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Abstract

Inflammaging denotes the contribution of low-grade inflammation to aging and is of particular importance in the
brain as it is relevant to development and progression of neurodegeneration and mental disorders resulting thereof.
Several processes are involved, such as changes by immunosenescence, release of proinflammatory cytokines by
DNA-damaged cells that have developed the senescence-associated secretory phenotype, microglia activation and
astrogliosis because of neuronal overexcitation, brain insulin resistance, and increased levels of amyloid-β peptides
and oligomers. Melatonin and sirtuin1, which are both part of the circadian oscillator system share neuroprotective
and anti-inflammatory properties. In the course of aging, the functioning of the circadian system deteriorates and
levels of melatonin and sirtuin1 progressively decline. Protective effects of melatonin and sirtuin1 are outlined and
emphasis is given to possibilities of upregulating sirtuin1 by melatonin and circadian amplitude-enhancing actions of
sirtuin1.
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Introduction
Low-grade inflammation is a characteristic of many aging processes.

This can be related to immunosenescence, in the course of which an
immune risk profile (IRP) may develop [1,2]. Aging also implies an
increasing number of DNA-damaged cells, which are mitotically
arrested by epigenetic processes, but still respond in multiple ways,
including the development of a senescence-associated secretory
phenotype (SASP) [3-6]. SASP was originally discovered in peripheral
tissues, but has meanwhile been observed in astrocytes [7,8], which
can, in fact, turn them into neurotoxic cells [9]. SASP enables non-
immune cells to release proinflammatory cytokines and chemokines
and, thereby, to spread inflammatory responses within the affected
tissue. Additional sources of low-grade inflammation emerge within
the brain, such as increased release of nitric oxide (•NO) in the course
of neuronal overexcitation, with consequences to the activation of
microglia and astrocytes, which results in a proinflammatory crosstalk
between these cell types [10,11]. Microglia and astrocytes can further
contribute to enhanced •NO levels by upregulating iNOS (inducible
NO synthase), effects that not only enhance inflammation, but also
generate oxidative and nitrosative stress as well as mitochondrial
malfunction [10,11]. Moreover, progressing inflammation is observed
in many, perhaps all neurodegenerative diseases [10]. Some
pathological alterations such as imbalance between amyloid-β (Aβ)
release and clearance, typically observed in Alzheimer’s disease (AD),
are also detected at lower severity in the course of normal aging. These
processes have even been shown to result from sleep disturbances in
apparently healthy subjects [12,13] and, with regard to the increasing
frequency of insomnia during senescence, they are of substantial
gerontological interest. Notably, Aβ peptides and oligomers stimulate
inflammatory responses, as shown by microglia activation [14,15] and
upregulation of NADP oxidase in microglia and astrocytes [16]. In AD,
enhanced levels of proinflammatory cytokines and markers are

typically observed, such as IL-1β, IL-6, IL-15, IL-18, TNFα, and C-
reactive protein (CRP) [10]. Beyond formation and clearance of Aβ
and the development of AD, sleep disturbances can also promote
inflammatory processes in the brain, to which neuronal overexcitation,
microglia activation, astrocytic coactivation, SASP and crosstalk
between these three cell types via •NO, inflammatory cytokines and
reduced astrocytic glutamate uptake seem to contribute. However,
these details are rarely addressed in mechanistic terms, whereas
upregulation and/or release of proinflammatory cytokines has been
repeatedly demonstrated, in particular, IL-1β, IL-6, IL-8, and TNFα in
the cortex, basal forebrain, hippocampus and hypothalamus of rodents
[17-21]. Additionally, anti-inflammatory cytokines such as IL-4 and
IL-10 were downregulated in the hippocampus [20,21]. Induction of
low-grade inflammation by sleep deprivation was also shown in
various peripheral organs and in rodent and human blood, details that
would exceed the scope of this article.

With regard to the multiple associations of inflammation with aging
and its progression, the term inflammaging had been coined [22-25].
Although inflammatory responses and processes of aging occur in
every organ, brain inflammaging is of particular interest, because
dysfunction of this organ changes – often profoundly–the personality
of a subject and, in this sense, exceeds pathologies of peripheral organs.

With regard to its frequently documented neuroprotective
properties that extend into the field of anti-inflammatory actions,
melatonin is of particular interest to the maintenance of the health
state in the central nervous system [10,11]. Melatonin is mostly known
as the hormone of the pineal gland, but is, in fact, also produced in
extrapineal sites including parts of the CNS. In total, the quantities
synthesized and stored outside the pineal are by orders of magnitude
higher than those in pineal and circulation [26,27]. For instance, the
gastrointestinal tract (GIT) contains about 400-500 times more
melatonin than the pineal gland at night [28,29]. In humans of about
20-30 years, the maximal nocturnal quantities attain values of about
100 ng in the pineal gland and 500 ng in the circulation, while the total
amount in the GIT, which has not been determined in the human, may
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be estimated to be in the range of 40-50 µg. However, melatonin from
the GIT contributes rather poorly to circulating levels, e.g., in a
postprandial response [30], but can be massively released under
exceptional conditions such as tryptophan load and exceed the
nocturnal levels secreted by the pineal [31]. With regard to the
immunological importance of the GIT, it the immune modulatory role
of local melatonin would be of interest, but has not been sufficiently
studied. In addition to its secretion into the blood, pineal-derived
melatonin is released in substantial amounts via the pineal recess into
the third ventricle of the brain [32-34]. Melatonin regulates countless
functions in the body, many of which are relevant to the brain [26].
These include modulatory actions in the immune system [35,36],
antiexcitatory effects [10,11,26], antioxidative protection [37,38],
support of mitochondrial integrity and function [39-41], control of
circadian rhythms [42-44], sleep induction [43,45], and various effects
that have been considered as contributions to healthy aging [10,11,46].
In the gerontological context, melatonin has been repeatedly shown to
upregulate sirtuin1 (SIRT1) [47], an agent that also enhances circadian
amplitudes by interacting with core oscillator components [47-49] and
seems to possess neuroprotective and anti-inflammatory properties
[50,51]. In the context of brain inflammaging, it is a remarkable fact
that the three interrelated players, namely, melatonin, the circadian
system and SIRT1, share the property of functionally declining with
age [10,11,46,47].

Neuroprotective and immunological effects of melatonin in
the context of aging

Neuroprotection by melatonin has been reported in models of
stroke, traumatic brain injury and hypoxia, findings that would exceed
the scope of this article. Additionally, antiexcitatory and antiexcitotoxic
effects of melatonin were reported. These are insofar of importance to
inflammatory responses, as they have the potential for microglia
activation, e.g., via •NO release. Inhibition of neuronal NO synthase
(nNOS) by melatonin has been documented [52,53] and may be of
particular importance under conditions of strongly activated nNOS
under the influence of high cytosolic Ca2+ [10]. As summarized
elsewhere [10], the antiexcitatory actions also comprise various
different mechanisms, such as decreases in cytosolic Ca2+ via GABAc
or metabotropic glutamate mGlu3 receptors, GABAergic facilitation,
inhibitory effects on high voltage-activated Ca2+ channels, changes in
K+ currents, modulation of the opioid system, and potentiation of
glycine receptor-mediated inhibitory post-synaptic currents. The
connection between neuronal overexcitation and microglia activation
is not a unidirectional one, but extends to excitatory effects elicited by
microglia [54], to the roles of coactivated astrocytes that release •NO
and upregulate NADPH oxidase, to astrocytes damaged by locally
overshooting inflammation, with the result of impaired glutamate
uptake [55], and to consequences resulting from dying cells that release
histone H1, which acts as additional proinflammatory signal and
chemoattractant [57]. Moreover, release of proinflammatory cytokines
such as IL-1β and IL-18 and induction of apoptotic or pyroptotic cell
death are possible under the control by inflammasomes present in
neurons (NLRP1 and AIM2), astrocytes (NLRP2) and microglia
(NLRP3) [57].

A specific neuroprotective role of melatonin is based on the support
of mitochondrial electron flux and integrity [10,58,59]. This is of
particular importance as mitochondrial dysfunction further results in
oxidative stress, apoptosis or mitophagy. Peripheral mitochondrial
depletion that causes losses in neuronal connectivity represents a

severe consequence of overexcitation and/or neuroinflammation.
Again, several protective mechanisms of melatonin are jointly acting.
One of them concerns the avoidance of bottlenecks in the electron
transport chain (ETC) by reducing damage of proteins and membrane
lipids by free radicals [39-41,60], processes that comprise upregulation
of subunits of ETC complexes, enhanced formation of reduced
glutathione, upregulation of glutathione peroxidase (GPx), inhibition
of cardiolipin peroxidation, limitation of •NO synthesis, a compound
that interacts with sulfurs in ETC proteins, further leads to
transnitrosation reactions, and causes formation of peroxynitrite
(ONOO–) by combining with superoxide (O2•–). Melatonin also
scavenges the most dangerous free radicals deriving from the decay of
peroxynitrite adducts, such as ONOOH and ONOOCO2

–, which yield
either a hydroxyl radical (•OH) and •NO2, or a carbonate radical
(CO3•–) and •NO2, respectively. The latter pathway may be of
particular relevance to mitochondria, because of the high levels of CO2
generated in the citric acid cycle [61].

Aβ peptides and oligomers represent pathologically relevant
proinflammatory compounds to which neurons, astrocytes and
microglia respond by upregulation of NADPH oxidase (NOX) and
cyclooxygenase 2, release of proinflammatory cytokines, in the case of
neurons at least TNFα and IL-1β [10], and of the T-cell and monocyte
attracting chemokine CX3CL1 [62]. Melatonin has been shown to
antagonize several Aβ-related effects, including release of IL-6, IL-1β
and TNFα, which, in turn, promote Aβ peptide formation by neurons
and astrocytes [10]. Moreover, it inhibits the activation of NADPH
oxidase in microglia, by reducing the translocation of the NOX subunit
p47phox to the plasma membrane, thereby preventing its
phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/Akt
cascade, which is required for assembly with the subunits gp91phox
and p67phox [63]. A full record of all anti-amyloidogenic effects of
melatonin [10] would exceed the scope of this short communication.
However, it should be mentioned that, in cell lines, melatonin reduced
the activities of β- and γ-secretases and, instead, upregulated α-
secretase, which cleaves the β-amyloid precursor protein (βAPP)
differently to form the nonamyloidogenic and neuroprotective
fragment sAPPα [64], as discussed elsewhere [11].

The effects of melatonin in the immune system are manifold
[26,35,37,65,66]. A major difficulty in judging the precise
immunological role of melatonin consists in the fact that it can behave
both in an anti- and a proinflammatory way [35,36]. It either down- or
upregulates proinflammatory cytokines and, correspondingly, either
up- or downregulates anti-inflammatory cytokines, in a conditional
way. Proinflammatory actions have been especially observed in cell
cultures and, in humans, occur in arthritis and presumably other
autoimmune diseases. However, anti-inflammatory actions were
particularly observed under two conditions, high-grade inflammation
and aging. In various aging organs including the brain, melatonin
reduced TNFα, IL-1β and IL-6 [10,67]. Moreover, microglia activation,
neutrophil and macrophage/monocyte infiltration were strongly
attenuated under conditions of ischemia-reperfusion or hypoxia-
ischemia [68,69]. Similar results on suppression of TNFα, IL-1β and
IL-6 by melatonin were observed in various cell lines, along with
downregulation of iNOS and NADPH oxidase [10,70-72]. The general
impression is that melatonin mostly acts in an anti-inflammatory way
with regard to brain inflammaging, despite its potential of also
behaving as a proinflammatory agent.
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The nexus between melatonin, circadian oscillators and
sirtuins

Melatonin is mutually connected to the circadian system [26,42,47].
On the one hand, pineal melatonin synthesis is steered by the circadian
master clock, the hypothalamic suprachiasmatic nucleus (SCN). On
the other hand, melatonin feeds back to the SCN, where it acts a
synchronizing or resetting signal. Additionally, it exerts synchronizing
effects on other central or peripheral oscillators, some of which are
partially or almost fully autonomous with regard to the SCN.
Circadian oscillators are also mutually intertwined with sirtuins, which
are regulatory factors with protein deacetylase activities. Most of the
pertinent information concerns SIRT1. This protein interacts with the
cellular circadian core oscillator, perhaps, in two ways [47-49]. In
either case, a decisive feature is the presence of an E-box in the
promoter of the Nampt gene. NAMPT (nicotinamide
phosphoribosyltransferase) is the rate-limiting enzyme of the NAD
salvage pathway, in which the sirtuin substrate NAD+ is formed. E-
box-containing genes are activated by binding of two core oscillator
proteins, the BMAL1/CLOCK heterodimer (BMAL1: brain and muscle
aryl hydrocarbon receptor nuclear translocator-like 1; alias ARNTL,
ARNTL1; CLOCK: circadian locomotor output cycles kaput).
Therefore, Nampt expression and NAD+ concentration are rhythmic
and the NAD+ level determines the activities of SIRT proteins
[49,73,74]. The NAD+ cycle drives numerous activities of all sirtuin
subforms (SIRTs1-7), which comprise among others metabolic sensing,
mitochondrial activities and proliferation, chromatin remodeling and
anti-inflammatory actions. At least some of the sirtuin subforms also
support healthy aging and may extend life span [75]. SIRT1 also
displays properties of enhancing circadian rhythm amplitudes. One of
the mechanisms seems to be based on the interaction of SIRT1 with
the BMAL1/CLOCK heterodimer [49]. Another one involves
deacetylation of PGC-1α (peroxisome proliferator-activated receptor-γ
coactivator-1α) by SIRT1. In its deacetylated form, PGC-1α binds to
RORα (retinoic acid receptor-related orphan receptor-α), an activator
at the RORE (ROR response element) in the promoters of Bmal1 and
Clock (Figure 1) [48].

A feature of aging is the gradual reduction of physiological
capacities. This concerns also the circadian oscillator system, which
exhibits various deviations in the course of aging, with considerable
differences between local oscillators. Some of them, including the SCN,
display reductions in amplitude, often in association with phase
advances, whereas others appear to be more or less unaffected by
aging. Other oscillators entirely lose their rhythmicity, which can,
however, be re-initiated by suitable stimuli [76]. The deterioration of
the SCN has consequences to the secretion of melatonin, which is
additionally affected by various age-related diseases. As a consequence,
melatonin levels are typically decreasing by age [77]. The reductions of
melatonin concentrations are interindividually highly variable. In
typical cases of more or less healthy persons, young subjects of 21-5
years may have nocturnal maxima between 35 and 87 pg/mL, adults of
51-55 years 17-42 pg/mL, and elderly individuals of 82-86 years 8-30
pg/mL [78]. Occasionally, much higher levels are found. The variability
due to diseases is even larger. Lowest values are usually found in AD,
along with a loss of circadian rhythmicity. In post-mortem pineals, the
amounts of nocturnal melatonin were reduced in AD to about 20%,
compared to age-matched controls [79]. The consequence of age- or
disease-related losses of melatonin signifies that an important
pleiotropic regulator and multiply acting protector of cellular functions
is, often progressively, reduced. The functional decline is also evident at
the level of SIRT1. The interrelation with the circadian system may

indicate that this might be the consequence of circadian malfunction,
but an additional connection exists with the decrease of melatonin.
Recently, the evidence for melatonin’s capacity of increasing SIRT1
expression has been summarized in the context of aging and
inflammation [47]. These effects were observed in various brain
regions, but also in peripheral organs or cells, such as liver, pancreas,
heart, aorta and leukocytes. Notably, these actions of SIRT1
upregulation should not be perceived as being controversial to
downregulations observed in cancer cells, in which the circadian
oscillators are strongly dysregulated and presumably epigenetically
fixed in proliferation-promoting phase positions [47]. The effects of
melatonin may have the dual potential of stimulating the expression of
the aging suppressor SIRT1 and of enhancing circadian amplitudes.
Moreover, administration of the neuroprotective and partially anti-
inflammatory melatonin has the potential of enhancing its efficacy by
upregulating the likewise neuroprotective and anti-inflammatory
SIRT1 [50,51].

Figure 1: Simplified scheme of the relationships between the
circadian master clock, melatonin secreted by the pineal gland and
sirtuin1 (SIRT1), in the context of aging, brain inflammaging and
neurodegeneration. Arrows indicate stimulatory actions, whereas
other lines indicate inhibitions. Abbreviations: IL, interleukin;
iNOS, inducible NO synthase; nNOS, neuronal NO synthase; RNA,
reactive nitrogen species; ROS, reactive oxygen species; SASP,
senescence-associated secretory phenotype; TNFα, tumor necrosis
factor-α.
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Conclusion
Melatonin, circadian oscillators and SIRT1 share the property of

declining with age, despite some interindividual variability. These
functionally intertwined alterations seem to be disfavorable in terms of
allowing tendencies towards low-grade inflammation and especially
brain inflammaging. These changes are overlaid by other aging-
dependent processes, in particular immunosenescence, SASP,
moderate or stronger rises in Aβ release, and inflammatory
consequences of insulin resistance, especially in the brain. Age-related
increases in the inflammatory state have numerous consequences to
exposed cells, such as oxidative and nitrosative stress with resulting
mitochondrial dysfunction, depletion by mitophagy, loss of neuronal
connectivity or cell death [10,11,26,41,58]. Other consequences of
neurodegeneration, which are summarized in Fig.1, concern the SCN,
the pineal gland and the cellular expression of SIRT1. The aging-
associated decrease of melatonin depends largely on degenerative
processes at different levels. Increasing turbidity of the lens reduces the
retinal input to the SCN and, thereby, weakens the oscillatory capacity
[11,80]. This reduction is partially responsible for lower amplitudes
and levels of the melatonin rhythm. Additionally, neurodegeneration
contributes to functional losses in the circadian system and to
decreases in melatonin secretion. This can concern the entire path of
neuronal transmission to the pineal gland, i.e., the retinohypothalamic
tract, the SCN, the connections to the pineal via paraventricular
nucleus, upper thoracic cord and upper cervical ganglion, and in the
pineal gland itself. Sometimes, melatonin secretion may be also
reduced by pineal calcification [26]. While these age-related changes
can be interpreted with sufficient plausibility, the disease-induced
reductions have to be differently judged. In AD or frontotemporal
dementia, dysfunction of SCN and pineal are of mainly
neurodegenerative nature, however, more strongly and rapidly
progressing than in normal aging. Reductions of melatonin because of
pain-associated diseases [77] have to be differently interpreted, but
would require experimental clarification. Age-related reductions in
SIRT1 expression may be caused by decreased melatonin levels, since
exogenous melatonin elevated SIRT1 levels in various entirely different
studies, as far as they were done in the context of aging but not that of
cancer [47]. Notably, both melatonin and SIRT1 represent compounds
that act in the SCN and in peripheral oscillators as amplitude-
enhancing factors [47,80]. Melatonin displays numerous properties
that attenuate or even prevent cellular malfunction, including
protection against oxidative and nitrosative damage and support of
mitochondrial function. Moreover, melatonin can reset circadian
oscillators and upregulate the neuroprotective, anti-inflammatory and
circadian amplitude-enhancing SIRT1. With regard to these beneficial
properties, the possibilities of reducing age-related low-grade
inflammation and inflammaging by the pineal hormone should be
more consequently considered in the future.
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