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ABSTRACT

Subsidence of the Earth’s crust has allowed sediments to accumulate on the top of a basement of igneous and 
metamorphic rocks in form of sedimentary basin. These sediments and associated fluids are chemically and 
mechanically transformed through the several physical events like compaction and heating to a course of time. 
Consequently, it becomes the reservoir of the energy resources of petroleum, natural gas, coal, geothermal energy, 
and uranium etc. Their generation, development and disappearance are directly related to plate tectonic movements 
and other important geological events to understand the evolution history. Therefore, it is very crucial to evaluate 
the thickness of the sediments in terms of basement relief to highlight the depositional settings and basin formation 
factors. Here, we have developed a MATLAB based Artificial Neural Network approach to obtain the depth of a 
sedimentary basin considering the density variation with depth. In this work, a synthetic model is created initially 

learning process is used to train the neural network and backpropagation with stochastic gradient descent technique 
is used to optimize the network output. The prism model is then used to create synthetic sedimentary basin to 
determine the depth profile with known density contrast using computed gravity datasets. After checking this 
optimization for various synthetic model, the technique is used on real data taken from Sayula Basin, Mexico and 
the results are compared with previous basement depths to validate its efficacy. The novelty of the proposed neural 
network approach is fast and efficient computation without any initial model assumptions that can map complex 
input output relations very efficiently, where other optimization process lack in this segment.
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INTRODUCTION

The formation of sedimentary basin and its sequential depositional 
history in a subsidence environment are conspicuous phenomenon 
in geological field. Such type of geological formation provides 
most geological resources and raw materials to mankind such as 
oil, gas, coal, drinking water, geothermal water, building materials 
and lead to the precipitation of a wide range of ore deposits [1-3]. 
These deposits in form of sedimentary layers hold the records of 
the past geological history and crustal variation including tectonic 
events, climatic condition, changes in sea level, morphological 
changes, earthquake history, migration history of living creatures, 
and other environmental modifications [4,5]. However, the most 
essential element of the formation is tectonic creation of basement 
relief to provide both a source of sediments and a relatively low 

place for the deposition of that sediment to experience a variety 
of transformation [6,7]. Therefore, sedimentary basins are playing 
a pivotal role in geological evolutionary through vast research on 
the deposition of sediment types, sediment thicknesses in terms of 
basement relief, and paleo-currents in a basin that offer evidence 
of the existence and location of elevated areas of the crust created 
by tectonism [8,9]. Hence, there is an ironic tradeoff between 
having more complete preservation in the subsurface but less 
satisfactory observations due to exposed basins at the surface are 
undergoing destruction and loss of record by erosion. In contrast, 
delineating the basement relief directly suggest the referred depth 
as the tectonic subsidence and uplift of the regions to conclude the 
types of sedimentary basin [10]. Concurrently, it is not so obvious 
to estimate the basement relief of the sedimentary basin using 

by using 2D rectangular prism  and later the model is perturbed with a 5% Gaussian White Noise. A supervised 
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Marquardt algorithm is used for gravity inversion by Chakravarthi 
et al. [20], a nonlinear conjugate gradient for combined gravity 
and gravity gradient inversion [49], Florio et al. [50], used iterative 
rescaling to estimate the depth to the basement in a 3D scenario 
[51,52]. Feng et al. [53], used combined multinorm and normalized 
vertical derivatives with nonlinear conjugate gradient for 3D 
gravity inversion of basement relief. Silva et al. [54], used a fast 
inversion technique with an extended Gauss–Newton optimization 
technique to calculate basement relief. Boschetti et al. [55], Jian et 
al. [56], Montesinos et al. [57], used global optimization technique 
like genetic algorithm for 2D and 3D gravity inversion, whereas, 
Ekinci et al. [58], and Roy et al. [47], used differential evolution for 
estimating the model parameters from residual gravity anomalies. 
However, exact parameters viable for characterization of basins are 
mostly obtained from individual logs based on rock physics-elastic 
theories or electrical empirical [59]. Though enormous inversion 
algorithms are developed from last four decades to understand the 
basement geometries of any sedimentary basin, however several 
pros and cons in terms of computational cost, model efficiency 
with lateral and vertical density distribution and accuracy drive the 
efforts of researchers continuously to obtain the best optimized 
results. 
Recent advancements of Artificial Intelligence and Machine 
Learning in different branches of geosciences have eye opening 
results in complex scenarios of optimization problems [60]. These 
techniques are becoming more acceptable and renowned in the 
field of geophysical inversion [61,62]. Unfortunately, a least attempt 
has been made using these approaches to estimate the basement 
depth of complex sedimentary basins. In this present work, a 
novel optimization approach is developed using deep neural 
network approach to determine the sedimentary basin relief. 
Initially, designing and implementing the proposed MATLAB 
based algorithm were verified on synthetic model data and later 
it was tested by both synthetic example of complex sedimentary 
basin using stacking of infinite number of rectangular blocks that 
includes free noise data and data with presence of white Gaussian 
noise. Finally, reliability of proposed method to the inversion of 
a real gravity data was confirmed by applying it on a real gravity 
profile in Sayula Basin, Mexico.

MATERIALS AND METHODS

Gravity anomaly for buried 2D prism

Proper forward modelling is a necessary step before carrying out 
inversion technique. Although 3D models are more similar to 
real geological model but due to complexity of the calculation, 3D 
models are often approximated as a number of 2D profile models. 
Sometimes in exploration study 2D models are taken due to 
simplicity and to reduce the computational time. Interpretation of 
gravity anomaly due to complex geological structure is not so easy, 
for this some basic geometrical structures are taken and gravity 
anomaly due to them is calculated [1,63-65]. Rectangular Prism is 
one of the basic geometries and it is generally used to approximate 
the several complex geological formations and their associated 
structures. A synthetic model of a 2D prism of width w in the 
subsurface is shown as a Figure 1. Where, x0 is the position of the 
prism, depth to the top of the prism is z1 and depth of the bottom 
of the body is z

2
. In such case of the synthetic model, a gravity 

anomaly can be computed over the surface at some observation 
point P given by -
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geophysical data due to the different stages of loading, thermal 
contractions, orogenic loading, compaction, paleo-environment 
and sea level changes that all contribute towards the heterogeneous 
variations in density. Since the early 80s several attempts were 
continuously made to construct the basement relief of sedimentary 
basin using geophysical data majorly from gravity anomaly using 
constant density throughout the basin and subsequent models 
considered more realistic schemes for the basement estimation 
followed by updated optimization schemes from classical to recent 
advanced optimization tools. 
Gravity data leads to properly image the subsurface structure or the 
causative bodies although having inherent ambiguity in them and 
therefore results to non-unique solution when they are inverted. 
It also offers ill posed solution and erroneous in nature where is 
no unique solution. Any priori information about the causative 
body can help to eliminate the problem of gravity inversion. 
Implementation of constraints [11,12], and introducing proper 
regularization [13], can help to get a stable solution over noisy 
data also. Proper uncertainty appraisal also helps to overcome the 
non-uniqueness of the inverse problem [14,15], while determining 
the model parameters. Interpretation of gravity data by inversion 
technique leads to position and depth and density estimation of 
the causative body [16]. Computational development toward the 
basement relief of sedimentary basin has significantly improved 
in mineral exploration [17,18], hydrocarbon exploration [19], 
fault structure analysis [20,21], hydrology [22], glaciology [23], 
CO

2 sequestration [24], etc. In a gravity inversion problem of 
sedimentary basin, there is two vital unknown parameters like 
density variation and geometry of the source respectively. Any prior 
knowledge about one of them can reduce the dimension of the 
parameter space as a constraint and provides a unique solution. 
So, the depth of any sedimentary basin can be obtained using any 
prior knowledge of physical parameter. Most of the cases density is 
used as the known parameter, which may be constant throughout 
the structure [25,26], or it may have a vertical variation. In real 
cases of basin formation, density is not constant but changes 
throughout the vertical lateral extent, which may be linear or 
nonlinear [8,27,28]. Now using any optimization technique will 
lead to estimation of unknown parameter. Generally, density value 
is estimated from borehole or well log data. From these datasets 
density as a function of depth can be calculated mathematically. 
Many scientists worked on the modelling of 2D sedimentary basin 
with vertically varying density contrast and calculated the depth of 
those basins. Radhakrishna et al. [29], and Chappell et al. [30], used 
an exponential density distribution. Hansen et al. [31], introduced 
linear density-depth relationships, Litinsky et al. [32], and Sari et al. 
[33], took a hyperbolic density function, Martin-Atienza et al. [34], 
calculate second-order polynomial functions of density contrast for 
sedimentary basin.
In earlier decades, few researchers had attempted to estimate the 
basement depth using classical inversion scheme like Fourier 
transformation [35], Euler deconvolution [36], Mellin transform 
[37], Hilbert transform [38], Hartley transform [39], least-squares 
minimization [40], and Walsh transform [41], and therein. 
Recently, gravity inversion for the basement relief estimation was 
also done with some scattered knowledge of the basement depth 
from boreholes even without any prior knowledge of density value 
[42]. Kaftan et al. [43], used genetic algorithm to determine the 
depth of buried structures. Particle swarm optimization technique 
is also used to invert the potential field data [17,44-48]. Levenberg–
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Where Θ is the parameter set, which is optimized at the time of 
learning process. †GΘ  is the pseudo inverse operator [69]. In neural 
network approach, an inverse mapping is done from data to model 
space. It uses a non-linear basis function made up of weights and 
biases. Weights and biases in the layers are the pseudoinverse 
operator and learning occur by determining the weights and biases, 
which are equivalent to parameter set Θ .

Deep Neural Network (DNN) and its structure

Artificial Neural Network imitates the working function of 
biological neural network. Biological nervous system has cells, 
called neurons which are connected with the help of axon and 
dendrites [70]. The connecting region of axon and dendrite is 
called synapses that depicts a biological system as illustrated in 
Figure 2a. A biological neuron receives input signal from other 
neurons by synaptic connection of dendrites and axon terminals. 
Attenuation of the signal is depending on the distance from 
synapse to soma (main cell body). This soma processes the input 
signal and the output signal is transmitted through axon to the 
next neuron. As human brain is capable of doing complex work, 
intelligent machines are made in a way it simulates the working 
procedure of human brain. First artificial neuron was proposed by 
McCulloch et al. [71]. The mathematical neuron also behaves in 
the similar manner as the biological neuron as shown in Figure 
2b with their basic architecture for a single layer Artificial Neural 
Network (ANN). An Artificial Neural Network is an assembly of 
nodes and weights, which took the input information and process 
it with the help of weights. The weighted sum of the inputs is fed to 
the transfer function (activation function) and output is obtained 
at output layer and applied in several geophysical application 
[72]. Network learning is occurred by changing the weights of the 
connecting neurons. Sometimes an extra free variable named bias 
is also added, it is like a weight which connect to a fixed input. 
Basically, an Artificial Neural Network has 3 layers as Input layer, 
Hidden layer, and Output layer. Artificial Neural Network (ANN) 
with no hidden layer is the simplest kind and it’s called Single 
layer Perceptron. This is also called shallow neural network on the 
other hand Artificial Neural Network with hidden layer is called 
multilayer neural network or Deep Neural Network (DNN). It is 
obvious to understand that more hidden layer deeper the network 
as shown in Figure 3 as a multilayer feedforward network. ANN 
is a nonlinear system so it can solve any non-linear problem easily 
and is called universal approximator because it can determine the 
input output relationship by learning through examples, even if 
there is no deterministic relationship available. In neural network 
optimization various problems may arise and overall performance 
may not be as expected. It can result from incorrect network 
configuration, selecting poor training set (bad and overtraining), 
network can be trapped in local minima [73]. As shown in Figure 
3, there are 6 input nodes, and each have weights corresponding to 
them. Each input is multiplied with its corresponding weight and 
they are summed up. The output of the summing node is given by:

1

n

i i
i

x w bα
=

= +∑
 … (9)

Where α is summering node, x is input, w is weights, b is bias, and 
n is 6 as total number of input nodes. Summed output is then 
fed to the activation node and the output f(α) is obtained after 
the activation. This can be treated as input to the next layer in 
the case of multilayer perceptron and so on. There ANN takes the 
input as nodes multiply it with the weights then sum it at each 
node and passes it to the next layer with proper activation and 
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( )( )2 2

3 0 1t x x w z= − − + … (4)
( ) 2 2

4 0 2( )t x x w z= − − + … (5)
Where, g is gravity anomaly, G is the Gravitational Constant (6.67 
× 10-11 N.m2.kg-2), ρ∆  is density contrast in kg/m3, and x

0
 is the 

position to the centre of the prism.

Inversion problem formulation

To calculate the gravity anomaly due to a sedimentary basin, density 
and depth profile are the most important model parameters. In 
this work density is obtained from other geophysical method like 
logging and borehole data. The main objective function, the value 
of which is reduced during the process is the misfit of the data 
value using a basic inverse problem that can be expressed as:
d Gm n= +  … (6)
Where, d is the data vector, m is the unknown model parameter 
vector, G is forward operator which relates model and data vector, 
n is additive noise. Therefore, a generalised objective function can 
be defined as a least square function using:

2

2
O d Gm= −  … (7)
Where, m is the model estimated from inversion.
Machine learning or artificial intelligence techniques performs 
based on supervised and unsupervised learning. Unsupervised 
learning uses unlabelled input data to discover information 
and reveals the hidden pattern in the data. It is used mostly in 
categorization problem like lithological variation [66-68]. In the 
other hand supervised learning uses labelled data to initiate the 
learning from previous input output relation. Unsupervised 
learning requires training data to learn from relation between the 
input-output to produce new set of output. In machine learning 
approach, the forward operator G may be unknown and generally 
represented by a black box in the mathematical computation. In 
this approach the inverse problem can be slightly different from 
equation 7 and described as: 

2†
2learn n nO m G dΘ= − … (8)

Figure 1: A rectangular prism is shown in the subsurface. Location (x
0
) 

is defined by the x position of the midpoint of the prism. Gravity value 
at (P) a distance x from x0 is shown here. The vertical component of 
gravity gz is calculated and shown. 
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from 0 to 1. In order to use stochastic gradient descent with 
backpropagation of errors to train deep neural networks a linear 
like activation function is needed, but it has to act like a nonlinear 
function to deal complex model data relationship. In such case 
RELU or Rectified Linear Unit is also used as activation followed 
by a number of activations functions [75], to be used as per the 
complexity of the optimization problem as shown in Figure 4.

continue the similar process for the number of hidden layers until 
it comes to the output layer [74]. Linear activation function is the 
simplest kind; however, it can’t solve complex nonlinear problems, 
but still used to predict any quantity. For solving complex problems 
nonlinear activation functions are required. Sigmoid is the most 
popular activation function among all because it is continuously 
differentiable and monotonically increasing and has nonnegative 
and non-positive first order derivative and its output varies 

Figure 2: (a) A schematic diagram of biological neuron and synaptic connection. (b) Representation and workflow of a mathematical neuron. x1 to x6 
are the inputs which are going to a summing node with corresponding weights w1 to w6. A fixed bias is also given. The output of the summing node 
is passed to the activation to get the output. 
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5

Dubey CP, et al. OPEN ACCESS Freely available online

Figure 3: Basic architecture of multilayer feed forward neural network as first layer of input with two hidden layer is shown. 

Figure 4: Various activation function and their mathematical expression. 

weight distribution must be optimized in order to minimize the 
cost or error function. Cost function is the misfit between the 
observed and true value, it describes how poorly the current model 
is working as an optimization process. By minimizing the loss, the 

Optimization and network training process

During neural network process, a network activation goes forward 
to produce the output and error propagates backward to optimize 
the result [76,77]. Once network configuration  is  finalized,  the 
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network is trained to perform better. There are many optimizations 
techniques among which the gradient descent is one of the best 
optimization algorithms used to train neural network [78]. It finds 
the set of input variables for a target function to minimize the 
function value. It involves the calculation of the gradient of the 
target function through their slopes and measures how much the 
output of a function changes with the change of the input [79]. It 
calculates the change of the variable with the change of another 
model parameter as a function whose output is the partial derivative 
of a set of parameters of the inputs. With the increasing value of 
the gradient the slope steepens and correspondingly generate the 
optimized results. In order to compute, the slope of the function is 
calculated first at a point and then the algorithm is moved to the 
opposite direction on increasing slope. Finally, the error propagates 
through the hidden layers by using gradient descent approach for 
the training samples [80]. Most of the neural network process offers 
three different kind of gradient descent variants in form of Batch 
Gradient Descent, Mini Batch Gradient Descent, and Stochastic 
Gradient Descent [81]. In Batch Gradient Descent, all the training 
samples are passed through the network in one instance. Average 
of all the gradients of the samples is taken into consideration and 
used to calculate the new network parameters. In one epoch only 
one gradient descent step is present. It is good for relatively less 
complex error function. In Stochastic Gradient Descent only one 
sample is given to the network at one time. When there is a huge 
dataset, it is feasible to use one sample to calculate the gradient 
descent and increases the learning duration of the network [81]. To 
implement the vectorise example, ANN uses the stochastic gradient 
descent and Mini Batch Gradient Descent. Here a batch made up 
of few data samples are used to calculate the gradient.
In this present study, the Stochastic Gradient Decent is considered 
as optimization technique which implicitly minimize the error by 
propagating it in the backword direction. This process is called 
backpropagation technique in learning network. Backpropagation 
is a method to calculate the gradient of the error function or cost 
function with the help of chain rule, whereas stochastic gradient 
descent is used for learning using those gradients. Gradients 
calculated by backpropagation describes the change in error with 
the change of network parameters [82]. Small change in negative 
gradient will decrease the error in every iteration. Let’s say the 
output of the network as shown in Figure 2b is  Calculatedα  and actual 
output is given by Truem . So, error in the output is ( )True Calculatede m α= − . In 
this regard, a cost function may be derived for gradient calculation 
and is generally given by sum squared error as below where the 
factor   is taken to simplify the calculation:

( )2

1

1
2

n
True Calculated
k k

k

E t α
=

= −∑
… (10)

Once the parameters of the network is set the training of the 
network initiate the learning process. Training is a process in which 
the network learns the relationship between input and output by 
adjusting the network parameters. It happens by minimizing this 
error, which takes place by adjusting the weights. It will be decided 
in the training process that it should increase the weights value or 
decrease it from the previous one through iterative scheme. During 
the whole learning process change in weight is given by:

Ew
w

∆
∆ ∝ −

∆  … (11)
In more generalised form of input layer, hidden layer and output 
layer denoted by subscript i, j, k. So, change in weights of output 
layer becomes:

kj
kj

Ew
w
∂

ℵ
∂   … (12)

The value of the partial derivative will be calculated by chain rule:

k k
kj

k k kj

inEw
in w
α

α
∂ ∂∂

∆ = −∈
∂ ∂ ∂  … (13)

Here, kjw∆  is the weight change of output layer, ϵ is the learning 
rate,   E∂ is the change in error, kα∂  change in the activation of 
output layer,   kin∂  is the change in the input of the output layer.
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21(  
2
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∂ ∂  … (14)
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e
in in
α α α

−−∂ +∂
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∂ ∂ … (15)
( )kj jk

j
kj kj
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α
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Putting these values in equation (13), the value of change in weights 
as

( ) ( ) 1True Calculated
kj k k k k jw t α α α α∆ =∈ − −

… (17)

( ) ( )1True Calculated
k k k k kt α α α δ− − =

… (18)

kj k jw δ α∆ =∈
 … (19)

Therefore, the change in weight in input to hidden layer is also 
calculated by the help of chain law as;

[ ] j jk k
ji

k k k kj j ji

ininEw
in w in w

αα
α

∂ ∂∂ ∂∂
∆ = −∈

∂ ∂ ∂ ∂ ∂∑
… (20)

( ) ( ) ( ) 1 1True Calculated
k k k k kj j j i

k

t wα α α α α α 
=∈ − − − 

 
∑

… (21)

( )1k kj j j i
k

wδ α α α 
=∈ − 

 
∑

 … (22)
( )1j k kj j j

k

wδ δ α α 
= − 
 
∑ … (23)

Replacing this value in equation (20),
ji j iw δ α∆ =∈ … (24)

So, updated weights are
kj kj kjw w w= + ∆   … (25)
ji ji jiw w w= + ∆  … (26)

This optimization process is called supervised learning. If the error 
remains high and flat for a time being then it suggests that the 
training is stuck into a local-minima. It now requires a new set of 
initial guesses to restarts the training. If the network is well trained, 
then it offers a result very fast. The whole learning process of deep 
neural network in illustrated through a flow chart in Figure 5.

Figure 5: Flowchart showing the neural network algorithm used here.

J Geol Geophys, Vol. 12 Iss. 5 No: 10001109
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considering different sets of model parameters based on the priory 
information. Then the network learns the relationship between the 
input and output and train it to give the desired outcome. Artificial 
Neural Network is evaluated by using root mean square error 
between the network output and the desired output. Then the 
error is back propagated by gradient descent method to optimize 
the weight and biases followed by the testing of the network by 
using the actual dataset. Finally, it converges to the optimized 
results as a model parameter which highly depends on the space 
dimension of unknown parameters [83]. 
Gravity anomaly due to a single prism is obtained from the formula 
given in equation 1 and the pictorial representation of 2D prism 
with anomaly is illustrated in Figure 6. It is evident from Figure 
6 that maximum anomaly is observed exactly at the top of the 
prism when the dip of the prism is basically zero. To optimize 
the model parameters of 2D prism, a deep neural network with 
120 input nodes, 30 hidden layer nodes and 5 output layer nodes 
corresponding to 5 model parameters are generated. A total of 6 
different sets of training data is used to train the network. These 
sets were created from 6 different sets of model parameters in the 
vicinity of priory information. For real dataset, a vast range of model 
parameters should be taken to create the training dataset to train 
the network. To initiate the training, the gravity values obtained 
from synthetic computation of 2D prism are normalized between 
0-1. To train the first layer of network, sigmoid function is used as
activation function and linear activation function is used for the
output generation at the output layer through learning occurs by
backpropagation of error. Stochastic gradient descent is used as the
optimization process to reduce the error.

RESULTS AND DISCUSSION

Conventionally, the gravity anomaly for any sedimentary basin 
can be assessed from a depth section and distribution of lateral/
vertical density information. Finally, it is carried out by specifying 
a set of approximate depth to the density interface by using the 
prior information. In this theme of results and discussion, firstly a 
prismatic model is considered to evaluate the gravity anomalies and 
their associated model parameters followed by synthetic subsurface 
model of depth profile using prismatic approximation and later the 
computational inversion algorithm is applied to a real data.

Single 2D prism

In the present study of an inversion problem, the input in the neural 
network is considered as a gravity anomaly for a prism for simplicity 
and later it was used to approximate the complex sedimentary 
basin. So, the number of nodes in the neural network is equal to 
the total number of observation points and the output is the model 
parameters of 2D prism (position x

0
, density contrast ∆ρ, depth to

the top of the prism z1, depth to the bottom of the prism z2). The 
weights and biases are taken randomly between 0 and 1. Then the 
inputs are multiplied with the weights and summed according to 
the above said equation 9 to propagate the summation through a 
nonlinear transfer function called sigmoid function given by:
( ) ( )

1
1 xf x

e−
=

+ … (27)
Through the process of error propagation, the network learns the 
characteristics of the problem and trained its network of perceptron 
to deliver the results. The artificially created neural network is 
trained with a large number of data sets which were created by 

Figure 6: (a) Gravity anomaly in mGal due to a single rectangular prism (without noise) and (b) with noise. (c) The prism is plotted below the 
subsurface just with anomaly for better understanding, (d) Gravity anomaly curve showing the actual and inverted anomaly for noiseless single prism 
data. Blue star is showing the real data and red circle is the inverted anomaly data and (e) Anomaly curve with contaminated noise of 5% Gaussian 
Noise. (f) Root means square error vs iteration curve showing the minimization of the error while training the network for single prism. Note:  Actual 
anomaly,  inverted anomaly, Real anomaly point, Real anomaly plot,  Inverted plot 
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After completion of training, the network testing is done with 
the synthetic dataset and inverted anomaly is obtained. Now the 
network is trained to give desired output. To assess the model’s 
robustness against the noises, 5% of Gaussian noise is added to 
the anomaly as shown in Figure 6a and 6b. Figure 6d shows the 
actual and inverted anomaly for datasets without noise and Figure 
6e with noise contaminated datasets of single 2D prism. Here 
misfit in the model parameters is taken as cost function and it is 
minimized during the training of the neural network. The error 
got minimized during the training at very low learning rate. At first 
the error was high and after training and changing the network 
weights accordingly the error is reduced close to zero at around 200 
iteration as shown in Figure 6f. By training, the neural network 
learns the relationship between the input and output using gravity 
anomaly and model parameters and finally converges to the real 
model parameters in terms of density, position, width, depth of 
the top and bottom of the prism as output. The gravity anomaly 
was given as input at each node and each output node give each 
parameter as output. After inversion the error in the gravity 
anomaly for noiseless data is 2.923775 × 10-8 and for noisy data 
it is 5.341200 × 10-2 and the comparison of the generated model 
parameters versus real parameters for a single 2D prism are shown 
in the Table 1.
Table 1: The model parameter comparison for both noisy and noiseless 
data calculated for single rectangular prism.

Model parameter comparison for real and calculated values

Noise free data

Real values
Calculated values 

from inversion

Position of the prism (x0
) 0 1.696030 × 10-7

Density of the prism (p in kg/m3) 200 200

Width of the prism (w in m) 800 800

Depth of the top of the prism (z
1
 in m) 900 900

Depth of the bottom of the prism (z
2
 

in m)
2100 2100

Data with 5% Gaussian noise

Real values
Calculated values 

from inversion

Position of the prism (x
0
) 0 1.696040 × 10-7

Density of the prism (p in kg/m3) 200 200

Width of the prism (w in m) 800 800

Depth of the top of the prism (z1 in m) 900 900

Depth of the bottom of the prism (z2 
in m)

2100 2100

OPEN ACCESS Freely available online

Figure 8a demonstrate the  model 2 without noise and Figure 8b 
with contaminated noise of 5% of Gaussian noise. The total length 
of the profile is 6000 m along the x axis transverse to the strike of 
the sedimentary basin with 300 equispaced observation points with 
20 variable rectangular prisms. The profile is assumed to have a 
constant density contrast of lateral and vertical density variation at 
the basement depth interface across the profile containing 20 
prisms. Then the model is simulated for the training for a 
maximum number of generations of 800 based on the desired 
accuracy of close to real values using the depth bound of the model 
[24]. Afterward, model is trained with a vast number of synthetic 
data, through which we observe that the objective function values 
converge within a maximum of 600 runs and error plot is shown in 
Figure 9. In a similar fashion, model parameters are inverted using 
gravity anomaly for a complex synthetic sedimentary basin where 
lateral and vertical density variations are assumed to relate with real 
geological scenarios and the model is shown in Figure 8a and 8b 
without and contaminated noise correspondingly. Error for both 
noisy and noise free data is shown in Table 2. From the table it is 
vital to note that that the error increases with increasing 
parameters though the range of error is not so significant for the 
consideration (Table 3).Table 2: The comparison of error in gravity 
anomaly for noisy and noiseless data for synthetic layer (Model 1).

Error in gravity anomaly for noise free and noise data after inversion 
(Model 1)

Noise free data 6.2534 × 10-8

Data with 5% Gaussian noise 0.2599

Table 3: The comparison of error in gravity anomaly for noisy and noiseless 
data for synthetic layer (Model 2).

Error in gravity anomaly for noise free and noise data after inversion 
(Model 2)

Noise free data 7.8034 × 10-8

Data with 5% Gaussian noise 0.3675

Real example: Sayula Basin, Mexico

The DNN is trained with both noisy and noiseless data in three 
different cases of the synthetic models to deliver significant and 
satisfactory results with visibly small error. Further, to examine 
the developed approach with true case, the example with real field 
data is taken from residual Bouguer gravity anomaly profile across 
the Sayula basin from south central Mexico. The basin fill mainly 
consists of basic lava, tuff, and breccias as shown in Figure 10a. 
The entire 16 km gravity profile has been digitized from García-
Abdeslem et al. [84], with 101 equally spaced data points. Total 
length of profile is divided into 101 gravity data points and a total 
of 750 infinitesimal small rectangular prisms with constant width 
were taken to recreate the basin structure synthetically with lower 
and upper bound range of 0 m to 5000 m. The density contrast 
decreases with depth and follows a depth varying density contrast 
relation with each and every individual prism. To simplify the 
calculation, we considered the depth value of the midpoint of the 
prism to calculate the density contrast. Then the gravity value of 
the basin is created using the previous mentioned relationships, 
and used as the training dataset. The formula to calculate the 
density contrast is taken as:

( ) ( )2 30.8 0.7174 0.229 1000 /z z z kg mρ∆ = − + − ×  … (28)

Synthetic layer generation and depth profile

The developed DNN approach of gravity inversion algorithm 
described in the earlier section is utilized here by using synthetic 
data from a complex sedimentary basins. Here two different 
types of synthetic examples are considered as Model 1 and 
Model 2. Model 1 has a complex sedimentary basin with 
constant density and variable depth as shown in Figure 7 where 
Figure 7a demonstrate the model 1 without noise and Figure 7b 
with contaminated noise of 5% of Gaussian noise. Whereas 
Model 2 has again much more complex sedimentary basin relief 
with depth varying density contrast as shown in Figure 8 where 
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Figure 7: (a) Anomaly curve comparing actual and inverted anomaly for synthetic layer (Model 1 with constant density). The synthetic layer is plotted 
just below the surface. (b) Anomaly curve comparing actual and inverted anomaly for synthetic layer with 5% Gaussian Noise where blue colour curve 
denotes the actual value and red colour shows the inverted result. Complex sedimentary layer is shown in the lower part as a combination of 2D 
prism. Note:  Actual anomaly,  inverted anomaly.

real anomaly. The optimization error curve of gravity anomaly for 
the Sayula Basin is shown in Figure 10c. After the optimization with 
the maximum iteration of 180, the RMSE in gravity anomaly for 
the best inverted model is close to zero. The maximum depth of the 
sedimentary basin is around 1000 m, and it is very much similar to 
the result obtained by García-Abdeslem et al. [84]. It is important 
to note from the error curve shown in Figure 10c that initially the 
error is about 1400 but soon after 100 itertaion when the network 
is trained, suddenly the behavior of error curves saturate to 0.6270 
i.e., close to zero [85].

Then the network is trained with a training dataset, which were 
created by using convenient parameters. The network is trained 
to give the basement depth value using 750 number of nodes in 
output layer to calculate the depth as the output of the network 
through a supervised learning process. The network is trained 
from the sample data values given for a different basement depths 
of having different density variations with depths. Further, the 
trained network is subjected to the real data and the depth values 
are obtained. The real and inverted gravity anomaly is shown in 
Figure 10b with real and inverted depth profile in blue and red 
color. Except for a small region the inverted data is matching the 
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Figure 8: (a) Anomaly curve comparing actual and inverted anomaly for synthetic layer (Model 2 with heterogeneous density). The synthetic layer 
is plotted just below the surface. (b) Anomaly curve comparing actual and inverted anomaly for synthetic layer with 5% Gaussian Noise where blue 
color curve denotes the actual value and red color shows the inverted result. Complex sedimentary layer is shown in the lower part as a combination 
of 2D prism. Density contrast for the calculation is taken as ∆ρ (z)=(-0.8+0.7174z-0.229z2 ) × 1000 kg/m3. Note:  Actual anomaly,  inverted anomaly.
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Figure 9: Root means square error vs iteration curve showing the minimization of the error while training the network for model 2 od complex 
sedimentary basin with density variation along depth section.

Figure 10: (a) Geology map of Sayula Basin, Mexico, (b) Anomaly curve comparing actual and inverted anomaly for Sayula Basin, (c) Error curve for 
the final convergence to output parameter. Note:  Alluvium,  Sayula Basin,   Volcanic rocks,  Intermediate to mafic volcanic,  Mafic 
volcanic rocks,  Actual anomaly,  inverted anomaly,   Calculated depth,  Real depth.
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CONCLUSION

Deep Neural Network approach is applied to investigate the 
depth profile of a sedimentary basin having a complex density 
behavior. Determining the appropriate basement relief of any 
complex sedimentary basin from the gravity anomalies can be 
solved using this approach much faster with unbelievable accuracy 
without any constrain. The developed algorithm of DNN is based 
on the stochastic gradient descent optimization approach using 
backpropagation error scheme. It requires significantly enormous 
datasets to train the neural network to achieve the desired accuracy. 
The entire basement relief of any complex sedimentary basin along 
any profile can be subdivided into an infinitesimal tiny segment 
of rectangular prism to approximate the basement topography 
and assigned the lateral as well as vertical density variation to each 
segment of prism. It is also emphasized that the present approach 
of DNN work perfectly well with any sedimentary basin having 
constant as well as lateral and vertical density variations. We 
presented the three cases of synthetic model from simplest model 
of prism to complex model of synthetic sedimentary basin to show 
the efficiency, reliability and stability of the presented approach. 
The inversion algorithm recovers the depth to the basement of the 
formation and overcomes the drawback of nonlinearity and local 
convergence without any complex mathematical relationships. It 
also provides the best continuity of the basement interface using 
prismatic approximations as compared to traditional approaches 
due to its design to mimic the human brain, so it continuously 
improves itself in order to deliver better results. Finally, the whole 
procedure of training network using DNN is verified with real 
data from Sayula Basin, Mexico. The inverted depth interface and 
basement topography offer reasonable results and show a good 
agreement with reported results from earlier studies.
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