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ABSTRACT
There is a marked technical variability and a high amount of missing observations in the single-cell data that we 

obtain from experiments. Apart from that clearly each of the batch of experiments have a batch effect on every cell in 

the batch. This batch effect can be taken into advantage for dealing with imputation, given that all the cells in a given 

batch belong to the same tissue. Here we introduce ‘BaySiCle’, a novel Bayesian inference based method combined 

with k-nearest neighbor’s algorithm for the imputation of missing data in scRNA-seq counts. The priors are found 

out based on expression value across cells for all the single cells of the same batch. We demonstrate using sample 

scRNA-seq datasets and simulated expression data that BaySiCle allows robust imputation of missing values 

generating realistic transcript distributions that match single molecule fluorescence in situ hybridization 

measurements. By using priors as obtained by the dataset structures in the not just the experimental set-up batch, but 

also the same group of cells, BaySiCle improves accuracy of imputation to be that much closer to its similar 

alternatives.
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INTRODUCTION
Single-cell RNA-sequencing, scRNA-seq, has recently emerged as 
a novel method of choice for profiling gene expression 
heterogeneity across tissues in health and disease [1,2] and also 
for other metabolic profiling. However, as the technique relies 
on the detection of minute amounts of RNA content of one 
single cell, scRNA-seq is many times the value which is read and 
is highly prone to technical biases. The technical reason for this 
is that scRNA-seq library preparation protocols recover only a 
small fraction of the total RNA molecules present in every single 
cell. The ‘dropouts’ or the zero values are generated for many 
genes and what we get is a sparse matrix. Another term, ‘capture 
efficiency’, is used to describe the amount of genes for which the 
expression level values are obtained. Besides the above 
mentioned points, the expression values have a confounding 
effect known as batch effect which according to some researchers 
is a major problem [3-5]. The origin of batch effects is not 
completely understood but the difference in average capture 
efficiencies across experiments has an effect on it Hicks et al.,
[6].

Many of the recent studies have suggested that the data be
normalized first [7] to take care of batch effect before going for
further processing. However, in this paper, we propose that the
batch effect can be taken to an advantage for imputation such as
by Bayesian inference followed by KNN, and any normalization
that should be done, can be done after the imputation has been
done using the techniques and/or codes as in this paper in the
form of ‘BaySiCle’. The method of imputation also acts as a
regularizer for a model as has been demonstrated by Bayesian
clustering approach as used in Melissa [8]. Among other recent
methods applied for imputation has been a generative
adversarial network such as for the tool scIGANs [9]. Net Impute
employs Random Walk with Restart (RWR) to adjust the gene
expression level in a given cell by borrowing information from its
neighbors in a gene co-expression network [10]. Iterative
imputation approach based on efficiently computing highly
similar cells method has been used Moussa et al., [11] and in line
with this BaySiCle uses a similar concept by imputing the cells in
the same batch. Badsha et al., [12] made use of an autoencoder
neural network for single-cell gene expression. Another method

Journal of Proteomics & Bioinformatics
Research Article

Correspondence to: Abhishek Narain Singh, Department of Biotechnology, SunRise University, Alwar, Rajasthan, India, 
E-mail: abhishek.narain@iitdalumni.com

Received: 04-Feb-2023, Manuscript No. JPB-23-21706; Editor assigned: 06-Feb-2023, Manuscript No. JPB-23-21706 (PQ); Reviewed: 21-Feb-2023, 
Manuscript No. JPB-23-21706; Revised: 28-Feb-2023, Manuscript No. JPB-23-21706 (R); Published: 07-Mar-2023, DOI: 10.35248/0974-276X. 23.16.627

Citation: Singh AN, Pal K (2023) BaySiCle: A Bayesian Inference Joint KNN Method for Imputation of Single-Cell RNA-Sequencing Data Making 
use of Local Effect. J Proteomics Bioinform.16:627.

Copyright: © 2023 Singh AN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Proteomics Bioinform, Vol.16 Iss.1 No:1000627 4



Final Score to be imputed=Posterior Probability (X) MEAN 
Expression Score of GENEi 

The prior probability p(GENEi) is known for any gene=1/ total 
number of genes examined=1/No. of columns in the data sheet 
where each column is for a unique gene expression value.

The EVIDENCE of p(CELLj)=(Total number of cells similar to 
CELLj)/(Total number of similar cells groups)

For extracting the total number of similar cells groups, the 
naming convention of the cell was followed such that 
programmatically we can put a condition in loop which parses 
the data file, such that the first word of cell is the same depicting 
same batch and the first letter of second word being same 
implying same or similar cell i.e, of same group. We also leave 
the responsibility of sorting the data as per the batch and group 
order such as alphabetically to the user before processing the 
data by this script. Note how cleverly we have differentiated cells 
to be of not just belonging to the same batch but also to the 
same group to ensure that the cells examined for imputation are 
as similar as possible. As an example cells with Id 
VZA00602.A03, VZA00602.A05 is of the same batch 
VZA00602 as well as from the same group ‘A’. Cells with Id 
VZA00602.B03 and VZA00602.A03 are from the same batch 
but not the same group. Cells with Id VZA00612.A03 and 
VZA00602.A03 are totally different given that they are from 
different batches.

RESULTS AND DISCUSSION
Thus, once we have the cells and their counts calculated, in 
order to get likelihood value in the Bayesian inference formula 
P(CELLj|GENEi), we have to look for the counts entries where 
the GENEi value is non-zero. The Python script works by first 
conducting a Bayesian Posterior probability calculation wherever 
possible to impute the missing values. Thereafter, if there is still 
any missing values still remaining (also called ‘dropouts’) as 
shown by 0s are imputed using KNN algorithm, as discussed 
earlier. It should be noted that those genes which did not yield 
any value in any of the single-cell data were dropped out 
completely and not imputed at all. Table 1 shows a snippet of 
sample data for scRNA-seq that was imputed. Notice how sparse 
the matrix is, as this is how typically the scRNA-seq data looks 
like.

Value Cell A1BG A1BG-
AS1

A2M A2M-
AS1

A2MP
1

A3GA
LT2

A4GA
LT

AAAS AACS AAED
1

AAGA
B

AAK1 AAM
DC

AAMP

0 VZA00
602.A0
3

0 0 1289 1281 0 0 0 0 0 0 152 0 0 684

1 VZA00
602.A0
5

0 0 1051 1450 0 0 0 0 0 0 0 0 0 681
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is based on K-Nearest Neighbor (KNN) smoothing, and uses 
Poisson distribution and aggregate information from similar 
cells [13]. In BaySiCle, I have made use of SCEDAR Python 
library [14] for using the k-nearest neighbor for imputation. The 
(KNN) method essentially takes care of the locality effect, much 
of an alternative to Moussa et al., [11]. Although we have used 
SCEDAR for demonstration purposes of how KNN can be 
used, future implementation of BaySiCle can well use other 
standard libraries for the purpose such as the Scikit-learn. A 
preprint of this paper was published at bioarxiv [15].

MATERIALS AND METHODS
Sample RNA-Sequencing data was provided with courtesy by Dr 
Ville Hautamäkiwho is the author of paper [16], in which 
Bayesian inference method has also been used to get the latent 
values. However, in that paper, since the cells coming from a 
common group are not taken into account, they make use of 
another distribution [17] to get the posterior probability. Our 
method of Bayesian inference to get the posterior probability for 
the values of gene expression which needs imputation relies a lot 
on the batch or group effect, and so the formula is designed 
accordingly unlike in Trung Ngo Trong et al., [16], which did 
not take batch effect into account for their advantage. The 
sample data is also provided in the GitHub link specified to 
download the Python script.

The count of each gene in each cell follows a Poisson–gamma 
mixture, also known as a negative binomial model can be used. 
However, given that we do not know much of relations between 
the genes, and we do know much of relations between the cells, 
it would make sense to use cells as evidence in the Bayes 
theorem. So the Posterior probability would be:

p(GENEi|CELLj)=p(CELLj|GENEi) p(GENEi)/p(CELLj)

Here p(CELLj|GENEi) is likelihood, p(GENEi) is prior 
probability, and p(CELLj) is evidence, as per the terminology 
used in Bayesian inference.

This posterior probability p(GENEi|CELLj) needs to be 
multiplied by the MEAN of the expression level of GENEi in 
order to convert the probability value which is between 0 and 1, 
to a gene expression value.
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Table 1: Snippet of Data showing the cell name and the genes with their expression values.
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2 VZA00
602.A0
7

0 0 1640 1805 0 0 0 0 0 0 0 0 0 1074

3 VZA00
602.A1
1

0 0 1400 1090 0 0 0 0 0 0 0 0 0 661

4 VZA00
602.A1
5

0 0 1216 2479 0 0 0 0 0 0 549 0 0 764

t-SNE [18] 2-D plots are generated before and after the
imputation that give a comparison of the impact of imputation.
First we see the plot without any imputation as in Figure 1
below. The figure is plotted without any label at the moment. A
possible label for the plots could have been the group name or
the batch name, which we leave for future exploration. At the
moment, we would like to see the plots for qualitative purposes.
After applying the Bayes inference using the group method as
discussed above, we see a reduction of ‘dropouts’ from 1446458
to 910073. Difference 536,385 ZEROS have been imputed.

Percentage of cells imputed using BAYES theorem = 
536385/1446458 × 100%=37%

The remaining ‘dropouts’ were imputed using the KNN method
with k=30. Eventually, we can then see our new tSNE plots as in
Figure 2, and we note it to be significantly different than that of
Figure 1 which was not imputed. In order to further
qualitatively realize that this is different from a simple
imputation by KNN method, we also did a full imputation of all
the dropouts using KNN keeping k-30, and note that the plot in
Figure 3 is significantly different than that of Figure 3.

Figure 1: tSNE 2D plot before imputation.

Figure 2: tSNE plot of scRNA-seq data after Bayesian 
group inference and KNN imputation of the dropouts.

CONCLUSION
In this article, we introduced a method of bayesian inference 
taking advantage of locality of the dropouts based on Bayesian 
posterior probability using the knowledge of the group of cells 
instead of bulk data. The locality aspect of the remaining of the 
un-imputed data using Bayesian approach is then taken care of 
by KNN method. We believe that the combination of these two 
locality based imputation methods and in the described order 
can well relate the true value of the scRNA-seq data. What can 
be done in the future is that the imputed values can then be 
normalized. Also, in future, it would make sense if we carry out a 
comparative performance analysis in terms of the results 
obtained from BaySiCle compared to the other tools that are
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Figure 3: tSNE 2D plot of KNN imputed scRNA-seq data.
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out there. Clearly, plotting the t-SNE 2D plots with an 
appropriate label could be also more informative which is 
planned for in the future. A possible incorporation of deep 
learning techniques can also be explored in the future for 
improvising BaySiCle. Clearly, making the Python Jupyter 
notebook code as on GitHub link converted to automated 
software tool also remains one of the tasks in future agenda, 
although for all practical purposes, following the steps on the 
notebook would typically lead to the imputation as described in 
this paper.
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