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Introduction
Almost all people with Down syndrome carry a complete or nearly 

complete extra copy of chromosome 21 [1,2]. The resulting alterations 
in expression, both from genes on chromosome 21 itself and from 
genes on other chromosomes affected, for example, by transcription 
factors encoded on chromosome 21, lead to a wide range of phenotypic 
differences between people with Down syndrome and those of the 
typical population [1,3,4]. Curiously, there is also a high degree of 
phenotypic variability among people with Down syndrome. For 
example, only a very small percentage of people with Down syndrome 
develop childhood leukemia, whereas a much larger percentage of 
people with Down syndrome, but not all, are born with heart defects 
requiring surgery [5-8]. Thus, understanding the underlying causes 
of the phenotypic variability among people with Down syndrome is 
of equal scientific interest and medical importance as understanding 
the phenotypic variability between people with Down syndrome 
and the typical population. Indeed, if it were possible to understand 
the mechanism underlying the variability among people with Down 
syndrome, it might be possible to develop interventions directed 
at increasing the likelihood of more beneficial characteristics and 
reducing the likelihood or severity of challenging ones.

It is widely accepted among Down syndrome researchers that 
changes in gene expression caused by trisomy 21 are influenced by other 
inherited alleles and by the environment, thus leading to phenotypic 
variability that is similar to that observed in the typical population. 
However, recent work from our laboratory has identified another likely 
contributor to phenotypic variability in people with Down syndrome 
that may be of equal or greater consequence. Specifically, we have found 
that the A peptide, encoded by the amyloid precursor protein (APP) 
gene that resides on chromosome 21, can induce large, permanent 

changes in the genome with potentially wide-ranging effects on gene 
expression, and, thus, on phenotypes in people with Down syndrome. 

The A peptide is produced via proteolytic cleavage of the amyloid 
precursor protein by β-secretase and β-secretase (presenilin) and is 
the key component of the Alzheimer’s disease pathogenic pathway. 
According to the ‘Amyloid Cascade Hypothesis,’ increased levels of 
the Aβ peptide lead to phosphorylation of the microtubule stabilizing 
protein Tau, which aggregates into neurofibrillary tangles that cause 
neuronal damage and neurodegeneration [9-13]. Some years ago, we 
proposed and then demonstrated that people with Alzheimer’s disease 
develop mosaic trisomy 21 and other aneuploidy as a consequence of 
mitotic defects leading to chromosome mis-segregation. The trisomy 
21 cells, in turn, would contribute to Alzheimer’s disease pathology and 
dementia via the same mechanism that trisomy 21 leads to Alzheimer’s 
disease neuropathology by the age of 40 years and a greatly increased 
risk of Alzheimer’s disease dementia in people with Down syndrome 
and complete trisomy 21, but at a later age due to the modulating effect 
of the majority euploid cells in typical Alzheimer’s disease [14-16]. This 
result has been replicated and extended in several laboratories, and, 
indeed, the accumulation and specific degeneration of the almost 30% 
of neurons that are aneuploid in the brain can account for 90% of the 
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Abstract
Phenotypic variability is a fundamental feature of the human population and is particularly evident among people 

with Down syndrome and/or Alzheimer’s disease. Herein, we review current theories of the potential origins of this 
phenotypic variability and propose a novel mechanism based on our finding that the Alzheimer’s disease-associated 
Aβ peptide, encoded on chromosome 21, disrupts the mitotic spindle, induces abnormal chromosome segregation, 
and produces mosaic populations of aneuploid cells in all tissues of people with Alzheimer’s disease and in mouse 
and cell models thereof. Thus, individuals exposed to increased levels of the Aβ peptide should accumulate mosaic 
populations of aneuploid cells, with different chromosomes affected in different tissues and in different individuals. 
Specifically, people with Down syndrome, who express elevated levels of Aβ peptide throughout their lifetimes, would 
be predicted to accumulate additional types of aneuploidy, beyond trisomy 21 and including changes in their trisomy 
21 status, in mosaic cell populations. Such mosaic aneuploidy would introduce a novel form of genetic variability 
that could potentially underlie much of the observed phenotypic variability among people with Down syndrome, and 
possibly also among people with Alzheimer’s disease. This mosaic aneuploidy theory of phenotypic variability in 
Down syndrome is supported by several observations, makes several testable predictions, and identifies a potential 
approach to reducing the frequency of some of the most debilitating features of Down syndrome, including Alzheimer’s 
disease.
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neuronal cell loss observed at autopsy in typical Alzheimer’s disease 
([17-24]; for reviews see [25,26]). 

In our investigations of the mechanisms by which aneuploidy 
arises in Alzheimer’s disease, we discovered that Aβ-42, either added 
exogenously or produced endogenously due to APP overexpression 
or due to expression of familial Alzheimer’s disease-causing mutant 
forms of the APP or presenilin genes, directly induces mitotic spindle 
abnormalities, chromosome mis-segregation, and aneuploidy both 
in mouse and cell culture models of Alzheimer’s disease [27,28]. In 
subsequent studies, we discovered that Aβ-42 binds to and inhibits 
several microtubule-dependent motor proteins that are essential for 
normal mitotic spindle structure and function [29]. 

The finding that the Aβ peptide induces chromosome mis-
segregation and aneuploidy leads us to hypothesize that the excess 
Aβ peptide produced in people with Down syndrome throughout 
their lifetimes will lead to stochastic chromosome mis-segregation 
and the accumulation of mosaic aneuploidy in tissues that include 
dividing cells and/or cells that can re-enter the cell cycle in response 
to stress or to cell loss/damage. Furthermore, the Aβ peptide-induced 
chromosome mis-segregation-a stochastic process-will lead to different 
levels of aneuploidy for the various chromosomes in each individual 
and in each tissue within an individual. This highly genetically variable 
population of cells will exhibit different patterns of gene expression in 
individual tissues and different individuals, resulting in the observed 
phenotypic variability.

This mosaic aneuploidy theory of phenotypic variability in Down 
syndrome makes testable predictions that our own work and searches 
of the literature indicate have already been partly satisfied.

Prediction 1 
There should be evidence of chromosome mis-segregation/

aneuploidy in people with Down syndrome that affects multiple 
chromosomes, including potentially chromosome 21 itself.

Prediction 2
Because Alzheimer’s disease is at least in part a cell cycle disease 

in which the generation and specific loss of aneuploid neurons in the 
brain accounts for 90% of the neuronal cell loss at autopsy, a person 
with trisomy 21 Down syndrome but with only two copies of the 
APP gene should not exhibit mosaic aneuploidy and may not develop 
Alzheimer’s disease.

We will consider each of these predictions in view of current 
knowledge. 

1) First, all available data are consistent with the hypothesis that 
people with Down syndrome are prone to undergoing additional 
chromosome mis-segregation beyond trisomy 21 and including 
changes in their trisomy 21 status. For example, Percy et al. [30] and 
Jenkins et al. [31] found that many people with DS progressively lose 
their third copy of chromosome 21 in up to 4% of their peripheral 
blood lymphocytes, and that they also exhibit increased levels of 
mosaic aneuploidy for other chromosomes. Furthermore, several 
researchers found an increased frequency of micronuclei (a measure 
of chromosome mis-segregation, chromosome breakage/damage, and 
genomic instability) in buccal cells [32-36] and in peripheral blood 
lymphocytes [37] in both younger and aged people with DS.  

Such divergent levels of aneuploidy and genomic instability may 
underlie the observed phenotypic variation in people with Down 
syndrome, particularly with regard to the variation in their age of onset 

of Alzheimer’s disease dementia. Specifically, although every adult 
with Down syndrome will have the characteristic neuropathology of 
Alzheimer’s disease by the age of 30–40 years, the average age of onset 
of Alzheimer’s disease dementia varies greatly, with ~25% starting to 
show signs of dementia in their early thirties, and with 25–50% having 
a more delayed onset, or not developing dementia at all even by age >60 
years (for reviews, see [3,38]).

2) Multiple investigations have revealed a cell cycle defect in 
Alzheimer’s disease [26], including a defect in mitosis that leads 
to chromosome mis-segregation, trisomy 21, and other forms of 
aneuploidy, as we predicted [15]. For example, flourescence in situ 
hybridization (FISH) was used to measure aneuploidy, and specifically 
trisomy 21, in primary fibroblasts from Alzheimer’s disease patients 
and age-matched control individuals [14,16]. Our analysis of thousands 
of fibroblasts from 27 AD and 13 control individuals showed that the 
fibroblasts from the Alzheimer’s disease patients were more than twice 
as likely (p = 0.007) to exhibit trisomy 21 relative to the fibroblasts from 
the age-matched control individuals. Notably, the increased frequency 
of trisomy 21 cells in fibroblasts from Alzheimer’s disease patients was 
independent of age. 

We also found that chromosome mis-segregation was associated 
with all types of Alzheimer’s disease, including sporadic and familial 
Alzheimer’s disease (i.e., patients carrying a mutation in either of 
the presenilin (PS1 or PS2) genes or in the APP gene.  Finally, we 
also detected increased levels of chromosome 18 aneuploidy in 
fibroblasts from Alzheimer’s disease patients, indicating that the 
cell cycle defect leading to chromosome mis-segregation was not 
specific to chromosome 21, although it appeared to be associated with 
chromosome 21 most often, possibly due to trisomy 21 cells being less 
prone to dying in vivo compared to other types of aneuploid cells. 

Chromosome mis-segregation in patients with sporadic 
Alzheimer’s disease, particularly involving, but not restricted to, 
chromosome 21, has been confirmed in blood lymphocytes [20,21], in 
buccal cells [23], and in brain neurons [17-19,22,24] As discussed, our 
further investigations showed that mutations in the APP or presenilin 
genes that cause familial Alzheimer’s disease, and exposure to increased 
levels of the Aβ peptide, the product of the cleavage of the APP protein 
by the presenilin-containing β secretase and the β-secretase (BACE), 
induce chromosome mis-segregation and aneuploidy in mouse models 
and cell culture models of AD [27-29]. 

The significance of the close to 30% trisomy 21 and other 
aneuploidy in the Alzheimer’s disease brain and the specific loss of 
aneuploid neurons in Alzheimer’s disease is reinforced by the fact that 
all aneuploid calls are prone to apoptosis [39-43], which we have also 
found to be true in the brain.

 Similar to amyloid deposits, the increased levels of aneuploidy in the 
Alzheimer’s disease brain appear to be likely due to the overproduction 
of the Aβ peptide and its oligomers. Overproduction of Aβ may arise, 
for example, as a consequence of familial AD-causing mutations in 
the APP or presenilin genes or by an inflammation-induced increase 
in APP translation [44,45], whereas an increased conversion of the 
Aβ peptide to toxic oligomers is promoted by the catalytic activity of 
apolipoprotein-E, especially the apoE4 variant [46]. These mechanisms 
would most certainly be exacerbated by the third copy of the APP gene 
in any trisomy 21 cells that arise. Therefore, if the third copy of the 
APP gene were eliminated in trisomy 21 cells of people with Down 
syndrome, then Aβ-induced aneuploidy, apoptosis, and possibly 
Alzheimer’s disease symptoms should not arise. Indeed the few reports 
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of people with Down syndrome who carry only two copies of the APP 
gene due to a deletion of one copy of the APP gene on one of their three 
copies of chromosome 21 indicate a lack of Alzheimer-like dementia 
even at age 60+ [47]. On the other hand, if the tau pathology in people 
with trisomy 21 Down syndrome partly arises by a mechanism that 
is dependent on the extra copy of chromosome 21, but independent 
of Aβ, then some neuronal loss and cognitive decline may still be 
evident, which future studies may clarify. We would further predict 
that because people with Down syndrome with only two copies of the 
APP gene lack the aneugenic activity associated with excess Aβ peptide, 
they will not accumulate additional mosaic aneuploidy with age and 
will therefore show less variability (i.e., they will occupy the middle 
of the distribution curve) for other Down syndrome-related clinical 
phenotypes, including cognition, some of which may be more or less 
pronounced in the vast majority of people with Down syndrome who 
have three copies of the APP gene and thus an increased propensity for 
mosaic aneuploidy beyond trisomy 21.

The mosaic aneuploidy hypothesis of phenotypic variability in 
Down syndrome makes additional predictions that we are in the process 
of testing. For example, the brains of people with Down syndrome 
who die in their 50s and 60s without evidence of Alzheimer’s disease 
dementia may be somehow resistant to the aneugenic (and, therefore, 
cell death-inducing) activity of Aβ and may, thus, show decreased 
levels of neuronal aneuploidy and apoptosis compared to individuals 
who die with both Down syndrome and Alzheimer’s disease dementia. 
People with Down syndrome who appear resistant to Alzheimer’s 
disease dementia may also exhibit less variability in their other clinical 
phenotypes. Interestingly, the results of our preliminary studies show 
that typical aged individuals without Down syndrome who died with 
extensive Alzheimer’s disease brain pathology, yet had no signs of 
Alzheimer’s disease dementia, show little evidence of trisomy 21 or 
other aneuploidy in their brain neurons. 

Conclusion 
In sum, the ability of the Alzheimer’s disease-associated Aβ peptide 

to induce mitotic spindle abnormalities, chromosome mis-segregation, 
and mosaic aneuploidy can lead to variable levels of aneuploidy in 
people with trisomy 21 Down syndrome, and, therefore, to variations in 
gene copy number and expression. Such variations in gene expression 
between different, genetically mosaic tissues and individuals may 
underlie the wide phenotypic variability that is observed among 
different people with Down syndrome.
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