributed to modifications in its genome. It is 
now known that this genetic and phenotypic variability determines 
autonomous and unregulated cell growth, external signals that block 
and prevent the phenomena of apoptosis and favors the ability to 
invade adjacent tissues and organs, metastatic potential, and response 
or resistance to therapy. The number of genes implicated in tumor 

development is very high; in fact, although they act different initially, 
all the oncogenic agents have the same endpoint: transformation of 
proto-oncogenes into oncogenes and/or inhibition of anti-oncogenes 
[2,3].

Proto-oncogenes

Proto-oncogenes are groups of genes, which favor the conversion 
of a normal cell into a carcinogen cell when it is in mutation. Growth 
factors, membrane receptors, and DNA-binding proteins encode 
this process, and therefore, are related to growth, differentiation 
and proliferation of normal cells. Oncogenes are activated proto-
oncogenes, and this process is triggered by means of the following 
genetic modifications [1,4].

Translocations and inversions – allow a proto-oncogene to be 
inserted near or added to a gene frequently transcripted, leading to its 
increased expression and/or aberrant production of proteins.

Deletions – have oncologic importance when they involve 
suppressor genes of oncogenic cell growth.

Amplifications – lead to the exacerbated expression of proteins 
structurally preserved.
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Punctiform mutations – cause production of structural proteins 
and functionally aberrant.

Insertion of viral DNA – insert viral oncogenes in the human 
genome. The product of such oncogenes can stimulate or inhibit proto-
oncogenes and anti-oncogenes.

The mechanisms of action of oncogenes have not been fully 
elucidated. Some oncogenes produce oncoproteins, such as, Bcl-2, 
IE84 (cytomegalovirus), SV40 T (SV40 virus), E6 (HPV), EBNA-5-
(EBV), and HBx (hepatitis B virus), which strongly bind and inhibit 
proteins encoded by genes that suppress the growth or induce cell 
apoptosis, as the p53 and the Rb. As a result, they lead to the absence of 
suppression of the division or inhibition of cell death by apoptosis, and 
consequently to the cell “immortality” [2,4].

Other oncogenes act leading to overproduction of membrane 
receptors for growth factors such as c-erbB-2 (for a homologue of 
the epidermal growth factor) and RET. A third way is the autocrine 
production of growth factors, which is observed, for example, in the 
proliferation and activation of proto-oncogenes c-fos and c-sys by the 
product of the viral tax oncogene (HTLV-1) [5,6].

Other forms of promotion of tumor growth are the activation of 
proto-oncogenes that stimulate cell entry into mitosis (e.g., c-myc) and 
the production of proteins, which simulate the action of transducers 
of signal of the membrane receptors for growth factors (e.g., c-ras and 
c-abl) [5,6].

Anti-oncogenes

Anti-oncogenes are inhibitor genes of the normal and tumor cell 
proliferation. They operate in the following ways [2,7]:

• Interaction with the extracellular matrix – The anti-oncogene 
DCC produces a transmembrane protein that interacts 
with extracellular matrix components and is responsible for 
signaling growth inhibition by establishing contact between 
the cells lost in neoplasms.

• Regulation of transduction – The anti-oncogene NF-1 acts by 
inactivating protein of the proto-oncogene ras. This protein is 
a transducer whose function is to cause the core information 
of a cell; it is stimulated by growth factors bound to membrane 
receptors. In case of NF-1 inactivation by mutation or deletion, 
the transducer signal is not inhibited, generating a continuous 
stimulus to the cell into mitosis [2,7].

• Transcriptional regulation of DNA – The anti-oncogenes Rb 
and p53 are the prototype of this group. The gene Rb was 
the first anti-oncogene to be discovered during studies with 
the retinoblastoma. It acts by preventing the cell to get out of 
G0/G1 stages and enter into the S phase of cell cycle. When 
the cell undergoes mitogenic stimuli, the protein encoded 
by the Rb gene is inactivated, allowing the proliferative cycle 
progression; but, before the formation of the daughter-cells, 
it returns to its active form, thus, preventing the cycle from 
continuing indefinitely. When this gene is inactivated (e.g., 
by HPV and SV40), there is this block, and the cell reaches its 
“immortalization” [2,7].

P53 is one of the main genes responsible for the integrity of the 
genome. It is enabled by the emergence of altered DNA. Its activation 
produces a protein that stimulates the synthesis of others, which act 
by inhibiting cell replication by binding to the nuclear proliferation 
antigen (PCNA) and stimulating the DNA repair enzymes. If DNA 

repair is complete, the p53 is inactivated, and the cell returns to normal. 
If not satisfactory, the cell is prevented from replicating and is induced 
to apoptosis. Therefore, it plays a vital role in regulating, development, 
differentiation of the cell cycle, recombination of DNA, chromosome 
segregation and aging. It was named “guardian of the genome” and 
more than 50% of cancers are related to defects in the tumor suppressor 
gene p53 [7-10].

Age

Despite the genetic and environmental causes, age is the most 
important predictor of cancer development. About 80% of cancers 
arise in individuals aged over 55 years. The age-related inefficiencies in 
maintaining the integrity of the genome and the declining capacity of 
its repair is well studied and is nowadays critical to the emergence of 
the disease. This, therefore, means that the cancer that develops in old 
age represents a natural phenomenon of aging, which favors genomic 
instability and that cancer prevention should involve the complex task 
of reversing the modifications caused by aging [11,12].

Tumor microenvironment

Regardless of the route that enabled the development of the tumor, 
a dynamic microenvironment composed of tumor cells, stroma and 
extracellular matrix is established. The latter correspond to connective 
tissues of support, composed of several non-tumor cells such as 
fibroblasts, epithelial residing cells, myofibroblasts pericytes, vascular 
endothelial cells and linfovasculares, and infiltrating cells of immune 
system [3].

The recruitment of fibroblasts – the main component of the 
stroma – is responsible for the tumor initiation process. These cells, 
which are now called CAFS (cancer-associated fibroblasts), secrete 
factors that act on tumor cells of both paracrine and autocrine 
manner, which may favor the development of more aggressive tumor 
phenotypes. The CAFS secrete factors that promote the recruitment of 
immunosuppressive cells, creating a complex network which maintains 
the immunosuppressive environment. This scenario is responsible for 
immune escape of tumor cells and the consequent tumor progression 
[3].

Fibroblasts act primarily by depositing large amounts of extracellular 
matrix components, such as collagen type I and III and tenascin C. 
Moreover, the CAFS represent sources of metalloproteinase’s (MMPs) 
that promote tumor invasion by extracellular matrix degradation. 
Note the production of vascular endothelial growth factor and protein 
S100A4 that trigger the angiogenesis and plays a significant role in the 
process of metastases [13,14]. It has also been found that high levels 
of S100A4 expression correlate with the negative prognosis in various 
cancers [14].

Apoptosis

Apoptosis is the term used in contrast to necrosis, to describe 
the situation in which the cell is programmed to die in response to 
specific stimuli [10]. Three major biochemical changes are observed 
in apoptosis, including the activation of caspases, changes in the cell 
membrane with phagocytosis macrophages, and rupture of DNA and 
protein. One of the first changes in the observed phenomenon is the 
expression of phosphatidyl serine (PS) in the outer layers of the cell 
membrane. This allows for early recognition of dead cells resulting in 
phagocytosis by macrophages without release of pro-inflammatory 
cellular components. Then, the DNA fragmentation occurs with the 
subsequent internucleosomal cleavage by the endonucleases [15].
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Another aspect is the activation of a specific group of proteins 
belonging to the family of cysteine   proteases called caspases. Once 
activated, they degrade many vital cellular proteins; moreover, they 
disrupt the nuclear scaffold and cytoskeleton. The caspases are at the 
center of the apoptosis process, which they both initiate and execute. 
The two main described routes in its development are intrinsic 
(mitochondrial) and extrinsic (death receptor). At the end, both 
pathways may eventually lead to a common path named application 
pathway. Caspase 9 is the end part of the intrinsic pathway while 
caspase 8 is the extrinsic pathway. The intrinsic and extrinsic pathways 
converge to caspase 3, which enables nuclear apoptosis by disrupting 
the inhibitor of caspase-activated deoxyribonuclease [16].

The relationship between pro-apoptotic proteins and anti-apoptotic 
proteins, much more than their absolute values,   play a fundamental 
role in the process of cell death and carcinogenesis. Therefore, over- 
or under-expression of certain genes [Bcl-2, p53 Inhibitor of apoptosis 
proteins (IAPs)] have been implicated in carcinogenesis by reducing 
apoptosis in cancer cells. Apoptosis constitutes, therefore, of a highly 
selective process involved in physiological and pathological phenomena. 
Various ways in which malignant cells can acquire resistance to reduce 
the phenomena involved in apoptosis are described as follows: disrupted 
balance of pro-apoptotic and anti-apoptotic proteins reduced caspase 
function, and impaired death receptor signaling [17,18] (Figure.1).

Cancer Metastasis
Steps in the metastatic process

The cancer metastasis is responsible for approximately 90% of all 
deaths related to this disease. Its occurrence is a necessary break of 
the normal homeostatic mechanisms, leading to a rearrangement of 
the stromal tissue adjacent to the primary tumor. A major trigger of 
this process is the hypoxia situation present in many tumor sites and 
corresponding to an oxygen pressure of the tissue below 5 for 10 mm 
Hg [13]. 

“Metastasis cascade” is the term used to describe a series of 
progressive steps that occurs during the metastatic process and 
includes: epithelial–mesenchymal transition (EMT) and breach of 
the basement membrane barrier;  dissociation of tumor cells from the 
bulk tumor; invasion of the neighboring tissue; intravasation into pre-
existing and newly formed blood and lymph vessels; transport through 
vessels; extravasation from vessels; establishment of disseminated 
cells (which can stay dormant for a prolonged period of time) at a 
secondary anatomical site; and  outgrowth of micrometastases and 
macrometastases/secondary tumors [19-23]. Moreover, another step, 
the creation of a “premetastatic niche” at the target site, before the first 
tumor cells arrive at this distant location, also is remembered. Each 
stage of the cascade triggers many physiological barriers to the spread 
of malignant cells and the tumor cells have to overcome all of them [19-
20]. The different steps of “metastasis cascade” can be found in Figure. 
2.

Metastatic cascade

Cancer cell dissemination and epithelial–mesenchymal 
transition: Local invasiveness involves entry of cancer cells that have 
resided within a well-confined primary tumor into the surrounding 
tumor-associated stroma and thereafter into the adjacent normal tissue 
parenchyma [24]. Epithelial cells are the source of the majority of solid 
tumors and they are isolated from the stroma contact by a basement 
membrane (BM). They are also organized by lateral belts of cell–
cell adhesion complexes. In order to invade the stroma, cancer cells 

must first breach the BM, a specialized ECM that plays vital roles in 
organizing epithelial tissues, in part by separating their epithelial and 
stromal compartments. During the progression from an “in situ” to an 
invasive tumor, cells are released from their neighbors and breach the 
basement membrane barrier. This phenomenon represents the first 
step in the metastasis cascade. The cancer cell loses its polarity and 
down regulation of epithelial proteins, mainly E-cadherin, but also 
occludin, claudins, cytokeratins or catenin proteins. Cadherins and 
catenins participate in cell–cell adhesion mechanism. Additionally, 
cells acquire a spindle-shaped morphology that allow cell migration 
and induce the production of mesenchymal proteins like N cadherin, 
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Figure 1: Mechanisms that contribute to evasion of apoptosis and 
carcinogenesis.
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series of cell-biological events, which are collectively termed the invasion 
metastasis cascade. During metastatic progression, tumor cells exit their 
primary sites of growth (local invasion, intravasation), translocate systemically 
(survival in the circulation, arrest at a distant organ site, extravasation), and 
adapt to survive and thrive in the foreign microenvironments of distant tissues 
(micrometastasis formation, metastatic colonization). 
Cancer cells are depicted in red. 
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Figure 2: The steps of Invasion-Metastasis Cascade according to Fiddler 
2003*.
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vimentin, tenascin C, laminin â1 or collagen type VI á, as well as 
various proteinases [25,26] . The key signaling pathways and molecules 
inducing EMT, including Receptor Tyrosine, can directly modulate 
RTK signaling for instance by stimulating or repressing the activity of 
the epidermal growth factor receptor (EGFR) [27-29]. The induction 
of mesenchymal proteins during EMT also promotes invasive and 
metastatic processes: overexpression of N-cadherin, for example, 
induces cell migration, invasion and metastasis [30,31]. The snail and 
twist families of EMT mediators also inhibit apoptosis affecting both 
tumor growth and tumor spreading [32-35]. Recently has been shown 
that snail members mediate tumor immunosuppression and facilitating 
metastasis [36]. In addition, twist blocks cellular differentiation [37-39] 
and can interfere with oncogene induced senescence [40].

Invasion and cell migration: To invade tissues and vessels, cells 
must acquire the ability to migrate. The cell migration process starts 
with the extension of cell membrane protrusions, which is controlled by 
a continuous cycle of actin polymerization and depolymerization. After 
adhesion to the ECM via integrin- and FAK-containing complexes 
and actin–myosin 2-mediated cell contraction, release of adhesion at 
the trailing edge leads to cell locomotion. In this process, the cofilin 
pathway acts as the “steering wheel of the cell” by coordinating 
membrane protrusion [41]. Similarly, integrin signaling is critical for 
cell migration and invasion by modulating FAK/SRC signaling and the 
activity of RHO family GTPases [42].

Invasive tumor cells can migrate either as single cells or collectively 
in the form of files, clusters, or sheets. Collective invasion of tumor 
cells has been observed also in tumors with incomplete or no EMT. 
Single cell migration can occur either as a “mesenchymal” migration 
or in an “amoeboid” form, which is faster and requires no proteolytic 
ECM remodeling [43,44]. Many adhesion and signaling molecules, 
including integrins, CD44 and several Immunoglobulin-domain Cell 
Adhesion Molecules (IgCAMs), have been implicated in cell migration 
and tumor invasion [45,46]. EMT programs are orchestrated by a set of 
pleiotropically acting transcription factors, including Slug, Snail, Twist, 
ZEB1, and ZEB2, which organize entrance into a mesenchymal state by 
suppressing expression of epithelial markers and inducing expression 
of other markers associated with the mesenchymal state [47]. 

The invasion is considered a plastic process in which tumor 
cells can adapt to different conditions by switching their properties 
and requirements. Other concept is that the physical dimensions of 
ECM gaps and pores thereby determine the protease requirements, 
morphology and efficiency of cancer cell migration [48]. The main 
difference between metastatic and non-metastatic cells in that setting 
was not so much the migration capacity “per se”, but rather the 
directionality of migration. Metastatic cells become polarized towards 
blood vessels and migrated more directionally [49,50].

Anoikis: Once the cancer cells lose contact with the BM during 
invasion they face another barrier against metastasis: anoikis (cell 
death induced by inappropriate or loss of cell adhesion). It has already 
been shown that normal endothelial and epithelial cells actively trigger 
an apoptotic response once they lose their cell–cell and cell–matrix 
interactions or if the adhesive substrate is inadequate and this process 
ensure tissue homeostasis [51-53]. Thus, anoikis suppression is likely 
to be a prerequisite for tumor cells to successfully metastasize to 
distant sites [54,55]. Consistent with this, most cell lines established 
from human tumors contain populations of cells that survive when 
confronted with lack of adhesion to culture plates. 

The main cell surface receptors to “sense” adhesion to the ECM 

and to provide a cell with information about its surroundings are 
the integrins [42]. Different integrin complexes bind to diverse ECM 
molecules and respond by triggering an intracellular signaling cascade 
via focal adhesion kinase (FAK) and SRC family kinases. Integrin 
activation protects cells against anoikis [52], similar to several kinases 
downstream of integrins, including SRC [51], focal adhesion Kinase 
FAK [56] and integrin linked kinase (ILK) [57,58]. Tumor cells often 
show an altered spectrum of integrin receptors [42,59] or have high 
levels of FAK [60], stimulating proliferation, survival and migration.

At same time, twist and snail are required for anoikis suppression 
in different cell systems [61,62]. Furthermore, the transcriptional co-
repressor C-terminal binding protein 1 (CTBP1) has been shown to 
repress both epithelial and pro-apoptotic genes at the same time [63], 
providing molecular insights into the connection between EMT and 
anoikis suppression. Besides suppressing anoikis by interfering with 
cell adhesion signaling, obstruction of the apoptotic machinery may 
also induce anoikis suppression and facilitate metastasis.

Angiogenesis: Tumor cell invasion alone is not sufficient to 
produce distant metastases; it requires also the transport of malignant 
cells through blood and/or lymph vessels. It is known that avascular 
tumors cannot grow beyond a size of 1 mm in diameter [64]. At this 
stage, passive diffusion of nutrients and oxygen becomes rate limiting 
for the tumor nodule, which is then forced to enter a state of so-called 
“tumor dormancy”. However, in most cases, tumor vascularization 
is achieved by sustained angiogenesis (sprouting of new vessels from 
existing ones), with a significant contribution of bone marrow-derived 
vascular and hematopoietic progenitor cells [65]. The growth of new 
vessels is strictly regulated by a delicate balance of angiogenic activators 
most prominently vascular endothelial growth factor A (VEGFA), 
fibroblast growth factors (FGFs), platelet-derived growth factor 
(PDGF) and epidermal growth factor (EGF)) and angiogenic inhibitors 
(thrombospondin 1, angiostatin, endostatin and tumstatin) [66,67].    

Under hypoxic conditions the cancer cells promote not only 
sustained angiogenesis but can also induce and select an invasive and 
metastatic phenotype and hypoxia-inducible factors (HIF1A, HIF2A)
[13,68]. HIF1A regulates numerous target genes, including many that 
are involved in angiogenesis (VEGF), cell proliferation and glucose 
metabolism [69]. HIF1A can promote cell migration and invasion in 
different ways involving up regulation of the CXCR4 and up regulating 
lysyl oxidase (LOX) [70,71]. Furthermore, several EMT mediators, 
including twist, snail, ZEB1 and ZEB2, are induced by hypoxia and 
HIF1A in different cancer types [72-75]. Another aspect observed is 
a change in the normal vascular hierarchy of arterioles– capillaries–
venules into a chaotic organization, leading to an abnormal blood flow 
that changes directions or even stops locally. In combination with 
increased leakiness of tumor vessels, this leads to a high interstitial 
(tissue) pressure in solid tumors and to an inefficient supply of 
nutrients and oxygen [76].

Tumor cells spread also via the lymphatic vasculature [77,78]. The 
presence of tumor cells in regional lymph nodes draining the primary 
tumor site can precede distant metastasis to visceral organs [77]. Most 
of the principles underlying tumor hemangiogenesis are conserved 
in lymphangiogenesis. For example, VEGF family members (VEGFC 
and VEGFD) induce lymphangiogenesis and lymph node metastasis 
via VEGF receptor 3 (VEGFR3) [79,80]. There are two possible 
explanations about why tumors attract lymph vessels in the first place, 
as, in contrast to blood vessels, they do not provide nutrients or oxygen 
and thus, do not seem to confer a direct advantage to the tumor. 
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The first one is that lymph vessels might lower the interstitial 
pressure in tumors. However, many intratumor lymph vessels seem 
to be non-functional [81]. Another one is that lymphangiogenesis 
represents merely a side effect; in that blood vessel endothelial cells 
release growth factors like FGF2 and PDGF, which not only stimulate 
tumor cell proliferation but also promote lymphangiogenesis [77].

Intravasation, transport through vessels and extravasation: The 
term intravasation describes invasive tumor cells entering the lumina 
of lymphatic or, mainly, blood vessels; process guided by macrophages 
and involving a paracrine signaling loop relying on the CSF1 receptor 
(expressed on macrophages) and EGFR (expressed on tumor cells) [82-
84]. To facilitate the intravasation, a range of molecular changes can 
promote the ability of tumor cells to cross the pericyte and endothelial 
cell barriers, the microvessels walls’ components.

As soon as the cancer cells reach the lumina of blood vassels they 
disseminate widely through the venous and arterial circulation as 
CTCs (circulation tumor cells). However, while in the hematogeneous 
circulation, CTCs go through a series of stresses, such as sheer forces 
caused by the blood flow and the lack of cellular adhesion. As a result, a 
large number of tumor cells undergo anoikis, eliminating disseminated 
tumor cells and hampering metastasis. 

It is not known how long the CTCs that could survive those stresses 
can circulate in the vasculature. Some studies suggest that, due to the 
relative large diameter of cancer cells in comparison with the luminal 
diameter of capillaries, CTCs are trapped in the first or second capillary 
bed they find [19]. In this way, many tumor cells just spend a short 
period in the hematogeneous circulation, escaping from the anoikis 
inducing mechanisms. 

Once located in the microvassels of distant sites, the circulating 
tumor cells initiate their extravasation, crossing from the vessel lumina 
into the tissue parenchyma. During this process, integrins ans selectins 
promote the interaction of tumor cells with platelets, leukocytes and 
endothelial cells, allowing CTCs penetration trough the layers of 
pericytes and endothelial cells that separate vessel lumina from the 
stromal microenvironment [85,86].

Micrometastasis formation: When tumor cells extravagate, 
they encounter a foreign microenvironment formed by stromal cells, 
ECM constituents, available growth factors and cytokines that usually 
differs from that one of the primary tumor. In order to survive and 
form micro metastasis, tumor cells use effective mechanisms to modify 
the metastatic site properties. According to the “premetastatic niche” 
model, before the arrival of disseminated tumor cells, the primary tumor 
releases systemic signals (perhaps lysyl oxidase) that promote a range of 
changes and convert distant sites into more hospital environments for 
the survival of those tumor cells and the formation of micrometastases 
[87]. Simultaneously, metastatic cells can adapt themselves to the new 
environment by using cell-autonomous processes. One example of 
such a mechanism involves activation of Src tyrosine kinase signaling 
[88].

Metastatic colonization: It seems that, in the process of metastatic 
colonization, the majority of disseminated tumor cells suffers 
either slow attrition over periods of weeks and months or persists 
as microcolonies in a state of apparent long-term dormancy. The 
disseminated cancer cells may be quiescent, with their proliferation 
at metastatic sites greatly impaired due to incompatibilities with the 
foreign microenvironments that surround them [19]. 

Moreover, the ability of disseminated tumor cells to escape 

dormancy and to begin active proliferation may depend on cell-
non autonomous mechanisms that are needed to convert foreign 
microenvironments into more hospitable niches. The outgrowth of 
indolent disseminated cancer cells may depend on the activation and 
mobilization into the circulation of bone marrow-derived cells and 
the subsequent recruitment of these cells to a metastatic site. In some 
cases, these processes may be stimulated by systemic signals released by 
carcinoma cells, such as osteopontin (OPN) or SDF-1[89,90].

On the other hand, the occult micro metastases may proliferate 
continuously; however, a net increase in their overall number may 
not occur due to the effects of a high apoptotic rate. The failure of the 
occult micro metastasis to initiate neoangiogenesis has been proposed 
as explanation for this high attrition rate [19].

The ‘‘seed-and-soil’’ hypothesis [91] of metastatic outgrowth 
articulated more than 120 years ago is still current.  More recently, 
a number of genes whose expression facilitates the metastatic 
colonization of breast cancer cells specifically to both lung [92] and 
brain [93], have been identified. These genes seem to dictate organ-
specific metastatic tropism due to their ability to compensate for and 
overcome incompatibilities between the intrinsic growth programs 
of the disseminated cancer cells and the demands imposed by the 
particular foreign tissue microenvironment around them [23]. 

Therefore, the final step of the invasion-metastasis cascade imply 
that the distinct adaptive programs governing metastatic colonization 
may number in the dozens, with each determined by both (1) the 
identity of the organ site at which metastatic colonization occurs and 
(2) the tissue of origin of the disseminating primary tumor cells; in 
other words cancer cells colonizing the lungs utilize different genetic 
and/or epigenetic programs than do the same breast carcinoma cells 
colonizing the bone, brain, or liver [23].

Other relevant aspect to metastatic colonization, the ‘‘tumor-
initiating cells’’ TIC hypothesis asserts that one or more self-renewing 
TICs must disseminate during the course of disease progression in 
order for macroscopic metastases to develop; conversely, the limited 
self-renewal capacity of disseminated non-TICs may preclude them 
from spawning macroscopic metastases. One class of molecules that 
promote entrance into the TICstate is EMT-promoting transcription 
factors, such as Snail,Twist, and ZEB1. This interaction between a 
molecular pathway that promotes both invasiveness and self-renewal 
is noteworthy, as these transcription factors appear to concomitantly 
facilitate physical dissemination of cancer cells and, following 
dissemination, the proliferation of these cells at distant organ sites [23]. 

Lastly, the accumulation of genetic and/or epigenetic alterations, 
as well as the co-option of nonneoplastic stromal cells, cancer cells are 
capable of completing an intricate, multistep, cell-biological process 
that culminates in the formation of macroscopic, life-threatening 
growths at distant organ sites [23] (Figure.3).

Others relevant phenomena in cancer metastasis

Epigenetic changes: Among the main molecular phenomena 
involved in the metastatic process are epigenetic changes, which are 
able to explain the alterations suffered by many genes involved in 
metastasis, as the genes encoding laminins, heparan sulfates, proteases, 
inhibitors of angiogenesis, among others. The term epigenetics refers 
to the inheritance of changes in the gene activity that is independent 
of the sequence of DNA [94]. Two main mechanisms are involved in 
epigenetic gene regulation in the development and genesis of tumors: 
the hypermethylation of DNA, and the changes undergone by histonas 
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[95]. Such modifications are indicative of a cancerous process, in which 
the expression of tumor phenotypes occurs because of loss of fine 
control of the epigenetic mechanisms [96].

The epigenetic methylation corresponds to a stable change of 
the genetic expression through changes in genomic DNA by the 
addition of a methyl group to cytosine residues or adenine. A gene 
can then be inactivated, i.e., having its transcription inhibited by the 
hypermethylation of its promoter region. Thus, the genesis and tumor 
progression are linked to the epigenetic inactivation of the promoter 
regions of suppressor genes of tumors [97]. In addition, aberrant 
epigenetic alterations are used as biomarkers for diagnosis, staging, and 
response to tumor treatment.

The early research studies in this area have observed the presence 
of methylation in cytosine positioned immediately after guanine 
residues (known as CpG). In somatic cells of an adult, 60–90% of the 
CpG are methylated, with the remainder, unmethylated, known as 
“CpG islands”. The core of the genesis and tumor progression is exactly 
the suppression by hypermethylation of these islands “CpG” [98]. To 
evaluate the methylation of “CpG islands”, several techniques are used, 
including the specific-methylation PCR (MSP).

Surprisingly, DNA methylation occurs in a complex context 
of chromatin and is influenced by the changes that occur with the 
histones. It is known that histones are dynamic regulators of genetic 
activity, which are subject to a series of post-transcriptional chemical 
modifications, such as acetylation, methylation, phosphorylation and 
ubiquilation [94]. In general, some modifications such as acetylation 
of histones are responsible for promoting its transcriptional activity, 
while others, such as methylation of lysine 9 of histone H3, cause 
condensation and inactivation of chromatin [99]. According to the 
hypothesis of the “histone code”, the expression profile of a given region 
of chromatin depends on the combination of histone modifications 
[100].

Changes involving microRNAs: In addition to DNA 
hypermethylation and modifications suffered by histone, the epigenetic 
changes involving are extremely important in tumor development and 
metastasis. MicroRNAs (or miRs) are non-coding RNA molecules 
comprising of 19–25 nucleotides, capable of regulating the genetic 
expression [101]. The action of the miRs is the inhibition, and it occurs 
when partially complementary sequences are present in a 3' non-
transcribed region of a mRNA target or when the miR and the target 
mRNA bind, causing the degradation of the mRNA and consequent 
inhibition of the translation. The miRs have an important role during 
mammals’ development in the processes of proliferation, apoptosis and 
differentiation [101]. Nowadays, there is new evidence that there is an 
unregulated expression of miRs by epigenetic mechanisms in human 

cancers. The pathogenesis of tumor occurs either by overexpression of 
miRs, causing hipoexpression of the regulatory genes of tumors, or by 
the miRs hipoexpression, causing overexpression of oncogeneses [102].

The chemokines: In the intricate metastatic process, the role of 
chemokines is very important; pro-inflammatory cytokines promote 
the immediate chemotaxis of leukocytes to the inflammatory site. They 
are induced by inflammatory cytokines, growth factors, and pathogenic 
stimuli signaling through chemokine receptors (7-transmembrane 
coupled to G-protein) [103]. They are classified into four groups (C, 
CC, CXC, and CX3C) according to the position of the two residues 
N-terminal of cysteine,   and family to which their binder cognates 
belong [104]. Such molecules can be expressed by different cell types 
and control many physiological and pathological processes, such as, 
metastasis of malignant cells to distant organs. Since cytokines and 
chemokines are responsible for the inflammatory process in this tumor 
genesis, they contribute to the promotion of angiogenesis, tumor 
growth, invasion and metastasis [105].

Organotropism: Nowadays, it is consensual that the probability 
of a tumor metastasis is a non-random event, which depends on 
the interaction with tumor factors that facilitate their homeostatic 
proliferation and survival. There are numerous theories that seek to 
explain the organotropism present in the metastatic process, which is 
partly explained by the pattern of blood flow. In the late nineteenth 
century, Paget developed the hypothesis of “seed and soil” [91]. Noting 
the susceptibility of tumors to migrate to specific sites, he proposed that 
certain tumor cells (the seeds) select bodies, whose microenvironment 
is propitious to their growth (the soil). The theory of “selection of 
the organ” considers that tumor cells migrate in proportion to the 
primary site for the entire circulation and/or lymph nodes. In this 
case, what determines the establishment of metastases in target organs 
is the presence of appropriate growth factors in such locations. The 
theory of “adhesion” suggests that adhesion molecules expressed in 
tissue-specific endothelial surface of target organs are responsible for 
anchoring migratory tumor cells, and create a pre-tumor niche that had 
become a secondary tumor. The theory of “chemoattraction” proposes 
that malignant cells expressing functional chemokine receptors can 
respond to organ-specific molecules and migrate directionally by 
gradients of chemokines and initiate site-specific metastases in target 
organs [106].

Molecular and cellular mechanisms of metastasis

There are countless efforts to elucidate the molecular and cellular 
mechanisms governing the metastatic process. A current concept 
suggests the existence of tumor stem cells, or CSC’s, which are 
undifferentiated cells, responsible for the initiation, growth and ability 
to metastization and recurrence of a tumor. They can differentiate into 
several cell types of primary tumor and have the ability to self-renew and 
maintain stem cells and tumor cells mature indefinitely; they resemble 
the normal stem cells. Such cells are likely to result from several 
mutations on normal stem cells, tissue, or bone marrow. Moreover, 
its origin can be associated with the process of trans-differentiation of 
somatic cell or to the process of genetic transfer [107].

Since the molecular and cellular mechanisms of metastasis remain 
clouded by many questions, there are several models that attempt to 
explain them:

(A) “Cell-of-Origin Model”. The normal differentiation programs 
of the cells of origin from which certain primary tumors are derived 
may already dictate the altered activity of various metastasis virulence 
genes (depicted in green). Upon subsequent oncogenic transformation 

Pool of potential
metastatic cells

Extravasation

20% attrition

97% cumulative
attrition

20% cumulative
attrition

99.88% cumulative
attrition

Micrometastasis
formation

Metastatic
colonization

96% attrition 99.3% attrition

Note: Steps of the “invasion-metastasis cascade” are extraordinarily inefficient. 
The process of metastatic colonization represents the rate-limiting step of 
the invasion-metastasis cascade, with a rate of attrition that often exceeds 
99% of those cells that initially survive in a foreign microenvironment to form 
micrometastases.
From: Valastyan and Weinberg [23]

Figure 3: Inefficiency of the” Invasion-Metastasis Cascade”.
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and systemic dissemination, these cells may therefore be capable of 
completing the process of metastatic colonization [108] (Figure.4A). 

(B) “Partial-Competence Model”. Cells that are only partially 
metastasis competent (that is tumor cells that have acquired a series 
of mutations that confer the capacity to disseminate systemically 
but are initially unable to colonize foreign microenvironments) may 
arrive at distant organs, where they then undergo further genetic and/
or epigenetic evolution within these foreign microenvironments to 
achieve full metastatic competence. Such molecular evolution would 
likely include alterations in metastasis virulence genes [108] (Figure 
4B). 

(C) “Stochastic Model”. Purely by chance, mutations in metastasis 
virulence genes may accumulate stochastically as ‘‘passenger mutations’’ 
within tumor cell clones that bear unrelated ‘‘driver mutations’’ that 
serve to fuel the clonal expansion of these cells within primary tumors 

[109] (Figure 4C). 

(D) “Tumor Self-Seeding-Model”. The phenomenon of tumor 
self-seeding indicates that already metastasized cells are capable of 
re-infiltrating the primary tumor from which they originated. Hence, 
carcinoma cells present in metastases (which have come to acquire 
molecular alterations in metastasis virulence genes via either of the 

models proposed below, as indicated by the asterisk) may become 
increasingly represented within their primary tumor of origin (re-
infiltrating cells are depicted in blue) [110] (Figure 4D). 

(E) The “Parallel Progression Model”. Asserts that quasi-normal 
epithelial cells (depicted in orange) disseminate very early from 
preneoplastic lesions. Subsequently, these cells undergo molecular 
evolution at future sites of metastasis formation. Notably, such sites 
represent locations where mutations in metastasis virulence genes are 
now selectively advantageous [110,111] (Figure 4E). 

Lymph node metastasis

Patients with cancer are at a high risk of local disease recurrence 
and distant metastasis developing after the local surgical resection 
process, often simultaneously with lymphadenectomy, indicating 
when there is the possibility of lymph node metastasis. Besides being a 
prognostic marker, the presence of metastatic cells in lymph nodes, is 
related to the development of distant metastases [112,113]. 

In general, cancer progression is consistent with Hellman’s 
spectrum theory in that development of nodal and systemic metastasis 
from a localized cancer growth is a progressive process. Nevertheless, 
in about 20 % of the time, the cancer cells may spread directly through 
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From: Valastyan and Weinberg, 2011 [23]  

Figure 4: Acquisition of Molecular Alterations in Metastasis Virulence Genes.
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the blood vascular system to the distant sites. The process of cancer 
cells spread to the regional sentinel lymph node first, then beyond to 
the systemic sites, has been well established in melanoma and breast 
cancer [113,114]. 

However, little is known about the molecular mechanism of lymph 
node metastasis, generating doubts regarding the possibility of tumor 
cells accumulation in the lymph nodes, delaying the spread of tumor, 
the possibility of lymph nodes disseminating tumor cells, amplifying 
them and throwing them to the bloodstream, and the possibility of 
tumor cells only being evidence of the cell traffic by the lymph nodes 
[114].

Therefore, many theories have been postulated to explain the 
intricate mechanism of tumor appearance and metastatic process, but 
none of them completely explain all biological and clinical observations. 
Consequently, metastasis still remains an open issue with only few 
metastasis-inducing proteins experimentally validated so far.
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