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Abstract

Injection of heat killed Escherichia coli into the 5th instar of Schitocerca gregaria lead to deleterious effect on
macromolecules such as proteins, lipids, and DNA, which expressed in the form of increased levels of carbonyls,
peroxides, strand breaks, respectively. The results showed significant difference, in macromolecules damage,
between control insect and injected one through time course and application of different concentration of E. coli. The
present results were focusing on properties of lipopolysaccaride of bacterial cell wall which cause production of nitric
oxide radical as an immune response of insect and also can react with superoxide anion radical that form
peroxynitrite that considered as reactive nitrogen species which cause macromolecules damage Also, the results
showed that the antioxidant enzymes activities, superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx), and glutathione reductase (GR) were elevated over constitutive levels, in response to the injected
oxidative stressor heat killed E. coli. The levels of both the constitutive and induced activities of GPx and are always
higher in whole midgut homogenate than in thoracic muscles. The results may represent some sort of stressful
conditions that may increase the vulnerability of insect pests to control measures.

Keywords: Antioxidant enzymes; Lipid peroxidation; Protein
carbonylation; Alkaline comet assay; Schistocerca gregaria;
Lipopolysaccarides

Introduction
However, under environmental stress, e.g. bacterial infections, ROS

levels may increase dramatically, resulting in significant damage to cell
structures. This process is known as oxidative stress [1,2]. The cells of
native animals are able to defend themselves against ROS damage
through the use of antioxidants. Various antioxidants may for example
decrease the level of lipid peroxidation as well as DNA and protein
damage [3,4]. Of the major components of the antioxidant defense
system of insects include several antioxidant enzymes, such as
superoxide dismutases (SOD), catalases (CAT), peroxidases (POX),
glutathione-S-transferase (GST) [3]. Excess generation of reactive
oxygen species (ROS) including free radicals, e.g. superoxide anion
radical (O2

-), hydroxyl radical (OH), and hydroperoxyl radical (HO2)
may cause oxidative stress. Free radicals are highly reactive, unstable
molecules [5], and their breakdown can produce non-radical reactive
species, such hydrogen peroxide (H2O2) and peroxynitrite (ONOO-)
[6-10]. It was found that reactive nitrogen species (RNS) can be
produced during immune response of insect in the form of nitric oxide
radical (NO) that interact with O2

- and generate (ONOO-) [11].

In this case, oxidative stress may result when an imbalance takes
place between ROS production and antioxidants ability to restore the
normal homeostatic condition [6,8,10,12]. Consequently, injection of
heat killed Escherichia coli can result in indirect damages to cell
macromolecules by the produced ROS [13,14]. From these oxidative
damages of ROS are those of the cell lipids, proteins, and DNA in the

form of lipid peroxides, protein carbonyls, and DNA strand breaks
respectively.

The resulting oxidative damage of the cell macromolecules can be
reduced by a system of antioxidant defense including enzymatic and
non-enzymatic mechanisms [3,15-18]. This system scavenges ROS,
repairs damages, and degrades the non-repairable ones. Antioxidant
enzymes are important preventive antioxidants which act to reduce the
formation of ROS and increase cell survival [19,12]. The principal
enzymes involved are superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and glutathione reductase (GR).

The present work aimed to evaluate the oxidation effect of the
injected heat killed bacteria E.coli, and the antioxidant response in the
thoracic muscles and whole midgut of 5th instar S.gregaria.
Macromolecules such as proteins, lipids, and DNA were measured in
the form of protein carbonyls, lipid peroxides, and DNA strand breaks,
respectively as a result of injected heat killed E. coli. Also, the
constitutive and induced activities of four principal antioxidant
enzymes, SOD, CAT, GPx, and GR, as an enzymatic antioxidant
response system were assessed.

Materials and Methods

The insect and tissues
Desert locusts, S.gregaria (Forskal), were from a well-established

laboratory colony at the Entomology Department, Faculty of Science,
Cairo University, Egypt. The insects were reared in wooden cages (60
cm×60 cm×40 cm) at 30 ± 2°C, 60 ± 5 RH, and 16:8 h (Light: Dark)
photoperiod. Locusts were fed on fresh alfalfa, Medicago sativa
(Papillioacea) and 5th instar individuals were used for experiments.
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Oxidative damage assays
Protein carbonyls were assayed according to the method of the lipid

peroxides concentration was measured according to [20], and the
alkaline comet assay was used to assess the DNA strand breaks and
carried out according to [21].

Antioxidant enzyme assays
Approximately, 2.5 gm tissue samples were homogenized in 2.5 ml

ice-cold phosphate buffer. The homogenates were centrifuged at 10,000
g for 30 min at 4°C, and an aliquot from each of supernatant was used
for assessing enzyme activities.

The SOD activity was measured following [22], and expressed as
OD/µg protein/min. For the activity of CAT was determined according
to [23], and expressed as OD/µg protein/min.

The activity of GPx was determined according to [24], and
expressed as OD/µg protein/min. The activity of GR was determined
according to [25], and expressed as OD/µg protein/min. The total
protein concentration of samples was determined
spectrophotometrically according to the method of [26], using bovine
serum albumin (BSA) as standard.

Statistical analysis
The significant differences of the treated groups with respect to

control were analyzed by independent-t-test, and one-way analysis of
variance (ANOVA). The Tukey's post hoc Test was applied and
significant levels were set at p<0.05. All statistical analyses were
performed using IBM SPSS Statistics for Windows (Version 17.0.
Armonk, NY: IBM Corp.). The difference among the thoracic muscles
and whole midgut were also analyzed using independent-t-test. Data
were expressed as mean ± SE.

Results

Oxidative damage
Protein carbonyls: Different concentrations of heat killed E. coli that

caused the highest production of protein carbonyls (as an indicator of
oxidative stress) were tested and the optimum ones were selected; 12
cell / 15 µl saline/ individual for this stressor (Table 1).

Concentration of the E. coli ( cell/ 15µl)

Tissue 0 6 12 24 30 36

Protein
carbonyls

Muscle 0.477±0.013Aa 0.150±0.006Ab 0.263±0.018Ab 2.290±0.063Ac 0.186±0.002Ab 0.193±0.001Ab

Midgut 0.768±0.015Ba 0.177±0.014Bc 0.235±0.118Bc 2.749±0.013Bd 0.256±0.003Bc 0.268±0.006Bc

Lipid peroxides Muscle 0.004±0.002Aa 12.490±0.864Ab 16.032±0.600Ab 68.731±2.770Ac 26.911±0.244Ad 39.6±0.480Ac

Midgut 0.003±0.002Ba 58.375±5.240Bbc 52.583±0.751Bc 67.371±1.162Bb 30.66±3.440Bd 43.541±2.760Bdc

Table 1: The effect of the different concentrations of E. coli on the protein carbonyls amount (OD/µg protein) and lipid peroxides concentration
(mM cumene hydroperoxides/ µg protein) in thoracic muscles and whole midgut homogenates of 5th instar S. gregaria.

Injection of E. coli into the hemocoel of the 5th instar S. gregaria
caused a significant increase in protein carbonyls amount, 1 h post
injection (P.I.) of this stressor was about 7% (t=11.105; p< 0.0001) and
31% (t=19.181; p< 0.0001) with respect to control in thoracic muscles
and whole midgut, respectively(Figure 1a).

The protein carbonyls levels were increased up to 178% and 192%
with respect to the control value in thoracic muscles and midgut,
respectively.

Lipid peroxides: A significant increase in lipid peroxides
concentration were observed as a result of the injection of 12 cell E.
coli/15 µl saline/ individual into the hemocoel of the 5th instar S.
gregaria at 1 h P.I. of this stressor. The percentage increase lipid

peroxides concentration was about 87% (t=18.016; p<0.0001) and
1135% (t=16.602; p<0.0001) with respect to control value in both of
thoracic muscles and midgut, respectively (Figure 1b).

DNA strand breaks: DNA damage (strand breaks) were measured
using comet analysis, as tail moment values (tail length×% DNA in
tail), as well as values of the % severed cells. After 24 h P.I. (a
representative test-time) of heat killed E. coli treatments, Tail moment
value increase about 45% and 31% in thoracic muscles and midgut
cells, respectively with respect to control value (Table 2), The number
of severe damaged cells, the % values of these cells were increased by
16% and 15%, in thoracic muscles and midgut, respectively, in
comparison to control (Table 2 ).
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Figure 1: Concentrations of protein carbonyls (a), and Concentrations of lipid peroxides (b) in thoracic muscles and whole midgut
homogenates of 1-day starved 5th instar S. gregaria post injection with 15 μl of 12 cell heat killed E. coli per individual. Values are mean±S.E.
(n=3). Bars marked with different capital letters indicate statistical significance between thoracic muscles and midgut (independent t-test;
p<0.05) and small letters indicate statistical significance among experimental times (one-way ANOVA; p< 0.05).
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51.46±47.
33aA

52.62±47.
09aA
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1aA
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aA
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1aA

6%a
A Muscle Control

46.28±39.
29aB

4798±38.8
8aB

2989.20±849
.91aB

439345.96±1
.27aB

98.39±2.4
5aA

1.08±0.4
6aA

47.60±39.7
6aB

7238.56±470
.19aB

1.60±0.45
aA

0.02±0.0
1aA

10%
aB Midgut

52.01±40.
50aA

51.62±45.
09aA

4223.10±90.
21aA

99.08±4.67a
A

99.08±4.4
7aA

1.38±0.5
1aA

35.90±22.2
1aA

4825.52±831
.13aA

1.81±0.47
aA

0.05±0.0
1aA

6%a
A Muscle

Saline
45.63±40.
89aB

48.98±38.
88aB

2999.20±849
.91aB

459345.96±1
.27aB

99.39±2.4
5aA

1.28±0.4
6aA

47.60±39.7
6aB

7738.56±470
.19aB

1.60±0.45
aA

0.02±0.0
5aA

10%
aB Midgut

40.59±38.
51bA

43.98±31.
8bA

3896.58±415
.89bA

50.12±36.87
bA

93.89±3.5
0bA

2.94±0.7
1bA

70.69±48.9
2bA

4835.89±351
.87bA

7.50±13.8
0bA

0.48±0.1
4bA

22%
bA Muscle

E. coli
36.56±27.
20bB

38.68±28.
9bB

1387.34±53.
56bB

98646.00±4.
3bB

92.36±14.
2bA

2.20±1.9
0bB

52.14±4.63
bB

7683.90±743
.75bB

8.75±5.74
bB

0.33±0.0
1bB

25%
bB Midgut

Table 2: Analysis of DNA damage using alkaline comet assay (pH≥13.0) in thoracic muscles and midgut cells of 1-day starved 5th instar S.
gregaria injected with 15µl of 12 cell heat killed E. coli per individual and assayed at 24 h post injection (recommended time). Each replicate=50
cells. Raw in the same column marked with different letters indicate statistical significance (p<0.05) between thoracic muscles and midgut cells
(capital letters) was executed by independent t-test and between treatments (small letters) was executed by one way.
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Activity of antioxidant enzymes
The effects of different concentrations of (0-36 cell E. coli/ 15µl

saline/individual) on the activities of antioxidant enzymes SOD, CAT,
GPx, and GR were determined (Table 3).

GR (OD/µg protein/ min) GPx (OD/µg protein/ min) CAT (OD/µg protein/ min) SOD (OD/µg protein/ min)
E. coli
concentration
(cell/ 15µl)

Midgut Muscle Midgut Muscle Midgut Muscle Midgut Muscle

0.264±0.017Ba 0.131±0.006Aa 0.373±0.026Ba 0.094±0.006Aa 0.423±0.003Ba 0.587±0.002Aa 0.086±0.002Ba 0.069±0.001Aa Control

0.670±0.025Bb 0.143±0.005Aa 0.538±0.038Bb 0.073±0.001Aa 4.257±0.253Bb 1.964±0.034Ab 0.299±0.003Be 0.025±0.002Ab 6

0.748±0.017Bbc 0.256±0.018Ab 0.548±0.022Bb 0.088±0.004Aa 5.493±0.112Bc 2.313±0.112Ab 0.307±0.007Bbc 0.138±0.001Ac 12

1.138±0.003Bd 0.594±0.045Aa 0.634±0.003Bb 0.176±0.009Ab 6.611±0.235Bd 2.478±0.218Ab 0.369±0.014Bd 0.338±0.015Ad 24

0.720±0.039Bb 0.101±0.001Aa 0.383±0.021Ba 0.090±0.001Aa 3.738±0.051Bb 2.350±0.063Ab 0.263±0.020Bc 0.047±0.002Aa 30

0.850±0.026Bc 0.121±0.001Aa 0.603±0.012Bb 0.096±0.001Aa 4.229±0.201Bb 2.251±0.092Ab 0.354±0.004Bdc 0.116±0.001Ac 36

Table 3: The effect of the different concentrations of E. coli on the activity of antioxidant enzymes in thoracic muscles and whole midgut
homogenates of the 5th instar S. gregaria.

The results showed constitutive activity levels of the antioxidant
enzymes SOD, CAT, GPx, and GR, in the supernatant tissue-
homogenate extract of thoracic muscles and midgut homogenates of
the 1-day starved 5th instar S. gregaria.

Figure 2: A photomicrograph of DNA damage, as revealed by the
alkaline comet assay (pH≥13.0), in thoracic muscles and whole
midgut homogenates of 1-day starved 5th instar of S. gregaria
assayed at 24 hour post injection (recommended time), control (A,
B), 15 μl of saline (C, D), 15 μl of 12 cell heat-killed E. coli (E, F) per
individual. 50 cells were analyzed per sample (50 cells per slide and
3 slides per treatment were assessed). Scale bar represented as 75
μm.

The partial characterization of these enzymes showed that the
optimal pH values were 10.0 for SOD and 7.0 for CAT, GPx, and GR
(data not shown). The optimal enzymes concentration were 100% for
SOD, GPx, and GR and 25% for CAT The optimal time of incubation
of enzymes were 4 minutes for SOD, GPx, and GR and 1 minutes for
CAT (Figure 2-4).

Figure 3: Effect of different concentration of antioxidant enzymes
(SOD, CAT, GPx, and GR) on the activity of enzymes in thoracic
muscles and whole midgut homogenates of 1-day starved 5th instar
S.gregaria. Each point represents the mean of 3 replicates.
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Figure 4: Effect of different incubation time of antioxidant enzymes (SOD, CAT, GPx, and GR) on the activity of enzymes in thoracic muscles
and whole midgut homogenates of 1-day starved 5th instar S. gregaria. Each point represents the mean of 3 replicates.

Also, the results showed that injection with the stressor, heat killed
gram positive E.coli, led to increase the activities of the four

antioxidant enzymes; with respect to those of the constitutive levels;
this begin from the first hour P.I. (Figure 5).
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Figure 5: Activity of the antioxidant enzymes SOD, CAT, GPx, and GR, compared to control, and expressed as OD480, 240, 420, 420
respectively/μg protein/minutes in the thoracic muscles and whole midgut homogenates of 1-day starved 5th instar S. gregaria measured at
different time intervals post injection with 15μl 12 cell heat killed E.coli. Values are mean±S.E. (n=3). Bars marked with different capital letters
indicate statistical significance between thoracic muscles and midgut (independent t-test; p<0.05) and small letters indicate statistical
significance among experimental times (one-way ANOVA; p<0.05).

The time course differences in the inducible levels of activity of the
antioxidant enzymes due to injection of the stressor had no certain

patterns, but they varied throughout the time course of the experiment
(Figure 6).
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Figure 6: The activities of both the constitutive and induced level of GPx and GR were always increase in whole midgut homogenate than in
thoracic muscle of S. gregaria

The activities of both the constitutive and induced level of GPx and
GR were always increase in whole midgut homogenate than in thoracic
muscle of S. gregaria; however, this difference was not always present
in the case of SOD and CAT (Figure 6).

Discussion
Reactive oxygen species (ROS) are generated by all organisms

during metabolic processes occurring under aerobic conditions. Their
quantity increases as an effect of both abiotic (radiation, climatic
factors) and biotic stressors. That later group includes pathogenic
factors such as viruses, bacteria and parasites [27].

The harmful effects of the indirect stressor heat killed bacteria E.
coli were assessed in vivo in thoracic muscles and whole midgut of the
5th instar S. gregaria after their injection into the hemocoel of this
insect. The stressor used in the present work represent an indirect
source of reactive nitrogen species (RNS) such as nitric oxide radical
(NO•), as a result of innate immune response of insect to challenging
with bacteria [11]. These ROS and oxidative stress can be assessed
indirectly by assaying augmented oxidative damage to the

macromolecules proteins, lipids, and DNA as well as elevated activities
of antioxidant enzymes [8,9] as conducted in tissue homogenate of
thoracic muscles and whole midgut and of 1-day starved nymphs S.
gregaria.

Under in vivo conditions, multiple factors may interfere in the
reactions of these stressors, not only, formed oxidative damages, and
oxidants roles. But also, elevated expression levels of four principal
antioxidant enzymes, SOD, CAT, GPx, and GR [8,12], in the thoracic
muscles and whole midgut tissues of S. gregaria in response to
produced ROS, were assessed.

The injection of 12 cell of this stressor per individual nymph S.
gregaria, results in oxidative damage to proteins, lipids, and DNA from
the 1st h P.I. with significant difference from that of controls. These
measured damages were in the form of protein carbonyls, lipid
peroxides, and DNA strand breaks, respectively, as compared to
controls. The observations started from the 1st h P.I. and extended
throughout the time of the experiment, 72 h P.I. for proteins and lipids
(but for DNA, it was observed only once after 24 h P.I.).
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For the protein carbonyls, ROS can cause reversible oxidations to
some sulfur-containing protein-amino acids; therefore, these oxidized
proteins are repairable. Also, irreversible oxidations of proteins
produce both protein-sulfonic acids as well as the only indicated and
measured protein carbonyls in S. gregaria (Figure 1) which are not
repairable, and should be degraded [28]. As protein carbonyls are
formed from oxidation of specific amino acids (arginine, histidine,
lysine, and proline) and polypeptide chains cleavage (at aspartate,
glutamate, and proline) [28,29] .

The oxidation of proteins leads to disruption of conformation and
vital functions of protein molecules, including enzymes, and other
regulatory functions of the cell [10,12]The factors that may control
protein carbonyls may be genetic and lysosomal-mediated cellular
proteolytic processes [28,30-34]. Therefore, the observed fluctuations
in amount of protein carbonyls shown throughout the time-course
changes in S. gregaria (Figure 1) may reflect fluctuating homeostatic
mechanisms between production of protein carbonyls and their
degradation.

Lipid peoxides may be initiated by OH, or any other reactive free
radical, by abstracting a hydrogen atom from the unsaturated fatty acid
[10,35,30]. Therefore, lipids peroxidation processes can result in
formation and elevation of the determined lipid peroxides
concentration in the S. gregaria (Figure 2). At the same time, the
terminating and repairing processes are able to minimize the
concentrations of lipid peroxides (Figure 1b). These may not only,
include recombination of lipid peroxyl radicals, but also include their
reaction with glutathione in a GPx-catalyzed reaction [30,35]. Hence,
the fluctuating pattern in the determined concentrations throughout
the time course P.I. implies to reflect the resultant of these homeostatic
mechanisms. Lipids peroxidation was informed that biologically
disrupt structure and function of membrane polyunsaturated-
phospholipids bilayer [36]. Products of lipid peroxidation are also lead
to disrupt conformations of many cellular proteins, including enzymes,
by forming cross links with these proteins. This occurred direct and
indirect way, as well as the mentioned direct, damaging processes leads
to inhibition of cell functions [12].

For DNA single strand breaks, the values of tail moment, as an
random expression for the quantitative estimation of DNA strand
breaks [37], in the case of injection of heat killed E. coli, shows that
this stressor has led to DNA strand breaks in cells of thoracic muscles
and midgut of S. gregaria (Figure 2 and Table 2). Also, the percentage
severed cells (Table 2) used as a possible supplementary criterion [38].
The results on DNA oxidative damage (Table 2) suggest that this
stressor is able to produce oxidative damaging stress.

Antioxidant enzymes response to oxidative stress
Antioxidants, involving nonenzymatic and enzymatic antioxidants,

can restored homeostasis between oxidants and antioxidants
[3,12,39-41]. The results showed a low level of constitutive activity in
the control samples of each of the four essential antioxidant enzymes
concerned in the present work SOD, CAT, GPx, and GR, in the tissue-
homogenate extract of the whole midgut and the thoracic muscles of 1-
day starved 5th instar S. gregaria. These antioxidant enzymes catalyze
reactions presented in equations 1-5 [15,3,6,18,42-47].2�2. −+ 2�+ ��� �2�2+ �2  (1)2�2�2 ��� �2�+ �2  (2)

�2�2+ 2��� ��� 2�2�+ ����  (3)����+ 2��� ��� ���+ �2�+ ����  (4)

���� + �����+ �+ �� 2���+ 2����+  (5)

From the partial characterization of the enzymes determined in S.
gregaria, values of Km , pH optima, incubation time, and enzymes
concentrations were identified (Figure 3-6). The results show that
injection with the stressor heat killed E. coli has led to increase the
activity of the four principle antioxidant enzymes, from the beginning
of the first hour P.I., with respect to control levels. The activities of both
the constitutive and induced GPx and GR are always higher in whole
midgut homogenate than in thoracic muscle of S. gregaria; however,
this difference is not always present in the case of SOD and CAT
(Figure 6). The increase in the activity of the principle antioxidant
enzymes seems to occur in accompaniment with oxidative damages to
the macromolecules proteins, lipids, and DNA indicated above. This
association may imply that it occurs in response to formed ROS in
consequence to the injected stressors. The differences between the
induced activities of these four antioxidant enzymes throughout the
time course up to 72 h P.I. have no definite pattern (Figure 6). [48],
found that bacteria, BT infection resulted in increasing the activities of
SOD, GST, on the 1st day after inoculation. However, catalase activity
decreased on the first and following days after bacterial infection by Bt.
Galleria mellonella larval. These results confirmed the hypothesis that
bacterial infection increases the level of oxidative stress in the larval
midgut). The formed ROS were cited before [12] involve in a signal
transduction pathway affecting regulation of antioxidant genes and
induce expression of several genes [49-51]. The present results agreed
with [48], who found that bacteria, BT infection resulted in increased
activities of SOD, GST, on the 1st day after inoculation. However,
catalase activity decreased on the first and following days after
bacterial infection by Bt. Galleria mellonella larval. These results
confirmed the hypothesis that bacterial infection increases the level of
oxidative stress in the larval midgut).
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