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Introduction

Chlorinated solvents, such as tetrachloroethylene (also referred
to Perchloroethylene; PCE) and Trichloroethylene (TCE), are among
the most prevalent groundwater pollutants. Its frequent occurrence
at contaminated sites is due to its widespread use as an industrial
solvent. PCE and its incomplete dechlorination products are known
or suspected carcinogens. Therefore, the treatment of PCE bearing
wastes and the remediation of PCE contaminated soils and aquifers are
a global priority on environmental pollution control.

Although aerobic co-metabolic dechlorination of PCE by toluene-
o-xylene monooxygenase of Pseudomonas stutzeri OX1 has been
recently reported [1], PCE is recalcitrant under aerobic condition
because of its oxidized nature [2].

Hydrogen is generally considered to be a key electron donor to
stimulate the reductive dechlorination of chlorinated ethylene [3-5]. Our
previous work, Clostridium bifermentans strain DPH-1 has been found
to reductively dechlorinate PCE to cDCE (cis-1,2-dichloroethylene)
using hydrogen as an electron donor [6]. Generally, the introduction
of halorespiring bacteria is expected to be a cost-effective approach
to the remediation of PCE-contaminated site [7,8]. Such bacteria can
grow by anaerobic respiration, a process that has been referred to as
halorespiration or dehalorespiration [6,9-16]. Some pure cultures
have been reported to catalyze the reductive dechlorination of PCE to
cDCE (Table 1). These organisms belong to species of Dehalospirillum,
Desulfomonile, Desulfitobacterium, Dehalobacter and Clostridium [6,9-
16]. Some strains belonging to Dehalococcoides spp. are able to convert
PCE to ethylene sequentially (Table 1). He et al. [17] recently identified
a Dehalococcoides strain that uses DCE isomers and Vinyl Chloride
(VC) but not PCE or TCE as metabolic electron acceptors.

PCE dehalogenases have been purified, and their genes cloned,
from several bacteria [18-24]. The PCE dehalogenase pceA genes were
found to be linked with the pceB genes coding for small hydrophobic
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Table 1: Isolated PCE-dehalorespiring bacteria and dechlorination steps
performed.

proteins containing two or three transmembrane helices [18,25-27],
and pceB was assumed to act as a membrane anchor protein to link
the dehalogenase to the respiratory chain. The presence of similar PCE
genes among different strains strongly indicates that these genes have a
mechanism of transfer among these strictly anaerobic bacteria.

Most anaerobic dehalogenases dechlorinate PCE to principally
cDCE; however, a novel PCE dehalogenase from Dehalococcoides
ethenogens 195 [14] can reductively dechlorinate PCE to ethylene,
extensively detoxifying it (Table 1). Aerobic degradation of cDCE by
Rhodococcus rhodochrous [28] and Nitrosomonas europaea [29] has
been reported. Thus, cDCE accumulation in the anaerobic system can
be eliminated by further degradation using such aerobic dehalogenases.

Unlike other dehalogenases from dehalorespiring bacteria, the
dehalogenase from strain DPH-1, does not have Fe/S clusters, but
exhibits a strong dechlorination activity for PCE as well as several other
halogenated compounds. Due to this uniqueness and as a representative
PCE-dehalorespiring bacterium, we have reviewed the nature of
Clostridium bifermentans DPH-1, through the special focusing on the
biochemical organization and genetic regulation of gene encoding PCE
dehalogenase followed by the PCE dechlorination.

Cloning of PCE Dehalogenase and Gene Sequence

Two degenerate Primers designed from both ends of the N-terminal
amino acid sequence successfully amplified an 81 bp putative region of
C. bifermentans PCE dehalogenase. The translated DNA sequence of
the probe (81 bp PCR product) matched the predetermined N-terminal
protein sequence.

The PCR product was confirmed by DNA sequencing and was used
as a probe for gene cloning. Southern hybridization of C. bifermentans
genomic DNA cleaved with various restriction enzymes, with probe,
with [a-32P] dATP-labelled probe, revealed distinct bands of Bglll,
Clal, EcoRI, HindlIII. After screening 1720 E. coli DH5a colonies from
a genomic sub library (constructed with approximately 4.5-5.5 kb
Clal fragments), we isolated a putative clone (p)DEHALS5) containing
a 5 kb Clal insert. Based on the Southern hybridization analysis data
(data not shown), it was predicted that a BgIII restriction fragment,
less than 1.4 kb could harbor the dehalogenase gene. The complete
nucleotide sequence of the inserts of the two sub clones, pPDEHAF1
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and pDEHAF2 (plasmids used) [22], was determined and the gene was
identified using the predetermined N-terminal sequence. The gene was
found to contain an internal BgIII site (Figure 1). From the ATG start
codon, a 97 bp of the gene was identified in pDEHAF1 and 1004 bp in
pDEHAF2.

The complete nucleotide sequence of pceC was determined. The
pceC open reading frame spans from base pair 514 to 1614 (367 amino
acids; 39.67 kDa for the mature protein). Hydropathy plot revealed the
presence of a discernible signal peptide and methionine was absent
from the predetermined amino terminal sequence; indicating post
translational processing. The coding region began with a 21 amino
acid signal peptide, followed by the predetermined amino terminal
sequence (data not shown). Thus, the processed protein (346 amino
acids) has a calculated molecular mass of approximately 37.40 kDa,
which is identical to that determined by mass-spectroscopic analysis.
A putative ribosome binding site (AAAGGA) was found eight
bases upstream from the ATG initiation codon. Typical -10 and -35
promoter sequences were found upstream of the coding region. 39 bp
downstream of the TGA stop codon is an inverted repeat indicating a
rho-independent terminator (Figure 1). The hydropathy profile of the
deduced amino acid sequence indicated a major hydrophobic region at
the N-terminus, typical of a traditional leader peptide.

PCE Dehalogenase: Biochemistry and Genetics

PceC is probably a cell-associated extracellular enzyme (peripheral
membrane protein) loosely anchored to the cell membrane because
it was easily extracted into an aqueous buffer. Moreover, the
predetermined N-terminal amino acid sequence started with alanine
and the deduced amino acid sequence of pceC contained a discernible
signal sequence, indicating a processed peripheral membrane protein.
After the four purification steps, the completely purified enzyme was
not stable and lost about 50% activity at -30°C. Similar instability
was observed with preservation of the enzyme on ice at 4°C. The
purified enzyme was therefore not suitable for characterization. This
is attributed to the many purification steps and the enzyme’s oxygen
sensitivity. Fractions containing the protein impurities, in the semi
purified enzyme, showed no PCE dehalogenation activity, indicating
the absence of a second dehalogenase in the semi purified enzyme used
for characterization.

pceC is a homodimer and differs in molecular size from other
reported dehalogenases. PCE dehalogenases of Desulfitobacterium
sp. Y-51 [30], Sulfurospirillum multivorans [31] and Dehalococcoides
ethenogenes 195 [19] were reported to be monomeric proteins with
apparent molecular masses of 57, 60, and 51 kDa, respectively. However,
the PCE dehalogenase from strain PCE-S is possibly a homotrimer
with an apparent molecular masse of approximately 65 kDa and 200
kDa for monomeric and native forms, respectively.

The most frequently reported dehalogenases consist of a single
polypeptide containing one corrinoid cofactor and two iron-sulfur
clusters: PCE reductive dehalogenases of S. multivorans [31],
Desulfitobacterium sp. strain PCE-S [32], and Desulfitobacterium

AEVYNKDANKLDLY|GKVDGL HYFSNDT- Clostridium bifermentans DPH-1
ME KKKKPELS RRDF|GK L 1|IG GGAAATIAPF- Sulfurospirillum multivorans
ADIVAPITETSEF P|YK VD|AY- Desulfitobacterium sp. strain PCE-S
ADIVAPITQT SQF P|Y KVD|AE -Desulfitobacterium sp. strain Y-51

Figure 1: Physical map of pDEHALS indicating relevant restriction sites. The
region encoding pceC is shaded and arrow indicates the direction of transcription.

frappieri TCE-1 [33], ortho-chlorophenol reductive dehalogenases of
Desulfitobacterium hafniense [34], Desulfitobacterium dehalogenans
[27], and Desulfitobacterium chlororespirans [35] and PCE- and TCE-
reductive dehalogenases of Dehalococcoides ethenogenes [19]. Two
reductive dehalogenases with one corrinoid cofactor but without an
iron-sulfur cluster have also been reported: the ortho-chlorophenol
reductive dehalogenase from Desulfitobacterium frappieri PCP-1 [36]
and the PCE reductive dehalogenase from C. bifermentans DPH-1 [22].
Thesetwo proteins are different from all the other dehalogenasesalready
described. The third type of Dehalogenase is a heme protein consisting
of two subunits and was isolated only from Desulfomonile tiedjei DCB-
1 [37]. Abiotic dehalogenation of several halogenated compounds
was also observed from the heat-inactivated PCE Dehalogenase of S.
multivorans and from bacterial transition metal coenzymes vitamin B ,

(Co), coenzyme F,, (Ni), and hematin (Fe) [38,39].

430

The PCE Dehalogenase genes were found to be linked with Open
Reading Frames (ORFs) coding for small hydrophobic proteins
containing two or three transmembrane helices [18,23,25-27,40,41].

Enzymatic cleavage of halogen-carbon bond (dehalogenation)
is a critical step in microbial transformation and mineralization
of halogenated aliphatic substances. Dehalogenation, generally,
decreases toxicity and, consequently, increases susceptibility of a
halogenated molecule to further breakdown. Two strategies have
been proposed for the biotreatment of PCE and TCE contamination:
(i) complete degradation by reductive dechlorination [14,42], and (ii)
by a combination of an aerobic and aerobic systems, in which PCE
or TCE is converted to ¢cDCE by anaerobic reductive dechlorination,
followed by complete aerobic metabolism of cDCE [43]. The capacity
of pceC to effect rapid dechlorination of PCE could be very useful
in the proposed two-stage anaerobic and aerobic biotreatment
strategy. Mixtures of chlorinated aliphatic substances are often
found in polluted environments. However, only a few studies have
described the anaerobic transformation of chlorinated hydrocarbons
[12,44]. C. bifermentans dehalogenase is unique in that it represents
the first characterized anaerobic reductive dehalogenase acting on
multiple chlorinated aliphatic molecules. Surprisingly, cDCE was also
dechlorinated when added as the initial compound for dechlorination.
The product(s) of ¢cDCE dechlorination and the reasons why ¢cDCE
as an intermediate product is recalcitrant are not clear. This aspect
requires in depth studies to understand the mechanism and product(s).

Genes coding for the first type of reductive dehalogenases have
been reported, such as cprA from D. dehalogenans [26,27], pceA from
S. multivorans [31] and Desulfitobacterium sp. strain Y51 [24], and
tceA from Dehalococcoides ethenogenes [18]. These genes are all closely
linked to genes cprB, pcrB, and tceB, respectively, which encode for
hydrophobic proteins potentially acting as membrane anchors for the
dehalogenases. Villemur et al. [45] isolated genes from D. frappieri
PCP-1 that are highly related to cprA and cprB. Furthermore, they
also observed several genes coding for putative cprA and pceA in the
genomes of D. hafniense DCB-2 and Dehalococcoides ethenogenes.
Gene coding for reductive dehalogenases containing corrinoid
cofactor but without an iron-sulfur cluster have been reported: crdA,
coding for an enzyme mediating the ortho-chlorophenol reductive
dehalogenation in D. frappieri PCP-1 [36], and pceC, coding the PCE
reductive dehalogenase in C. bifermentans DPH-1 [22]. Both genes and
gene products show no similarity with each other and with the firsttype
of reductive dehalogenases.
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Conclusion and Perspectives

It is now widely accepted that anaerobic halorespiring bacteria
are among the key players in biologic dechlorination processes under
anoxic environments. In order to meet these demands recently, a few
of PCE Dehalogenase was purified from some halorespiring strains,
and cloned like pceA gene. However, details biochemical organization
and genetic regulations of this enzyme remain unclear. Literally,
function of gene is subjected to physicochemical nature of substrate
i.e. arrangement of amino acid sequences. Functionally, chloroethylene
dehalogenase is classified into four categories e.g. pceA, vcrA, tceA, and
cprA on the basis of substrate specificities. The substrate is recognized
by chemical structures or the differences between number and
position of the chlorine. The substrate might be able to be expanded
by specifying the amino acid at the active center and modifying this
might improve reactive efficiency. So, X-ray structural analysis of these
enzymes need to be performed. It will be urgent to establish DNA
recombination experimental system including the host-vector system
of obligatory anaerobe. Next to the numerous technical difficulties of
performing genetics on strictly anaerobic bacteria, the tendency of
the dehalospiring bacteria to contain multiple reductive dehalogenase
gene clusters may attenuate, if not suppress completely, the effect of
single gene inactivation. On the other hand, a number of dehalogenase
genes are found from the genome of Dehalococcoides ethenogenes 195
[46,47], Desulfitobacterium sp. Y51, and Desulfitobacterium hafniense
DCB-2 [48]. Whole genomic analysis of the strain DPH-1 has also
been conducting. Thus, the electron transfer system of dehalorespiring
bacteria would be clarified in the near future. It is extremely important
for considering the origin and the evolution of dehalorespiring bacteria
to clarify the function of these genes. The study of dehalorespiring
bacteria is able not only to be offered an interesting basic finding but
also to be applied to the bioremediation of chlorinated hydrocarbons,
and to be greatly expected the progress in the future.
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