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ABSTRACT
Cancer cells have many different behaviors from epithelial to mesenchyme forms. We report here that 36 distinct 
tumor cell lines regardless of EMT form or other features lack the ability to sense rigidity and will grow on soft 
surfaces. In the majority of lines, cells were missing at least one protein needed for rigidity sensing (primarily 
tropomyosin 2.1 (Tpm2.1) but also PTPN12, FilaminA (FLNA), and myosin IIA) while all had high levels of Tpm3. 
In the few cases where the major rigidity sensing components were present, those tumor cells were not able to sense 
rigidity. Thus, we suggest that tumor cells can lose the ability to sense rigidity by many different means and that the 
loss of rigidity sensing is sufficient to cause the transformed phenotype that enables targeted treatments.  
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INTRODUCTION

For many years, it has been evident that the frequency of cancerous 
tumors correlates with the frequency of injury/inflammation events 
[1]. In both regeneration and cancer, the blocks to adult cell growth 
are removed; but in normal regeneration, the blocks are restored 
[2]. In the case of tumorigenic growth, the blocks to growth remain 
off and cells have the ability to grow in a variety of environments, 
even on soft matrices, often with the aid of activating hormones 
[3]. Early studies of tumor cells showed that they all were able to 
grow on soft surfaces i.e., were transformed; whereas normal cells 
required rigid surfaces to grow [4,5]. Recent findings support the 
hypothesis that the removal of the block to growth in cancers and 
the ability to grow on soft surfaces may be linked. In particular, 
the transformed state can be induced by depleting rigidity sensors 
in normal cells from different tissues; and when rigidity sensing is 
restored to tumor cells; they require rigid surfaces for growth [6-9]. 
This has led to the hypothesis that all tumor cells are transformed 
through the loss of rigidity sensing.  
In addition, tumor growth is linked to many different signalling 
pathways and there is a wide range of behaviors of tumor cells that 

has confounded general treatments of cancers. Often blocking one 
growth pathway such as caused by mutation of the EGF receptor 
with an EGFR inhibitor results in the shrinkage of the tumor but 
metastases often arise with other growth stimuli [10,11]. Thus, 
there is a general ability of tumor cells to grow and they can do 
so with many different stimuli. This can be understood if tumor 
cells lack the normal blocks to growth that are removed in wound 
healing. There are common markers for wound healing and tumor 
growth in many different systems including an increase in the levels 
of miR-21 that is highly expressed in brain [12], liver, skin and even 
axolotl limb regeneration [13-15]. Similarly, many tumor cells have 
increased miR-21 levels that correlate with the severity of the cancer 
[16,17]. Since the loss of rigidity sensing enables normal cells to 
grow, we hypothesize that the loss of rigidity sensors plays a major 
role in tumor cells and that most if not all tumor cells will lack 
rigidity sensing.   
Evidence from RNA sequencing has shown that the levels of many 
different mRNAs change upon the loss or restoration of rigidity 
sensing in cells from diverse tissues [18]. Thus, there appears to be 
a major state change upon transformation or the loss of rigidity 
sensing that results in general changes in cell behavior such as a 
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decrease in single cell rigidity [19-21], increased traction forces, 
and increased mechanical sensitivity [22-24]. If tumor cells have 
common properties regardless of the tissue and the exact cause of 
the tumor, then there may be treatments that would inhibit the 
growth of a wide diversity of tumors such as mechanical stress [25-
27].  
Alternatively, tumor cells often differ in many respects and 
one aspect that has been tied with the severity of the disease is 
the epithelial to mesenchyme transition that often comes with 
tumor progression in later stage disease. A bank of tumor cells 
that range from epithelial to mesenchyme has been characterized 
extensively in terms of morphology and markers for the epithelial 
and mesenchyme states [28-31]. We tested if they all have lost the 
ability to sense rigidity, which is consistent with our hypothesis that 
tumor cells should all lack the rigidity sensing whether or not they 
come from stage 1 or stage 4 tumors. Irrespective of the mutations 
involved and the phenotype, all the cell lines lacked rigidity sensors 
and grew on soft surfaces. 
Figure 1 illustrates some of the key players linking mechanosensing 
and cancer. TPM2.1 for example has been reported as silenced and 
downregulated in breast, colorectal and urothelial bladder cancer 
[32-34]. In contrast TPM3 is most often overexpressed [35]. FLNA 
has a complex role in cancer, with both overexpression and loss of 
expression being associated with poor prognosis [36-40]. PTPN12 
is a protein tyrosine phosphatase that binds to FLNA by a proline 
rich domain region, and is known to have interactions with various 
RTKs including INSR, INSRR, EGFR, as well as GRB2 and cSRC. 
In triple negative breast cancer restoration of PTPN12 has been 
shown to suppress EGFR, HER2, and PDGFRβ [41], where it acts 
as a tumour suppressor. In addition, decreased expression has 
previously been linked to increased motility in ovarian cancer [42]. 
Finally, myosin IIa has diverse roles in ovarian cancer [43-48], from 
increasing contractility in drug resistant tumours cells [49], clearing 
mesothelial cells during metastasis as well as being associated with 
cancer cell motility and migration (Figures 1) [50,51].  

MATERIALS AND METHODS

Cell culture  

BJ-5ta, IOSE523, OVCA433 and OVCA420 cells were cultured 
in DMEM with high glucose and supplemented with 10% FBS. 
OVCAR3 and IGROV1 cell lines were cultured in RPMI media 
supplemented with 10% FBS. Cells were incubated at 37°C, with 
80% humidity and 5% C0

2
.  

Micropillar preparation and imaging 

Micropillar production was done using precut silicone moulds. 
PDMS and crosslinker were mixed thoroughly in a ratio of 10:1 

and degassed for 30 minutes at 10 MB. PDMS mixture was poured 
onto the mould degassed for 10 minutes at 10 MB. The mould 
was upturned onto a plasma cleaned glass bottomed plate, with 
a weight on top and further degassed for 10 minutes. The plate-
mould-PDMS was then cured for 3 hours at 80°C. The PDMS was 
demoulded in isopropanol and washed 5x with PBS, or until no 
isopropanol remained. Before plating the PDMS micropillars were 
incubated with fibronectin at 37°C for 1 hour. PDMS was replaced 
with cell culture media and cells were plated, and incubated for 30 
minutes before imaging. Cells were imaged in the DIC channel 
using EZ-live Olympus widefield microscope for 30 minutes at 1 
frame per second. 
TIFF movies of the cells spreading on micro pillars were corrected 
for imaging drift using the FIJI plugin stackreg with translation. 
Pillars were detected and deflections calculated using the Fiji 
plugin Pilartracker from MBI. Correlated pair deflections were 
assigned using the custom mat lab script.  

PDMS surface preparation and imaging 

To measure nematic order perameter of the actin fibres of cells, 
PDMS surfaces were produced using Sylgard 184 elastomer kit with 
varying ratios of elastomer to curing agent. For 2 MPa surfaces, the 
elastomer to curing agent ratio was 10:1, for 5 kPa surfaces the ratio 
was 75:1. Elastomer mixes were spin-coated onto plasma cleaned 
glass coverslips using a protocol of 200 RPM for 10 seconds and 
1000 RPM for 1 minute. Slides were cured at 80°C for 3 hours. 
Slides were incubated with fibronectin for 1 hour at 37°C before 
cells were plated.  

Fluorescence microscopy and analysis

Cells were trypsinised and plated onto both 2 MPa and 5 kPa 
slides and incubated for 6 hours at 37°C, at which point they were 
fixed in 4% Paraformaldehyde for 12 minutes at 37°C. Cells were 
permeablised with 0.5% Triton in PBS for 10 minutes at Room 
Temperature (RT) and blocked with 2% bovine serum albumin 
for 2 hours at RT. Primary antibody for paxillin (ab32084, abcam) 
was diluted in 2% BSA at a ratio of 1:1000 and incubated at RT 
for 2 hours. Secondary antibody Alexafluor-647 anti-rabbit at a 
dilution of 1:1000 and Phalloidin stain (A12379, Thermofisher) 
for f-actin at a dilution of 1:400 were mixed in 2% BSA added to 
slides and incubated for 1 hour at RT. The slides were washed 3x 
in PBS between each step. Cover slips were mounted onto glass 
slides using Dako mounting medium. Slides were imaged on W1 
Live-SR spinning disk super resolution, and deconvolved to super 
resolution using the inbuilt LIVE-SR feature. 

Western blot analysis

Whole cell protein lysates were used from the previously described 
ovarian cancer cell line library [52]. Cell lysates harvested in RIPA 
buffer were resolved through SDS-PAGE, followed by blotting on 
PVDF membranes. Immunoblots were subsequently incubated 
with appropriate primary antibodies: anti-Filamin-A (ab111620, 
Abcam); anti-Myosin-IIA (M8064, Sigma); anti-Tropomyosin 2 
(T2780, Sigma); anti-Tropomyosin 3 (ab180813, Abcam), anti-α-
Tubulin (ab7291, Abcam) diluted in 2% BSA in TBST. Secondary 
antibodies from Li-COR Biosciences were used: IRDye 800CW 
goat anti-mouse/rabbit (926-32210, 926-32211), IRDye 680LT goat 
anti-mouse/rabbit (926-68020, 926-68021). Immunoblots were 
scanned using the Odyssey Infrared Imaging System (Li-COR) and 
were converted to gray scale. 

Figure 1:  Analysis flow chart.
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early event in metastatic progression, occurring before EMT. A 
significant correlation was observed between expression of FLNA 
and MyosinIIA (Spearman r 0.4493, P=0.002) and between PTPN12 
and TPM3 (Spearman r 0.414, p=0.012). We additionally assayed 
a few other known mechanosensitive proteins in 33 of the cell 
lines, TPM1, TPM2 (including TPM2.1 and other splice variants), 
DAPK, Piezo1 and mir21 RNA. All of the cell lines expressed these 
proteins and additional correlation was observed between DAPK 
and TPM1 expression (Spearman r 0.460, p=0.007). 
We selected 3 tumor lines from the panel which retained all the 
proteins assayed (Figure 3A) and tested whether they had the 
ability to detect changes in substrate stiffness phenotypically. The 
three cell lines were IGROV1 which is an ovarian endometriod 
carcinoma cell line, OVCA433, and OVCA433, which are both 
ovarian serous adenocarcinoma cell lines, IOSE523 and OVCAR3 
cell lines (Figure 3B). We also included two negative control lines, 
a human foreskin fibroblast cell line known to be capable of 
effective rigidity sensing BJ-3ta [59] and an ovarian epithelial cell 
line transformed using SV-40, IOSE523. We additionally included 
a positive control, a high grade ovarian serous carcinoma cell line 
which lacks TPM2.1, OVCAR3. As cells spread on the surface they 
tested the stiffness by contracting matrix adhesions [60,61]. This 
sarcomeric pinching was quantified by plating cells on PDMS micro 
pillars coated with fibronectin and analyzing pillar displacements 
over time [62]. As cells spread, the pillars were deflected in response 
to forces applied by the cell. Rigidity-sensing events were defined 
as contractile deflections of two pillars simultaneously by >30 nm 
for >20s such as those of pillar 1 and 2 whereas in many cases 
pillar deflections were not correlated (Figure 3C). The number of 
events per unit area per unit time was a measure of the cell’s ability 
to sense rigidity. In this case, cells were plated on 0.8 µm pillars 
and imaged for 30 minutes, at a frame rate of 1 per second. An 
automated program determined the number of contractile events 
that fit the criteria for rigidity-sensing events from movies of the 
pillars covered by cells (see rigidity-sensing pillar deflections shown 
in green and non-correlated pillar deflections shown in red (Figure 
3D). 

RESULTS 

We selected a panel of 36 ovarian cancer cells lines of varied origin, 
one ovarian epithelial cell line and a human foreskin fibroblast 
cell line. The panel of ovarian cell lines was previously compiled to 
represent a full spectrum of epithelial to mesenchyme phenotypes 
[53], and originated from various ovarian cancer subtypes, diseases, 
and stages (Table 1). This panel included 12 cell lines of metastatic 
origin and 23 cell lines of primary tumour origin, with cells 
from ovarian serous adenocarcinoma, high grade ovarian serous 
adenocarcinoma, ovarian endometrioid carcinoma and ovarian 
cystadenocarcinoma. The panel includes several cell lines from 
epithelial, intermediate epithelial, intermediate mesenchyme 
and mesenchyme groups as categorised using methods previously 
described [54-56]. We assayed the protein levels of known 
mechanosensitive proteins TPM2.1, TPM3, FLNA, PTPN12 
and Myosin IIa across the panel of cell lines by western blot and 
quantified these blots (Figures 2A and 2B). Intensity scores from 
western blots were standardized to a range of 0-1 to show relative 
expression of each protein, 1 being the highest expression observed 
across the panel of cell lines. We observed a striking phenotype 
whereby 18 of the 36 cell lines had no expression of TPM2.1 (Figure 
2C), while all had TPM3 at levels equal to or greater than normal 
cell controls (Figure 2D). A further seven lines, OV90, OV56, 
TOV112D, HeyA8, Tyknu, SKOV3 and EF021 had no or very low 
expression of PTPN12 (Figure 2E). One cell line, EF021 had no 
FLNA (Figure 2F). One cell line, CH1 cells, had no Myosin IIa 
(Figure 2G). This demonstrates that loss of rigidity sensing proteins 
occurs in the majority of ovarian cancer cell lines. Co-occurring 
loss of TPM2.1 and PTPN12 was observed in four cell lines, 
TYKNu, OVCA420 and TOV112D, SKOV3, and the cell line with 
no FLNA, EF021 cells, also had low PTPN12. Thus, of the 36 cell 
lines, the majority had decreased levels of rigidity sensor proteins 
and all had high levels of Tpm3 that inhibits rigidity sensing [57].  
Overall, no correlation was shown across the panel with epithelial 
to mesenchyme status and the expression of any of the assayed 
proteins across patient samples from CSIOVDB [58]; or in this 
panel of cell lines, indicating that the loss rigidity sensing is an 

Table 1: Panel of ovarian cancer cell lines, annotated with RRID, disease type, tumour stage, and EMT status.

Cell line RRID Disease Tumour stage EMT status

IOSE523 CVCL_E234 Ovarian epithelial (SV40 transformed) N/a  Epithelial

CAOV3 CVCL_0201 High grade ovarian serous adenocarcinoma Primary Epithelial

OV90 CVCL_3768 Ovarian adenocarcinoma Metastasis Epithelial

OVCA420 CVCL_3935 Ovarian serous adenocarcinoma Primary Epithelial

OVCAR3 CVCL_0465 High grade ovarian serous adenocarcinoma Metastasis Epithelial

OVCAR8 CVCL_1629 High grade ovarian serous adenocarcinoma Primary Epithelial

PEO1 CVCL_2686 Ovarian cystadenocarcinoma Metastasis Epithelial

EFO21 CVCL_0029 Ovarian cystadenocarcinoma Metastasis Intermediate epithelial

FUOV1 CVCL_2047 High grade ovarian serous adenocarcinoma Primary Intermediate epithelial

IGROV1 CVCL_1304 Ovarian endometrioid adenocarcinoma Primary Intermediate epithelial

JHOS2 CVCL_4647 High grade ovarian serous adenocarcinoma Primary Intermediate epithelial

JHOS3 CVCL_4648 Ovarian serous adenocarcinoma Primary Intermediate epithelial

JHOS4 CVCL_4649 High grade ovarian serous adenocarcinoma Primary Intermediate epithelial
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OAW28 CVCL_1614 High grade ovarian serous adenocarcinoma Metastasis Intermediate epithelial

OAW42 CVCL_1615 Ovarian cystadenocarcinoma Metastasis Intermediate epithelial

OV17R CVCL_2672 Ovarian adenocarcinoma Primary Intermediate epithelial

OV56 CVCL_2673 Ovarian serous adenocarcinoma Metastasis Intermediate epithelial

OVCA429 CVCL_3936 Ovarian cystadenocarcinoma Primary Intermediate epithelial

OVCA432 CVCL_3769 Ovarian serous adenocarcinoma Primary Intermediate epithelial

OVCA433 CVCL_0475 Ovarian serous adenocarcinoma Primary Intermediate epithelial

OVCAR2 CVCL_3941 Ovarian carcinoma Metastasis Intermediate epithelial

OVCAR5 CVCL_1628 Ovarian serous adenocarcinoma Primary Intermediate epithelial

PEO4 CVCL_2690 Ovarian cystadenocarcinoma Metastasis Intermediate epithelial

UWB1.289 CVCL_B079 Ovarian carcinoma Primary Intermediate epithelial

A2780 CVCL_0134 Ovarian endometrioid adenocarcinoma Primary Intermediate mesenchymal

CH1 CVCL_4992 Ovarian mixed germ cell tumor Metastasis Intermediate mesenchymal

DOV13 CVCL_6774 Ovarian adenocarcinoma Primary Intermediate mesenchymal

HEY CVCL_0297 High grade ovarian serous adenocarcinoma Primary Intermediate mesenchymal

HEYC2 CVCL_X009 High grade ovarian serous adenocarcinoma Primary Intermediate mesenchymal

OV7 CVCL_2675 Ovarian carcinoma Primary Intermediate mesenchymal

SKOV3 CVCL_0532 Ovarian serous cystadenocarcinoma Metastasis Intermediate mesenchymal

HEYA8 CVCL_8878 High grade ovarian serous adenocarcinoma Primary Mesenchymal

OVCAR10 CVCL_4377 Ovarian carcinoma Primary Mesenchymal

OVK18 CVCL_3770 Ovarian endometrioid adenocarcinoma Metastasis Mesenchymal

TOV112D CVCL_3612 Ovarian endometrioid adenocarcinoma Primary Mesenchymal

TYKNu CVCL_1776 High grade ovarian serous adenocarcinoma Primary Mesenchymal

Figure 2A:  Western blots of FilaminA and TPM3 in order of epithelial to mesnenchymal index.

TPM2.1 

Figure 2B:  Western blots of FilaminA and TPM3 in order of epithelial to mesnenchymal index.



5

Simpson C, et al. OPEN ACCESS Freely available online

Chemo Open Access, Vol.10 Iss.5 No:1000162

Figure 2C:  Relative, normalised expression level of TPM2.1 in ovarian cancer cell lines ranked by ascending expression. Eighteen cell lines had no 
expression TPM2.1.

Figure 2D:  Relative, normalised expression level of TPM3 in Ovarian cancer cell lines ranked by ascending expression. All cell lines expressed TPM3.

Figure 2E:  Relative, normalised expression level of PTPN12 in ovarian cancer cell lines ranked by ascending expression. Seven cell lines had very low 
expression of PTPN12.

Figure 2F:  Relative, normalised expression level of FLNA in Ovarian cancer cell lines ranked by ascending expression. One cell line, EF021, did not 
express FLNA.
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Figure 2G:  Relative, normalised expression level of Myosin IIa in Ovarian cancer cell lines ranked by ascending expression. One cell line, CH1, had 
no expression of Myosin IIa.

Figure 2H:  Correlation between the expressions of all proteins was tested by Spearman rank correlation. PTPN12 and TPM3 were postively correlated, 
with a R2 of 0.414. MyosinIIa and FLNA were positively correlated with and R2 of 0.493.

Figure 3A:  Western blots of selected cell lines showing Filamin A, PTPN12, TPM3, and a-tubulin.

Figure 3B:  Close up image of deflections of four pillars, taken from still from BJ cells. Note: ( ) Pillar 1; ( ) Pillar 2; ( ) Pillar 3; 
( ) Pillar 4.
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Figure 3C:  Cells were plated on 0.8 um micropilars and imaged at 1 frame per second for 30 minutes.

Figure 3D:  Significant difference between BJ cells and all other cell lines, determined by one way ANOVA with Tukey correction.

cell polarises. Using this criterion, we tested the alignment of actin 
filaments by imaging f-actin using a phalloidin stain and calculating 
the nematic order parameter of each cell on two PDMS substrates of 
different stiffness, 2MPa and 5kPa [67]. To quantify actin ordering, 
images were cropped to single cell images and nematic order 
parameter was measured using a custom Matlab script [68]. This 
gave a single numerical value for the alignment score of the actin 
filaments between 1 and 0, 1 being all fibres in the same direction 
and 0 being no fibres in the same direction. In non-transformed 
fibroblasts, a significant difference in actin alignment was observed 
between 5 kPa and 2 MPa. On stiffer substrates, fibroblasts had a 
more ordered actin structure with higher polarization but on softer 
substrates, they had a more disordered actin [69] (Figure 4A), and 
it is significantly higher nematic order parameter was observed in 
the negative control BJ-3ta HFF cells plated on 2 MPa compared 
to 5 kPa. In contrast, none of the ovarian cell lines demonstrated 
a significant difference in the nematic order of actin between soft 
and rigid substrates (Figures 4B and 4C), including the ovarian 
epithelial line IOSE523. This ovarian epithelial line, although not 
cancerous in origin, is SV-40 transformed and has lost the capacity 
to sense substrate stiffness [70]. 

The movies from this imaging were processed by removing drift 
using the ImageJ plugin stackreg with translation, detecting and 
tracking pillars with the ImageJ plugin Pilartracker and calculating 
the correlated pillar deflections using a custom script for Matlab. 
Based upon the unbiased computer analysis, the HFF (BJ-5ta) cells 
had a density of rigidity sensing 24.27 events per second per µm2 
(N=4). In contrast, all the ovarian cells lines had a significantly 
lower number of contractile events. IOSE523 cells had a mean of 
1.8 (n=7) contractile pairs per second per µm2, OVCAR3 cells had 
a mean of 6.13 (n=6), IGROV1 cells had a mean of 0.49 (n=5), 
OVCA433 cells had a mean of 1.18 (n=5) and OVCA420 (n=5) 
cells had a mean of 1.57 contractile units per second per µm2, 
where in is the number of individual cells. Thus, all of the tumor 
cells, and the transformed ovarian epithelial cell line lacked rigidity 
sensing contractions, which further supported the hypothesis that 
tumor formation involved the loss of rigidity sensing. 
Previously it has been demonstrated that one marker of cells capacity 
to detect changes in substrate stiffness is reflected in how their actin 
is aligned [63-66]. Non-transformed cells on soft surfaces have a low 
alignment of actin and do not form polarised stress fibres, while on 
rigid substrates actin fibers align in a coordinated direction and the 
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Figure 4A:  Images of Phalloidin staining for f-actin in six cell lines on PDMS surfaces of 2MPa and 5kPa stiffness.

Figure 4B:  Example images of actin alignment quantification in HFF (BJ-5ta) cells on 2 MPa (top) and 5 kPa (bottom) with the nematic order 
perameters of 0.793 and 0.142 respectively. Images are output from the custom matlab script and are colour coded by actin fibre angle.

Figure 4C:  Quantification of the nematic order perameter in each cell line on both surfaces. There was a significantly higher nematic order peramter 
on 2 MPa PDMS in HFF cells vs. HFF cells on 5 kPa PDMS. No other cell line had significant differences in nematic order peramter between 2 MPa 
and 5 kPa PDMS.

Through these two methods, measuring the correlated pillar 
deflections in spreading cells and the nematic order perameter of 
actin after cell spreading, we show that the remaining cell lines 
that retained all the proteins assayed phenotypically were unable 
to sense a change in substrate stiffness in actin alignment, nor 
were they able to pinch micro pillars during the spreading phase of 
attachment. These cell lines we propose have lost rigidity sensing 
by currently unknown. 

DISCUSSION 

In this study, all of the ovarian tumor lines tested lack the ability to 
sense rigidity. There are many differences in the levels of expression 

of mechanosensory proteins but about 75% of the lines are missing 
one of the proteins known to be needed for rigidity sensing. Half 
of the cell lines lack TPM2.1, 20% are depleted of PTPN12 and 
there are occasional losses of FilaminA or Myosin IIA; but in 
several cases the basis of the loss in rigidity sensing is unknown. 
However, the fact that all lines appear to lack rigidity sensing is 
consistent with the hypothesis that transformation is necessary 
for tumor formation and transformation results from the loss of 
rigidity sensing.     
Because the rigidity sensor is a complex modular machine with 
many different components, it is expected that the loss of any one 
of many different components could block rigidity sensing. Studies 
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CONCLUSION

In summary, these findings show that the transformed state is a 
common characteristic of a diverse set of tumor cells that show 
many different behaviors and that the transformed state correlates 
with the loss of rigidity sensing. This supports the hypothesis 
that transformation is necessary but not sufficient for tumor 
growth. Further, the characteristic changes in functions upon 
transformation may be exploited to aid in the selective inhibition 
of transformed cell growth. 
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have found that rigidity sensing is lost and transformed growth 
is gained upon the depletion of at least eight different proteins 
[71]. Like any complex process that involves many proteins, there 
are many possible ways to block function. This is consistent with 
the general diversity of mutations that give rise to cancer. What 
is not considered here are the many developmental changes that 
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