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Bile acids were classically viewed as detergents whose main 
function is to aid in the breakdown of dietary lipids. This is achieved 
by the formation of mixed micelles with cholesterol and other 
phospholipids [1]. It is now greatly appreciated that bile acids are more 
complex than mere detergents, and should actually be viewed as steroid 
hormones. Like many other steroid hormones such as neurosteroids 
and glucocorticoids, bile acids are synthesized from the conversion 
of cholesterol to various bile acids. The “classical pathway” of bile acid 
synthesis is achieved through the enzymatic activity of the cytochrome 
P450 family of proteins, namely cholesterol 7α-hydroxylase (Cyp7a1), 
which is responsible for the 7α-hydroxylation of cholesterol [2]. 
Historically, bile acid synthesis has been thought to occur solely in 
the liver, as Cyp7a1 is a liver-specific enzyme, however, an alternative 
or “acidic pathway” was discovered which starts with the side chain 
27-hydroxylation catalyzed by Cyp27a1 [3]. Interestingly, Cyp27a1 is
expressed in an array of extrahepatic tissues such as kidney [4], immune
cells [5], and the brain [6] and mutations in the Cyp27a1 gene has
been shown to underlie the sterol storage disorder cerebrotendinous
xanthomatosis, which leads to cholesterol accumulation in the brain
and neurological dysfunction [6]. The development of neurological
dysfunction by the mutation of a key enzyme in bile acid biosynthesis
poses the question of whether bile acids (or their intermediaries) play
a physiological role in the brain under homeostatic conditions. It is
now well respected that during conditions of liver dysfunction such
as cholestatic liver disease (primary sclerosing cholangitis or primary
biliary cirrhosis) bile acids are dramatically increased in the circulation
[7] and can gain access to brain [8]. Controversy still remains however,
as to whether bile acids are present in the brain and play a physiological
role in a non-diseased state.

Evidence for the notion that bile acids are present in the brain during 
homeostatic conditions came with the finding by Mano et al. [9] that the 
rat brain contains unconjugated primary and secondary bile acids in the 
absence of any liver injury. In this study it was found that the primary 
bile acid CDCA composed ~ 95% of total brain bile acid composition 
with CA and DCA being around 2-3% [9]. This work elegantly led to 
the speculation that the bile acids found in the brain under normal 
physiological circumstances are in fact synthesized locally and not from 
hepatic origin since the brain levels are approximately 10-fold higher 
than circulating levels [9]. Interestingly, CDCA was found to be ~10 
more abundant than the prototypical neurosteroids pregnenolone [9], 
suggesting that bile acids could in fact be another class of neuroactive 
steroids. Further evidence for the idea that bile acids are endogenous 
molecules to the CNS was highlighted by the finding that in humans the 
most abundant oxysterols are the C27 and C24 intermediates of bile acid 
synthesis [10]. The finding that the most abundant oxysterols present 
in CSF of humans are bile acid intermediates supports the notion that 
the alternative or “acidic” pathway for bile acid synthesis occurs in the 
brain with the conversion of 27-hydroxycholesterol to 7-hydroxy-3-
oxocholest-4-en-26-oic acid [11].

If bile acids act in a physiological manner in the brain then the 
signaling machinery necessary for bile acids to exert their actions must 
be present in the brain. In the liver, bile acids are very promiscuous 

molecules and activate both nuclear receptors (farnesoid X receptor 
[FXR], vitamin D receptor [VDR], pregnane X receptor [PXR], and 
constitutive androstane receptor [CAR]) [12] and g-protein coupled 
receptors (TGR5) to exert an array of functions such as controlling 
inflammation [13] and regulating cholesterol metabolism [14]. The 
g-protein coupled receptor TGR5 has recently been shown to be
expressed in various regions of the brain and to act as a neurosteroid
receptor [15]. This raises the possibility of cross talk between
neurosteroids and bile acids, possibly to alter neurotransmission.
Neurosteroids classically act to modulate GABAergic tone [16], and in
fact, the bile acids ursodeoxycholic acid (UDCA) and chenodeoxycholic
acid (CDCA) has been shown recently to antagonize GABAA receptors
[17,18] and CDCA was shown to antagonize NMDA receptors [18].
This is further evidence supporting the idea that bile acids could be
playing an endogenous role in the CNS.

As with all signaling pathways, there is the potential for 
dysregulation during disease states and bile acids are no exception. 
While studies examining the dysregulation of the bile acid signaling 
system in the CNS during different pathologies are lacking, studies have 
been conducted looking at bile acids as a potential therapeutic agent for 
various neurological disorders. These studies revealed that bile acids 
exert neuroprotective effects in models of Huntington’s disease [19] and 
Alzheimer’s disease [20,21]. The results of these studies indicate, at the 
very least, bile acid signaling machinery is present in CNS. 

Our understanding of bile acids as a molecule has undergone a vast 
renaissance in the past several decades. We have gone from viewing bile 
acids as mere detergents synthesized in the liver to breakdown dietary 
lipids to discovering that bile acids act as signaling molecules in the liver 
[14]. This breakthrough has led to the idea that perhaps bile acids could 
potentially exert their signaling capabilities to extrahepatic tissues. Of 
particular interest has been the possibility of bile acids acting as signaling 
molecules in the brain. The idea of bile acids being solely synthesized 
in the liver has been challenged by the finding that Cyp27a1, a crucial 
enzyme in the “acidic” pathway of bile acid synthesis is expressed in the 
brain and when mutated leads to neurological defects [6]. The brain’s 
main mechanism of clearing cholesterol is through the enzymatic 
activity of Cyp46a1 which synthesizes 24S-hydroxycholesterol 
which then diffuses across the blood brain barrier [22]. Interestingly, 
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24S-hydroxycholesterol is a substrate for Cyp7b1, another enzyme in 
the bile acid biosynthetic pathway [23]. The fact that bile acid synthesis 
enzymes (Cyp27a1) and their intermediates (24S-hydroxycholesterol) 
are present during the brain coupled with the finding that bile acids 
are found endogenously in the CSF and brain [9,10] supports a strong 
case for bile acids to be endogenously synthesized in the CNS. It is now 
widely appreciated that bile acids are pleiotropic signaling molecules in 
the body, and the presence of receptors and synthesis enzymes in the 
CNS indicates that bile acids could in fact be an endogenous signaling 
system present in the brain. Further studies are crucial to dissect this 
signaling pathway under both physiological and pathophysiological 
states.
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