Arrangement of Human Cell Metaphase Chromosomes on the Equatorial Plate

Tao Jiang ${ }^{1 *}$, Chunxiao Wu ${ }^{2}$, Ali Wajid ${ }^{3}$, Donyun Jiang ${ }^{2}$, Han Huan ${ }^{1}$, Zhiren Zhan ${ }^{4}$,Jiacheng Huang ${ }^{5}$
${ }^{1}$ The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P.R. China; ${ }^{2}$ The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; ${ }^{3}$ Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Wen Yuan Road, Nanjing, China; ${ }^{4}$ Xishanqiao Community Health Service Centre, Nanjing, P.R. China;5Nanjing University of Chinese Medicine, Nanjing, P.R. China

Abstract

Chromosome is an important hereditary material that maintains the genetic stability of an organism. The structure and location of different chromosomes in the cell governs the basis, how it expresses the genetic effects in the cell and thereby in the whole organism. The chromosome territories (CTs) suggest the location of the chromosomes within the cell by analyzing the karyotypes of human cells. We assume the location and arrangement of chromosomes in the cells is by the interrelationship between chromosomes. More than 100 years ago a Cytologist named Theodor, proposed the idea of chromosome territories. It is indicated that chromosomes are not randomly distributed in Metaphase. This hypothesis is still not directly supported by any laboratory work. We have found in our clinical research that there is a high degree of karyotype expression, so we took a supportive position on this hypothesis but, in order to find the existence of such interrelationships between chromosomes, we conducted a statistical analysis of a large number of existing karyotypic data. In analyzed data we found a clear dominance of long arm over short arm of chromosome according to its activity, with exceptions in specific chromosomes. From the chromosomes statistical data that karyotype occurring between the short arms is relatively small then that of long arm. From the present data it was clear that the exchange of genetic material between the longlong arm is > than exchange of genetic material among long-short arm and short-short arm of the chromosome. Based on the frequency of chromosomal material exchange patterns for arrangement can be considered as circular arrangement, or honeycomb arrangement.

Keywords: Chromosome territories; Metaphase; Karyotype expression; Statistical analysis

INTRODUCTION

With few exceptions [1], genomes of living organisms are made of several segments of DNA, they together form a highly organized structure called chromosome. Chromosomes have highly packed DNA that interacted with basic proteins i.e., histones and nonhistone, which also play a significant role in the regulation of gene expression [2]. Thus, Chromosomes are genetic vehicles, which facilitate the reproduction and maintenance of a specie's traits [3,4]. Theodor a cytologist in 1909 for the first time introduced the term chromosome territory [5], and currently several reviews have focused on this topic [6].

Two models have been proposed that explained different aspects of nuclear Chromosome territory distribution [7]. One model is based on the radial arrangement of CTs found in various types of
mammalian cells suggests that gene-dense chromosomes are located more internally as compared gene-poor ones [8-10]. However, in non-cycling cells no such arrangement was found by Bridger et al. [11]. The second model proposed a specific neighbourhood relationship between distinct chromosome domains [7]. However, none of the above models have succeeded in proving beyond any doubt the actual mechanism of the chromosome arrangement.

It is imperative to note that, most of the diseases due to genetic defects are directly related to the chromosomal abnormalities. These abnormalities can be better understood by cytogenetics, the field that deals with the structure and properties of chromosomes and cell division, which is based on various methods, one of them known as "karyotyping." It is a photographic representation of chromosomes organized in a standard manner. For the first in 1960, fibroblasts were used for karyotyping [12]. Karyotypes are

[^0]prepared from mitotic cells that are arrested in the metaphase state of the cell cycle, the stage when chromosomes reassume their condensed from. As a source of these cells a variety of tissue can be used. In order to diagnose cancer, typical specimens include bone marrow samples or tumour biopsies [13]. With the development of karyotyping, it has made possible to visualize previously undetectable chromosomal abnormalities such as small deletions of chromosomes and translocations between minute segments of chromosomes with each other [14].

The aim of the current study is to demonstrate to certain extent that the location and arrangement of chromosomes in metaphase in the cells is established by the interrelationship between chromosomes based on karyotype expression data analysis. Further, this analysis may shed light on the understanding of mechanism involved in chromosomal defects in rearrangements and possibly the derivation of methods to prevent them.

RESEARCH METHODOLOGY

We selected data from the National Cancer Institute [15], database on April 26, 2017. There were 10,676 karyotypes of the data sets, with 66,919 cases including karyotype analysis data within chromosomes and among chromosomes. Then we segregated karyotypic analysis data in which the exchange of materials takes place between chromosomes. The data of conventional karyotyping was selected, while the data of complex karyotyping was excluded. Complex karyotyping has its special significance, but in the present condition, there is some interference to the analysis of the data which would be analyzed in the future. Finally, a total of 43,368 valid data sets were collected.

The segregated data sets contains the specific information such
as the chromosome number, the long arm and short arm of the chromosome and chromosome division and summarized results. Because of chromosome difference in the gender we calculated the sex chromosomes, X and Y respectively (the statistical data of X chromosome shows a slight increase but has little effect). All data were obtained by means of ordinary accumulation.

RESULTS

Chromosomes short and long arms arrangement.

We have found that there is an exchange of materials between the long - long arms, short - long arms and both short arms of chromosome. The high frequency exchange rate was found for long- long arms and short- short arms. It is suggestive that the arrangement of chromosomes in the cells may not be arranged in an "ordered" way, the long arm and the short arm of the chromosome float freely in the cytoplasm of cell during the metaphase. We divided the chromosomes into region 1 and non 1 region to observe the dominance of karyotype analysis data (Tables 1 and 2).

Let's look at the impact of partitioning on karyotype analysis. Different chromosomes are also divided into different regions. We divided chromosomes into 1 region and non-1 region to observe the dominance of karyotype analysis data. Non-1 region contain regions contains zones 2,3 and 4 , of the chromosome. Since most chromosomes in the short arm have only one region and no other region, the long arm has more than two regions, but there are eight zone in the third region and only four zone in the long arm of chromosome No, 1. So we look at the long arm data. The data of the short arm was 11:13, which was relatively close, while the data of long-long arm was $3: 21$, which showed an obvious difference. It

Table 1: Karyotype analysis by chromosome long arm short arm, division summary.

		Summary		20	99	2		25	89	2	5		6	2			2	9	2		10	6			12		29 1
	P	Non 1 region		18	99			18		2	2														12		15 1
		1 region		2		2		7	89		3		6	2			2	9	2		10	6					14 0
		Non 1 region	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	x	y	
		1 region							9	2	2	2		3	2	7	5	2	4		4			68			11 0
1 P			56	10	8		3	2	13	18	10	2	37	26	11	42		2	24				2				26 6
	Q	Summary	56	10	8		3	2	22	20	12	4	37	29	13	49	5	4	28		4		2	68			37 6
			56	30	107	2	3	27	111	22	17	4	43	31	13	49	7	13	30	0	14	6	2	68	12	0	66 7
		Non 1 region																									
		Summary	14						2		4			9				6		5							40
			12						2		2																16
	P	1 region	2								2			9				6		5							24
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	x	y	
		1 region								2			3			3					4			6		2	20
		Non 1 region	2		49	4	93		29	101		2	38			52			2	18							39 0
2 P	Q	Summary	2		49	4	93		29	103	2	2	41			55			2	18	4			6		2	41 2
			16	0	49	4	93	0	31	103	6	2	41	9	0	55	0	6	2	23	4	0	0	6	0	2	45 2
		Summary	2		15	2	2	7				2	2	4							2						38
		Non 1 region	2		15																						17
	P	1 region				2	2	7				2	2	4							2						21

Note: The following is a summary of the data we have collected a total of 43368 valid data. (Final summary table)
Table 2: Chromosome long arm, short arm summary.

1	P	56	30	107	2	3	27	$\begin{gathered} 11 \\ 1 \end{gathered}$	22	17	4	43	31	13	49	7	13	30	0	14	6	2	68	12	0	$\begin{gathered} 66 \\ 7 \end{gathered}$
	Q	56	31	23	30	20	35	$\begin{gathered} 27 \\ 2 \end{gathered}$	29	45	16	47	34	35	50	60	$\begin{gathered} 26 \\ 2 \end{gathered}$	37	20	$\begin{gathered} 54 \\ 7 \\ \hline \end{gathered}$	15	41	38	34	4	$\begin{aligned} & 17 \\ & 81 \end{aligned}$
		$\begin{gathered} 11 \\ 2 \end{gathered}$	61	$\begin{gathered} 13 \\ 0 \end{gathered}$	32	23	62	$\begin{gathered} 38 \\ 3 \end{gathered}$	51	62	20	90	65	48	99	67	$\begin{gathered} 27 \\ 5 \end{gathered}$	67	20	$\begin{gathered} 56 \\ 1 \end{gathered}$	21	43	$\begin{gathered} 10 \\ 6 \end{gathered}$	46	4	$\begin{aligned} & 24 \\ & 48 \end{aligned}$
2	P	16	0	49	4	93	0	31	$\begin{gathered} 10 \\ 3 \end{gathered}$	6	2	41	9	0	55	0	6	2	23	4	0	0	6	0	2	$\begin{gathered} 45 \\ 2 \end{gathered}$
	Q	31	0	24	4	4	2		2	9	0	15	22	58	13	3	6	0	13	4	0	0	10	6	2	$\begin{gathered} 22 \\ 8 \end{gathered}$
		47	0	73	8	97	2	31	105	15	2	56	31	58	68	3	12	2	36	8	0	0	16	6	4	$\begin{gathered} 68 \\ 0 \end{gathered}$
3	P	5	9	17	2	97	9	2	98	2	4	2	6	2	8	4	0	2	0	2	0	2	2	0	0	$\begin{gathered} 27 \\ 5 \end{gathered}$
	Q	58	74	$\begin{gathered} 45 \\ 2 \end{gathered}$	16	63	24	38	40	0	0	10	$\begin{gathered} 10 \\ 5 \end{gathered}$	10	$\begin{gathered} 14 \\ 1 \end{gathered}$	0	30	19	2	4	2	$\begin{gathered} 14 \\ 6 \end{gathered}$	52	0	2	$\begin{aligned} & 12 \\ & 88 \end{aligned}$
		63	83	$\begin{gathered} 46 \\ 9 \end{gathered}$	18	$\begin{gathered} 16 \\ 0 \end{gathered}$	33	40	$\begin{gathered} 13 \\ 8 \\ \hline \end{gathered}$	2	4	12	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	12	$\begin{gathered} 14 \\ 9 \end{gathered}$	4	30	21	2	6	2	$\begin{gathered} 14 \\ 8 \end{gathered}$	54	0	2	$\begin{aligned} & 15 \\ & 63 \end{aligned}$
4	P	11	0	14	0	0	2	2	0	0	0	0	0	0	35	2	0	6	0	0	0	0	3	0	0	75
	Q	21	8	4	0	2	4		2	2	0	$\begin{gathered} 68 \\ 4 \end{gathered}$	25	2	2	0	0	6	0	8	2	0	13	0	0	$\begin{gathered} 78 \\ 5 \end{gathered}$
		32	8	18	0	2	6	2	2	2	0	$\begin{gathered} 68 \\ 4 \end{gathered}$	25	2	37	2	0	12	0	8	2	0	16	0	0	$\begin{gathered} 86 \\ 0 \end{gathered}$
5	P	7	0	6	0	2	0	9	10	0	0	2	0	0	2	15	0	33	0	4	0	0	0	0	0	90
	Q	18	97	$\begin{gathered} 16 \\ 4 \end{gathered}$	2	7	2	6		0	4	53	58	2	27	0	0	47	4	7	0	4	4	0	0	$\begin{gathered} 50 \\ 6 \end{gathered}$
		25	97	$\begin{gathered} 17 \\ 0 \end{gathered}$	2	9	2	15	10	0	4	55	58	2	29	15	0	80	4	11	0	4	4	0	0	$\begin{gathered} 59 \\ 6 \end{gathered}$
6	P	32	2	18	2	2	2	8	14	$\begin{gathered} 15 \\ 4 \end{gathered}$	15	10	8	5	71	2	0	6	2	10	0	0	0	0	0	$\begin{gathered} 36 \\ 3 \end{gathered}$
	Q	25	0	13	2	0	2	4	3	0	2	$\begin{gathered} 12 \\ 3 \end{gathered}$	15	2	15	2	0	0	0	0	0	2	0	5	0	$\begin{gathered} 21 \\ 5 \end{gathered}$
		57	2	31	4	2	4	12	17	$\begin{gathered} 15 \\ 4 \end{gathered}$	17	$\begin{gathered} 13 \\ 3 \end{gathered}$	23	7	86	4	0	6	2	10	0	2	0	5	0	$\begin{gathered} 57 \\ 8 \end{gathered}$
7	P	$\begin{gathered} 34 \\ 6 \end{gathered}$	2	4	2	5	2	20	2	52	0	88	21	2	19	0	2	19	0	2	0	4	8	0	0	$\begin{gathered} 60 \\ 0 \end{gathered}$
	Q	41	19	15	0	4	10	16	7	30	23	25	42	4	17	2	15	2	0	6	2	2	8	0	0	$\begin{gathered} 29 \\ 0 \\ \hline \end{gathered}$
		387	21	19	2	9	12	36	9	82	23	113	63	6	36	2	17	21	0	8	2	6	16	0	0	$\begin{gathered} 89 \\ 0 \end{gathered}$
8	P	15	0	2	0	0	0	0	13	24	0	3	11	16	4	0	$\begin{gathered} 11 \\ 7 \end{gathered}$	16	0	6	0	5	17	0	0	$\begin{gathered} 24 \\ 9 \end{gathered}$
	Q	36	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\begin{gathered} 13 \\ 4 \\ \hline \end{gathered}$	2	10	17	9	32	50	4	6	28	7	$\begin{aligned} & 10 \\ & 71 \\ & \hline \end{aligned}$	10	5	13	0	2	6	$\begin{aligned} & 17 \\ & 38 \end{aligned}$	$\begin{gathered} 20 \\ 5 \end{gathered}$	0	0	$\begin{aligned} & 34 \\ & 88 \end{aligned}$
		53	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\begin{gathered} 13 \\ 6 \end{gathered}$	2	10	17	9	45	74	4	9	39	23	$\begin{aligned} & 10 \\ & 75 \end{aligned}$	10	$\begin{gathered} 12 \\ 2 \end{gathered}$	29	0	8	6	1743	222	0	0	3739
9	P	21	6	0	0	0	30	62	52	8	0	$\begin{gathered} 48 \\ 9 \end{gathered}$	84	6	39	8	0	6	11	0	$\begin{gathered} 12 \\ 3 \end{gathered}$	8	31	0	0	$\begin{gathered} 98 \\ 4 \end{gathered}$
	Q	37	5	2	2	0	$\begin{gathered} 13 \\ 6 \end{gathered}$	54	28	4	2	18	15	4	2	11	3	14	0	0	4	2	$\begin{aligned} & 37 \\ & 25 \end{aligned}$	0	0	$\begin{aligned} & 40 \\ & 68 \end{aligned}$
		58	11	2	2	0	$\begin{gathered} 16 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 6 \end{gathered}$	80	12	2	$\begin{gathered} 50 \\ 7 \end{gathered}$	99	10	41	19	3	20	11	0	$\begin{gathered} 12 \\ 7 \\ \hline \end{gathered}$	10	$\begin{aligned} & 37 \\ & 56 \end{aligned}$	0	0	$\begin{aligned} & 50 \\ & 52 \end{aligned}$
10	P	4	0	2	0	0	0	0	0	0	0	186	2	2	9	0	0	9	0	0	0	0	6	0	0	$\begin{gathered} 22 \\ 0 \\ \hline \end{gathered}$
	Q	20	2	2	0	6	17	23	6	2	0	7	14	8	77	4	0	24	2	0	0	4	12	0	0	$\begin{gathered} 23 \\ 0 \end{gathered}$
		24	2	4	0	6	17	23	6	2	0	$\begin{gathered} 19 \\ 3 \\ \hline \end{gathered}$	16	10	86	4	0	33	2	0	0	4	18	0	0	$\begin{gathered} 45 \\ 0 \end{gathered}$

11	P	8	7	10	14	37	2	$\begin{gathered} 10 \\ 0 \end{gathered}$	5	9	2	4	12	2	$\begin{gathered} 10 \\ 2 \end{gathered}$	2	0	6	0	4	12	4	11	0	0	35 3
	Q	$\begin{gathered} 10 \\ 0 \end{gathered}$	45	2	$\begin{gathered} 67 \\ 0 \end{gathered}$	18	131	18	4	$\begin{gathered} 51 \\ 5 \end{gathered}$	$\begin{gathered} 24 \\ 1 \end{gathered}$	2	10	2	$\begin{gathered} 96 \\ 7 \end{gathered}$	9	27	110	29	$\begin{gathered} 39 \\ 2 \end{gathered}$	2	2	$\begin{gathered} 33 \\ 5 \end{gathered}$	4	0	36 35
		$\begin{gathered} 10 \\ 8 \end{gathered}$	52	12	$\begin{gathered} 68 \\ 4 \end{gathered}$	55	133	118	9	$\begin{gathered} 52 \\ 4 \end{gathered}$	$\begin{gathered} 24 \\ 3 \end{gathered}$	6	22	4	$\begin{aligned} & 10 \\ & 69 \end{aligned}$	11	27	116	29	$\begin{gathered} 39 \\ 6 \end{gathered}$	14	6	$\begin{gathered} 34 \\ 6 \end{gathered}$	4	0	$\begin{aligned} & 39 \\ & 88 \end{aligned}$
12	P	16	20	39	27	46	17	54	25	76	3	6	4	42	26	22	4	58	8	10	2	$\begin{gathered} 40 \\ 3 \end{gathered}$	74	2	0	$\begin{gathered} 98 \\ 4 \end{gathered}$
	Q	63	8	56	2	19	6	9	16	25	9	8	4	2	56	5	99	4	2	4	0	0	21	2	0	$\begin{gathered} 42 \\ 0 \end{gathered}$
		79	28	95	29	65	23	63	41	$\begin{gathered} 10 \\ 1 \end{gathered}$	12	14	8	44	82	27	$\begin{gathered} 10 \\ 3 \end{gathered}$	62	10	14	2	$\begin{gathered} 40 \\ 3 \end{gathered}$	95	4	0	$\begin{aligned} & 14 \\ & 04 \end{aligned}$
13	P	4	2	0	0	0	2	0	0	2	0	0	5	2	4	7	0	0	0	2	0	4	10	0	0	44
	Q	44	56	12	2	4	5	6	23	9	10	2	25	20	39	19	2	13	4	2	2	12	10	2	0	$\begin{gathered} 32 \\ 3 \end{gathered}$
		48	58	12	2	4	7	6	23	11	10	2	30	22	43	26	2	13	4	4	2	16	20	2	0	$\begin{gathered} 36 \\ 7 \end{gathered}$
14	P	6	0	0	0	0	0	0	0	0	0	2	5	4	4	8	0	4	2	0	0	7	7	2	0	51
	Q	85	65	149	37	29	86	36	$\begin{aligned} & 11 \\ & 06 \end{aligned}$	41	18	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	72	65	63	2	13	8	$\begin{aligned} & 17 \\ & 27 \end{aligned}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	23	17	29	53	21	$\begin{aligned} & 49 \\ & 97 \end{aligned}$
		91	65	$\begin{gathered} 14 \\ 9 \\ \hline \end{gathered}$	37	29	86	36	$\begin{aligned} & 11 \\ & 06 \end{aligned}$	41	18	$\begin{aligned} & 10 \\ & 52 \end{aligned}$	77	69	67	10	13	12	$\begin{aligned} & 17 \\ & 29 \end{aligned}$	202	23	24	36	55	21	$\begin{aligned} & 50 \\ & 48 \end{aligned}$
15	P	28	0	0	2	2	0	0	0	4	0	2	2	5	5	0	2	4	0	2	2	9	14	0	0	83
	Q	39	3	4	0	9	4	3	10	17	4	9	18	21	26	4	2	$\begin{aligned} & 11 \\ & 68 \end{aligned}$	0	4	0	16	4	2	0	$\begin{aligned} & 13 \\ & 67 \\ & \hline \end{aligned}$
		67	3	4	2	11	4	3	10	21	4	11	20	26	31	4	4	$\begin{aligned} & 11 \\ & 72 \end{aligned}$	0	6	2	25	18	2	0	$\begin{aligned} & 14 \\ & 50 \end{aligned}$
16	P	$\begin{gathered} 15 \\ 5 \end{gathered}$	6	3	0	0	0	15	122	3	4	70	101	0	0	4	0	5	0	0	2	68	3	0	0	$\begin{gathered} 56 \\ 1 \end{gathered}$
	Q	$\begin{gathered} 12 \\ 5 \end{gathered}$	0	0	0			2		0	6	4	2	2	13	0	46	10	2	0	0	25	7	0	0	24
		$\begin{gathered} 28 \\ 0 \end{gathered}$	6	3	0	0	0	17	$\begin{gathered} 12 \\ 2 \end{gathered}$	3	10	74	$\begin{gathered} 10 \\ 3 \end{gathered}$	2	13	4	46	15	2	0	2	93	10	0	0	$\begin{gathered} 80 \\ 5 \end{gathered}$
17	P	71	0	3	6	42	0	5	14	14	20	17	6	4	2	2	8	2	11	0	15	5	6	0	0	$\begin{gathered} 25 \\ 3 \end{gathered}$
	Q	43	2	16	7	36	4	16	15	15	15	97	47	15	9	$\begin{aligned} & 12 \\ & 28 \end{aligned}$	9	11	32	27	2	12	16	26	0	$\begin{aligned} & 17 \\ & 00 \\ & \hline \end{aligned}$
		114	2	19	13	78	4	21	29	29	35	114	53	19	11	$\begin{aligned} & 12 \\ & 30 \end{aligned}$	17	13	43	27	17	17	22	26	0	$\begin{aligned} & 19 \\ & 53 \end{aligned}$
18	P	7	7	0	0	0	2	0	0	7	0	0	2	2	0	0	2	10	0	0	2	0	6	0	0	47
	Q	15	18	5	0	4			2	4	2	29	6	2	$\begin{aligned} & 17 \\ & 08 \end{aligned}$	0	0	33	0	2	4	12	33	$\begin{gathered} 16 \\ 3 \end{gathered}$	0	$\begin{aligned} & 20 \\ & 42 \end{aligned}$
		22	25	5	0	4	2	0	2	11	2	29	8	4	$\begin{aligned} & 17 \\ & 08 \end{aligned}$	0	2	43	0	2	6	12	39	163	0	$\begin{aligned} & 20 \\ & 89 \\ & \hline \end{aligned}$
19	P	$\begin{gathered} 52 \\ 6 \end{gathered}$	0	4	0	2	2	4	2	0	0	$\begin{gathered} 34 \\ 3 \end{gathered}$	7	2	13	2	0	30	0	0	2	2	7	0	0	$\begin{gathered} 94 \\ 8 \end{gathered}$
	Q	45	4	4	8	9	8	4	6	0	0	19	4	2	$\begin{gathered} 18 \\ 9 \end{gathered}$	4	0	6	2	7	0	0	5	0	0	32
		$\begin{gathered} 57 \\ 1 \end{gathered}$	4	8	8	11	10	8	8	0	0	$\begin{gathered} 36 \\ 2 \end{gathered}$	11	4	$\begin{gathered} 20 \\ 2 \end{gathered}$	6	0	36	2	7	2	2	12	0	0	$\begin{aligned} & 12 \\ & 74 \\ & \hline \end{aligned}$
20	P	25	0	0	2	0	0	0	4	3	0	2	0	2	5	0	0	4	4	0	50	2	4	0	0	10 7
	Q	7	0	2	0			2		$\begin{gathered} 12 \\ 2 \end{gathered}$	0	14	2	0	18	2	2	7	2	2	32	0	5	4	0	$\begin{gathered} 22 \\ 3 \end{gathered}$
		32	0	2	2	0	0	2	4	$\begin{gathered} 12 \\ 5 \end{gathered}$	0	16	2	2	23	2	2	11	6	2	82	2	9	4	0	$\begin{gathered} 33 \\ 0 \end{gathered}$
21	P	8	0	0	0	0	2	2	0	0	0	4	2	11	2	9	0	0	2	0	2	20	6	0	0	70
	Q	34	0	$\begin{gathered} 24 \\ 8 \end{gathered}$	0	4		4	$\begin{aligned} & 17 \\ & 32 \end{aligned}$	10	4	2	$\begin{gathered} 38 \\ 8 \end{gathered}$	12	14	16	93	17	10	2	0	8	17	0	0	$\begin{aligned} & 26 \\ & 15 \end{aligned}$
		42	0	$\begin{gathered} 24 \\ 8 \end{gathered}$	0	4	2	6	$\begin{aligned} & 17 \\ & 32 \end{aligned}$	10	4	6	$\begin{gathered} 39 \\ 0 \end{gathered}$	23	16	25	93	17	12	2	2	28	23	0	0	$\begin{aligned} & 26 \\ & 85 \\ & \hline \end{aligned}$
22	P	18	0	0	0	0	0	2	5	4	0	2	0	10	11	8	2	0	0	0	5	10	6	0	0	83
	Q	88	12	56	16	4		17	$\begin{gathered} 24 \\ 0 \end{gathered}$	$\begin{aligned} & 36 \\ & 74 \end{aligned}$	12	$\begin{gathered} 34 \\ 4 \end{gathered}$	64	8	27	10	8	22	47	9	4	23	14	2	0	$\begin{aligned} & 47 \\ & 01 \end{aligned}$
		$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	12	56	16	4	0	19	$\begin{gathered} 24 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 36 \\ & 78 \\ & \hline \end{aligned}$	12	$\begin{gathered} 34 \\ 6 \end{gathered}$	64	18	38	18	10	22	47	9	9	33	20	2	0	$\begin{aligned} & 47 \\ & 84 \\ & \hline \end{aligned}$
x	P	44	0	0	2	0	0	0	0	0	4	0	4	0	44	2	3	24	$\begin{gathered} 16 \\ 3 \end{gathered}$	0	2	0	2	0	0	$\begin{gathered} 29 \\ 4 \end{gathered}$
	Q	2	4	0	0		2			0	0	4		2	2			2		2	0	0	0	0	0	20
		46	4	0	2	0	2	0	0	0	4	4	4	2	46	2	3	26	$\begin{gathered} 16 \\ 3 \end{gathered}$	2	2	0	2	0	0	31 4

y	P	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	14
	Q	4	2	2	0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
		4	2	2	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	22

should be suggested that the karyotype analysis data of the region far from the centromere in the chromosome was higher than that of the region close to the centromere, whether the region far from the centromere was suggested that it had a large degree of freedom for activity.

In addition to the quantitative differences, the range of activity in the non-1 region is also higher than the corresponding chromosome region 1 . The range of activity in the non-1 region is higher than that in the 1 region, but this is not true for all chromosomes. In general, the non-1 region prevails. This indicates that the activity of the non-region 1 chromosome is greater than that of chromosome region 1 . The non 1 and 1 region still have overlapping activity, which is inconsistent on each chromosome, more or less. There may be convergence over a larger sample.

Chromosome long arm and short arm activity (comparisons)

From the numbers of long arm and short arm of the chromosomes, we observed that, there is clear dominancy of long arm over short arm of the chromosomes with exceptions in specific chromosomes as shown in Table 3. The ratio of difference is $9: 15$, long arm being dominant. It has been seen from the data of Table 4, that the activity in long arm of chromosomes is higher than short arm, with the exceptions in specific chromosomes (chromosomes No, 2, $6,7,10,12,16,19, \mathrm{X}$ and Y$)$ that show higher activity in short arm than long arm.

Karyotype analysis of the long and short arm of chromosomes

It was found from our analysis that there is no obvious regularity in the data from the long or short arms of the single chromosome and in the other single chromosomes, but in summary of karyotyping the long arm is more obvious than the short arm. The ratio of the number of genes that dominate the exchange of chromosome material is 22: 2, except for two, chromosomes 6 and 16 (Table 5). In the short arm of the chromosome, the exchange of chromosomes materials between the short arm and the long arm is found to be higher than that on the short arm and short arm, however in long arm the material exchanged between chromosomes occurring on long arms is greater than the number of chromosomal material exchanges occurring on long arms and short arms. Karyotyping data elucidates that the long arms have a definite advantage, and this may be due to the arm length of the chromosome. In the analysis of data, in order to eliminate the odd single data while analyzing the whole data, we sorted out the frequency of mass exchange between chromosomes, we analyzed the karyotype of each chromosome frequency by size, arranged in the first 24 calculation, and so on, (X, Y chromosome were calculated) (Figures 1A - 1X).

Chromosome segregation statistics between the long arms

From the chromosomes statistical data as shown in Tables 6A -

6D karyotype occurring between the short arms is relatively small, because the short arms of many chromosomes have no non-1 region. In the comparison of region 1 and non-region 1 , it can be seen that the number of karyotypes covered by non-region 1 is more than that of region 1 , and the specific data is in more than 1 zone, suggesting that the activity of the non 1 region is greater than the region 1, and they also have the same coverage. Data analysis of the short \& long arm, long \& short arm, long and long arm of the chromosomes are more obvious. It is further suggested that the coverage of non-1-region is much greater than the rest (Figure 2).

Aggregation of chromosome activity

In the karyotype's analysis for chromosomal aggregation, it was observed that long-short arm of the chromosomes overlap with each other in a certain range, meaning there is overlap between homologues and non-homologous chromosomal material exchanges, which strongly supports the concept of Boveri chromosome domain (chromosome territories) (Figures 3 and 4).

Intensity of chromosome activity

Since karyotype analysis is a clinical activity and we conduct karyotyping analysis of patients, mainly concerned on hematological tumors. Karyotype analysis was performed in patients with greater clinical relevance, such as deformity and infertility, those who have no special clinical significance of deformity were exempted. It was also governed by various factors of the patient profile. For example, the common karyotype of chronic myelogenous leukemia is $\mathrm{t}(9$; 22) ($q 34$; QLL), and the common karyotype of acute promyelocytic leukemia is $t(15 ; 17)$ (q22; Q12), the data is surprisingly high in certain cases. We calculated the intensity of karyotype analysis, which can effectively reflect on chromosome activity and cumulative frequency of exchange between chromosome exchange intensity (Figure 5). To eliminate the chromosomal bias caused by the clinical factors of a single disease it is seen that the exchange intensities of chromosomes are different, but the active chromosomes are still relatively high in data, while some chromosomes are relatively conserved such as sex chromosomes X , the exchange rate of Y is relatively low, may be consistent with the relative sex chromosomes to maintain their genetic stability.

Possible arrangement of chromosomes in metaphase cells

Based on the frequency of chromosomal material exchange, the frequency is considered as a pair of chromosomes that are closer to each other. Patterns for arrangement can be considered as circular arrangement, or honeycomb arrangement (Figures 6 and 7). From the karyotyping data analysis X and Y chromosome expression is very minute and the rules are very difficult, but we found out in comparing their respective high-frequency data, Both X, Y and chromosome 14 have higher frequency, while the X chromosome and chromosome 18 has the highest frequency. Therefore, the sex chromosomes X and Y may be closer to chromosomes 14 and 18 in the cell as presented in Table 7.

Table 3: Chromosome long arm and short arm activity.
Comparison between short and long arms

Comparison between short and long arms		
S. No	P	Q
1	1234567891011121314151617192021 X	123456789101112131415161718192021 XY
2	1345789101112141617181922 Y	1345689111213141516181922 X Y
3	12345678910111213141517192122	1234567811121416171819202122 Y
4	136714151722	12356891112131417192022
5	135781114151719	123456710111213141718192122
6	123456789101112131415171819	13467810111213141521 X
7	123456789111213141617192122	123567891112131415161719202122
8	1389111213141617192122	123456789101112131415161719202122
9	12678911121314151718202122	123467891011121314151617202122
10	13111213141722	12356789111213141517182122
11	1234567891011121314151719202122	$12345678910111213141516171819202122 \times$
12	12345678910111213141516171819202122 X	$1234567891011121314151617181922 \times$
13	126912131415192122	$12345678910111213141516171819202122 \times$
14	1111213141517182122 X	$12345678910111213141516171819202122 \times \mathrm{l}$
15	145911121314161719202122	123567891011121314151617192122 X
16	1237891011121517202122	1710111213141617182122
17	1345789101112131415161718202122	$1234568910111213141516171819202122 \times$
18	1269121316172022	$12358910111213141719202122 \times$
19	135678111213141517202122	12345678111213141517181922
20	14891113141718202122	
21	167111213141518202122	135789101112131415161718192122
22	17891113141516202122	1234578910111213141516171819202122 X
X	14101214151617182022	1261113141719
Y	14	123

Table 4: Data comparison for long and short arms of chromosome.

S. No	P	Q
1	633	1834
2	470	179
3	489	1080
4	75	788
5	76	507
6	381	213
7	612	354
8	274	3520
9	961	4000
10	278	152
11	344	3598
12	928	394
13	53	313
14	44	5022
15	106	1389
16	587	194
17	202	1647
18	52	2072
19	991	302
20	88	237
21	83	2538
22	80	4780
X	295	24
Y	21	10
Summary	8123	35147

DISCUSSION

Chromosomes are considered natural unit of subdivision of complete genome. During mitosis chromosomes can easily be seen in cells as a highly condensed structures but for many years their morphological nature during interphase remained undefined [16]. Thus, it is particularly important to elucidate the arrangement of chromosome during metaphase based on karyotype expression.

Chromosome structure and arrangement in cells are only well observed in metaphase of cells. Karyotype analysis is a prompt examination of clinical diseases (O'Connor, 2008). In our results we evaluated that the exchange of material between chromosomes follows a certain rule that the exchange may occur only in chromosomes adjacent to or close to each other. Individual chromosomes are different, some are more active, some relatively quiet; the long arm and short arm of chromosome is free in the cytoplasm of the cells; activity of the long arm of chromosome is greater and dominant than short arm of chromosome (Tables 1, 3, 4) and (Figures 1A - 1X).

We also found that segregation far from the centromere in different regions of the arm is greater than the segregation near the centromere (many chromosomes do not have region other than zone 1, and these chromosomes are not mentioned) (Tables 6A - 6D). In our work we found both sex chromosomes (X and Y) to be very close to chromosome number 14 and 18 (Table 7). Previously Boyle et al. have revealed that the chromosome which is gene-rich (human chromosome 19) is positioned more central in nucleus than the equally sized chromosome 18 which is genepoor. Boyle et al. also report that the chromosomes of different

Table 5: Comparison of long arms and short arms (karyotype analysis of chromosomes).

Long vs short arms			
S. No	P	Q	Overlapping
1	22	24	21
2	17	18	14
3	19	19	15
4	8	15	6
5	10	17	8
6	18	14	12
7	18	19	17
8	13	22	13
9	16	19	15
10	8	17	8
11	20	23	20
12	23	23	21
13	11	23	11
14	11	24	11
15	14	20	12
16	14	12	8
17	19	23	18
18	10	17	8
19	15	17	13
20	12	15	8
21	12	18	10
22	12	22	12
X	11	8	3
Y	1	3	0

Note: The Q 7th numerical value is 272 , the 16 tvalue is 262 , and the 19 th value is 547 .
Figure 1a: Genetic material exchange frequency of P and Q arm of chromosome-1 and rest of chromosomes.

Note: P 8th numerical value is 103.
Figure 1b: Genetic material exchange frequency of P and Q arm of chromosome-2 and rest of chromosomes.

Note: Q 3rd Numerical value 452.
Figure 1c: Genetic material exchange frequency of P and Q arm of chromosome-3 and rest of chromosomes.

Note: Q 11th value is 684 .
Figure 1d: Genetic material exchange frequency of P and Q arm of chromosome-4 and rest of chromosomes.

Note: Q 3 value is 164 .
Figure 1e: Genetic material exchange frequency of P and Q arm of chromosome- 5 and rest of chromosomes.

Note: the P 9th value is 154 , the 14 th value is 71 , and the $Q 11$ th value is 123 .
Figure 1f: Genetic material exchange frequency of P and Q arm of chromosome- 6 and rest of chromosomes.

Note: The 1 st value of P is 346 .
Figure 1g: Genetic material exchange frequency of P and Q arm of chromosome-7 and rest of chromosomes.

Note: The 2 nd value of Q is 103 , the 3 rd value is 134 , the 14 th value is 1071 , the 21 st value is 1738 and the 22 nd value is 205 .
Figure 1h: Genetic material exchange frequency of P and Q arm of chromosome- 8 and rest of chromosomes.

Note: P no. 7 value is 62 , no. 11 is 489 , no. 12 is 84 , no. 20 is 123 , and number 22 is 3725 .
Figure 1i: Genetic material exchange frequency of P and Q arm of chromosome- 9 and rest of chromosomes.

Note: P 11th value is 186 , and Q 14 th value is 77
Figure 1j: Genetic material exchange frequency of P and Q arm of chromosome-10 and rest of chromosomes.

Note: The 14 th value of P is 102 , the 4 th value of Q is 670 , the 6 th value is 131 , the 9 th value is 515 , the 10 th value is 241 , the 14 th value is 967 , the 17 th value is 110 , the 19 th value is 392 and the 22 th value is 335 .

Figure 1 k : Genetic material exchange frequency of P and Q arm of chromosome- 11 and rest of chromosomes.

Note: P no. 21 has a value of 403.
Figure 11: Genetic material exchange frequency of P and Q arm of chromosome-12 and rest of chromosomes.

Note: The 1 st value of Q is 44 , the second is 56 , the 8 th is 23 , the 12 th is 25 , and the 14 th is 39 .
Figure 1 m : The 1 st value of Q is 44 , the second is 56 , the 8 th is 23 , the 12 th is 25 , and the 14 th is 39 .

Note: The 3 rd value of Q is 149 , the 8 th value is 1106 , the 11 th value is 1050 , the 18 th value is 1727 , and the 19 th value is 202 .
Figure 1n: Genetic material exchange frequency of P and Q arm of chromosome-14 and rest of chromosomes.

Note: The 17 th of Q has a value of 1168 .
Figure 1o: Genetic material exchange frequency of P and Q arm of chromosome- 15 and rest of chromosomes.

Figure 1p: Genetic material exchange frequency of P and Q arm of chromosome-16 and rest of chromosomes.

Note: Q no. 15 has a value of 1228 .
Figure 1q: Genetic material exchange frequency of P and Q arm of chromosome- 17 and rest of chromosomes.

Note: The value of Q is 1708 and the value of X is 163 .
Figure 1r: Genetic material exchange frequency of P and Q arm of chromosome-18 and rest of chromosomes.

Note: Genetic material exchange frequency of P and Q arm of chromosome-19 and rest of chromosomes.
Figure 1s: Genetic material exchange frequency of P and Q arm of chromosome-19 and rest of chromosomes.

Note: The 9th item of Q has a value of 122
Figure 1t: Genetic material exchange frequency of P and Q arm of chromosome-20 and rest of chromosomes.

Note: The 1st value of Q is 34 , the 3 rd value is 248 , the 8 th value is 1732 , the 12 th value is 388 and the 16 th value is 93 .
Figure 1u: Genetic material exchange frequency of P and Q arm of chromosome-21 and rest of chromosomes.

Note: Value for Q 8th is 240, 9th is 3683 and 11th is 344.
Figure 1v: Genetic material exchange frequency of P and Q arm of chromosome-22 and rest of chromosomes.

Note: P 1st value is 44,14 this 44 , and number 18this 163 .
Figure 1w: Genetic material exchange frequency of P and Q arm of chromosome-23 and rest of chromosomes.

Figure 1x: Genetic material exchange frequency of P and Q arm of chromosome-24 and rest of chromosomes.

Note: Empty single double order. Genetic material exchange frequency of P and Q arm of chromosome-24 and rest of chromosomes.
Figure 2: Aggregation of chromosome activity.

Note: Empty single double order. However, chromosomes of the long arm or short arm of the same chromosome overlap with each other in a certain range of chromosomes, that is, there is overlap between homologues and non-homologous chromosomal material exchanges which strongly supports the concept of Boveri chromosome domain (chromosome territories).

Figure 3: Chromosomes aggregation.

Figure 4a: Summary of karyotype analysis of chromosome no.1.

Figure 4b: Summary of karyotype analysis of chromosome no.2.

Figure 4c: Summary of karyotype analysis of chromosome no.3.

Figure 4d: Summary of karyotype analysis of chromosome no.4.

Figure 4 e : Summary of karyotype analysis of chromosome no.5.

Figure 4f: Summary of karyotype analysis of chromosome no.6.

Figure 4g: Summary of karyotype analysis of chromosome no.7.

Note: Value of $21^{\text {st }}$ is 1743 .
Figure 4h: Summary of karyotype analysis of chromosome no. 8.

Note: Value of $22^{\text {nd }}$ is 3756 .
Figure 4i: Summary of karyotype analysis of chromosome no. 9

Figure 4j: Summary of karyotype analysis of chromosome no.10.

Note: Value of 14th is 1069.
Figure 4k: Summary of karyotype analysis of chromosome no.11.

Figure 41: Summary of karyotype analysis of chromosome no.12.

Figure 4m: Summary of karyotype analysis of chromosome no.13.

Note: The value of 18 this 1729 , the value of 8 is 1106 , and the value of 11 is 1052
Figure 4 n : Summary of karyotype analysis of chromosome no.14.

Note: Value of 17 is 1172.
Figure 4o: Summary of karyotype analysis of chromosome no. 15

Figure 4p: Summary of karyotype analysis of chromosome.

Note: Summary of karyotype analysis of chromosome no. 17.
Figure 4q: Value of 15 is 1230.

Note: Value of 17 is 1708.
Figure 4r: Summary of karyotype analysis of chromosome no.18.

Note: Value of 1 is 571
Figure 4s: Summary of karyotype analysis of chromosome no.19.

Figure 4t: Summary of karyotype analysis of chromosome no. 20 .

Note: Value of 8 is 1732 .
Figure 4u: Summary of karyotype analysis of chromosome no.21.

Note: Value of 9 is 3678.
Figure 4v: Summary of karyotype analysis of chromosome no.2.

Figure 4w: Summary of karyotype analysis of chromosome X.

Figure 4x: Summary of karyotype analysis of chromosome Y.

Figure 5: Intensity of chromosome activity.

Figure 6: The arrangement of chromosomes in the cell equatorial plate honeycomb arrangement.

Figure 7: The arrangement of chromosomes in the cell equatorial plate honeycomb arrangement.
functional characteristics and having similar physical size adopt different positions nucleus [17].

So, from our work we conclude that, Arrangement of chromosomes in the cell occurred in a regular pattern. Through the massive karyotyping data, we found an exchange of chromosomal materials for adjacent chromosomes only. The present study suggested that patterns for arrangement of chromosome can be considered as circular arrangement, or honeycomb arrangement (Figures 6 and 7). According to the data analysis in Figures 4 A to 4 X) it is clear that chromosome No-1 show grater exchange of genetic material with chromosome No-7, 19, and 16. Chromosome No-1 also show low genetic material exchange with Chromosome No-X, Y and 15. Chromosome No-2 show grater exchange of genetic material with Chromosome No-8 and 13. Chromosome No-3 and 5 show grater exchange of genetic material for each other. Chromosome No-4 show grater exchange of genetic material with Chromosome No-11 but chromosome No-11 show grater exchange of genetic material wit chromosome No-10 and 14 in addition chromosome No-14 show grater exchange of genetic material with chromosome No-18 and Y-chromosome. Chromosome No-8, 21 and 15, 17 show grater exchange of genetic material for each other. Chromosome-X and 18 show grater exchange of genetic material.

CONCLUSION

The above discussed pattern of genetic material exchange is not possible in other form of arrangement than honeycomb arrangement. Due to honeycomb arrangements of chromosome it may be possible to exchange genetic material in such a way. In addition to the location of chromosomes, karyotyping may have some relationship with the structure of chromosomes, which needs further investigation. Through mathematical and statistical analysis of chromosome karyotype analysis, we re-recognized the value of karyotyping.

REFERENCES

1. Crosland MW, Crozier RH. Myrmecia pilosula, an Ant with only one pair of chromosomes. Science(1986) 231:1278-1278.
2. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet(2011)12:7-18.
3. Ciccone R, Giorda R, Gregato G, Guerrini R, Giglio S, et al. Reciprocal translocations: A trap for cytogenetists? Hum Genet (2005)117:571-582.
4. De Ravel TJL, Balikova I, Thienpont B, Hannes F, Maas N, et al. Molecular karyotyping of patients with MCA/MR: the blurred boundary between normal and pathogenic variation. Cytogenet Genome Res(2006)115:225-230.
5. Cremer T, Kupper K, Dietzel S, Fakan S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell(2004)96:555-567.
6. Foster HA, Bridger JM.The genome and the nucleus: A marriage made by evolution. Chromosoma (2005)114: 212-229.
7. Parada LA, Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol(2002)12: 425-432.
8. Cremer M, Johann VH, Volm T, Brero A, Kreth G, et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541-567.
9. Habermann FA, Cremer M, Walter J, Kreth G, Johann VH, et al. Arrangements of macro-and microchromosomes in chicken cells. Chromosome Res (2001)9: 569-584.
10. Kozubek S, Lukasova E, Jirsova P, Koutna I, Kozubek M, et al. 3D structure of the human genome: order in randomness. Chromosoma(2002)111: 321-331.
11. Bridger JM, Boyle S, Kill IR, Bickmore WA. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr $\operatorname{Biol}(2000) 10: 149-152$.
12. Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, et al. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet (2006)79: 500-513.
13. O'Connor C. Karyotyping for chromosomal abnormalities. Nature Education (2008)1: 27.
14. Veerabhadrappa SK, Chandrappa PR, Roodmal SY, Shetty SJ, Shankari GSM, et al. Karyotyping: Current perspectives in diagnosis of Chromosomal disorders. Sifa Med J (2016)3: 35-40.
15. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet(2001)2:292-301.
16. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, et al. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet(2001)10:211-219.

[^0]: *Correspondence to: Tao Jiang, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China, E-mail: Kiangtao@vip.163.com

 Received: April 12, 2019, Accepted: May 03, 2019, Published: May 12, 2019
 Citation: Tao J, Chunxiao W, Ali W, Donyun J, Han H, Zhiren Z, et al. (2019) Arrangement of Human Cell Metaphase Chromosomes on the Equatorial Plate. J Cell Sci Ther, 10: 2. doi: 10.35248/2157-7013.19.10.289

 Copyright: © 2019 Tao J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

