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applied to describe a process: linear models, nonlinear models, 
network models, multiobjective optimization and discrete models. 
After a model is established, it is necessary to simulate it. However, 
the mathematical resolution of these models is not always trivial, 
and in most cases, the use of mathematical techniques is necessary. 
The Laplace transform method is very useful for solving ordinary 
differential equations. The Laplace transform allows the conversion 
of more complex functions into algebraic equations of a complex 
variable, "s", including the conversion of differential equations into 
algebraic equations. Once differential equations are transformed 
into algebraic equations, the necessary operations are performed 
on the domain "s" and then returned to the time domain by the 
inverse Laplace transform [3]. The Z-transform is widely used for 
discrete-time system analysis. It can be applied in linear difference 
equations, which, when converted to the Z domain, are transformed 
into algebraic equations that are easier to solve. After solving the 
algebraic equation in the Z domain, the inverse Z-transform is 
applied, thus providing the final system response [4]. It can be said 
that the Z-transform has the same function as the Laplace transform, 
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INTRODUCTION

According to a report by Mcwillians in BCC Research, the market 
for the yeast Saccharomyces cerevisiae will grow by 7.1% per year, from 
the current revenues of 7.6 billion dollars in 2017 to 10.7 billion 
dollars in 2022 [1]. Part of this increase in sales comes from the 
beverage market (beers, wines, etc.), which tends to show an average 
growth of 8.3% per year (driven by Asia and Latin America). The 
yeast market for bread (yeast) will grow 5.7% per year over the 
same period, from 4.4 to 5.8 billion dollars. Bioethanol, after 
being stagnant for a while, has a growth outlook of $124 million to 
$264 million, corresponding to 16.3 percent growth per year. This 
scenario stimulates the development of studies aimed at optimizing 
processes. Many tools in the literature can be used to improve 
the productivity of a process, including mathematical modeling. 
According to Finlayson, this technique is able to determine, based 
on experimental results, the best operating conditions for a process 
and, consequently, to predict the best operating conditions when 
some process parameters change [2]. Many types of models can be 
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except for discrete-time systems. Although many studies have already 
been performed in the area of bioprocessing modeling, no work 
that has applied the Z-transform to construct discrete models for 
fermentation under the conditions studied in this work has been 
found in the literature. In this work, we applied different kinetic 
models found in the literature, in addition to the Z- and Laplace 
transforms, to the fermentation process of the yeast Saccharomyces 
cerevisiae and compared the results with experimental results and 
with each other in Figure 1.

MATERIALS AND METHODS

Yeasts play the major role in various processes in the food industry 
and in bioethanol production. The most commonly used yeast 
is Saccharomyces cerevisiae. In addition, other yeasts known as 
nonconventional yeasts (Scheffersomyces stipitis, Yarrowia lipolytica, 
Kluyveromyces lactis and Dekkera bruxellensis) are already being used 
in some processes [5]. Currently, there are many studies looking 
for alternative yeasts for the baking process; however, Saccharomyces 
cerevisiae still dominates the market. Yeasts can metabolize glucose 
in two different ways: by oxidation or by fermentation. The 
oxidation mechanism provides cell growth, while fermentation 
provides the formation of ethanol. The metabolism of yeasts is 
influenced by oxygen and glucose concentrations; for example, a 
high concentration of glucose combined with a low concentration 
of oxygen may result in the Crabtree effect, which inhibits cell 
growth and favors the formation of ethanol [6]. Saccharomyces 
cerevisiae yeast shows cellular growth at both high and low oxygen 
concentrations, which is why it is so widely used [7]. Carbon and 
nitrogen are important sources of energy for Saccharomyces cerevisiae 
cells, and the availability and concentration of nitrogen can be 
associated with biosynthesis and ethanol; there are studies relating 
these effects [8]. Variations in temperature and pH impact the 
ethanol production in the fermentation process of Saccharomyces 
cerevisiae yeast [9]. A decrease in pH indicates a reduction in the 
formation of the product, whereas the inverse effect occurs with the 
temperature: the higher the temperature is, the smaller the amount 
of product formed. Yeasts present six main phases of growth: lag 
phase, acceleration phase, log phase, deceleration phase, stationary 
phase and decline phase [10-12]. With regard to the operation 
regime, the fermentation process can be batch, semi continuous or 
continuous [13]. According to Cinar, the batch process continues 
to be the one most commonly applied in bioprocesses because it 
is less susceptible to contamination [14]. The batch process consists 
of placing the inoculum and the culture medium in the bioreactor 

at the beginning of the process and removing the products only 
after the fermentation is completed; subsequently, the bioreactor is 
sterilized, and a new cycle begins. Bioreactors can be divided into two 
main types: conventional bioreactors (stirred tank type and aerated 
mechanical agitation) and pneumatic bioreactors. Each bioreactor is 
better adapted to the culture of a certain species of microorganism 
[15]. Among the different types of pneumatic bioreactors is the 
concentric cylinder airlift type. In this type of bioreactor, the air 
is injected by the base through the central cylinder (riser) and is 
returned the base by the external cylinder (down comer). The air 
promotes both the agitation of the culture medium and the aeration, 
with the advantage of causing fewer traumas to the cells and lower 
energy consumption than mechanical agitation bioreactors. A 
model is nothing more than a dynamic relation between variables. 
There are many ways to represent the same mathematical model, 
but a given representation may apply better to one system than to 
another [16]. According to Aguirre, the most commonly used types 
of representation of mathematical models are transfer functions and 
state–space representations [17]. As mentioned by Jacob and Zwartd, 
representation in state space is able to describe the relationship 
among several variables (inputs and outputs), and its difference 
from the transfer function is its ability to establish general control 
strategies [18]. The simulation of continuous mathematical models 
involves the resolution of differential equations, while the simulation 
of discrete models involves the resolution of difference equations. To 
solve analytically linear differential equations, the Laplace transform 
is used, and to solve linear difference equations, the Z-transform is 
used [17].

Modeling of the Saccharomyces cerevisiae fermentation 
process

Experimental data: The results from Ferreira et al., who carried out 
four experiments in an airlift bioreactor, were used to calculate the 
parameters and compare the results of the models developed in this 
paper [19]. The experiments were performed in a 6 L bioreactor at 
32°C. Table 1 shows the experimental conditions of each experiment.

Microorganism: Fresh commercial yeast was utilized in this work. 
This yeast is found in baker’s yeast or supermarkets that sell baker 
yeast. This kind of yeast (Saccharomyces cerevisiae) has 30% dry mass 
and 70% humidity [19].

Culture media: The culture media were prepared in an appropriated 
recipient with distilled water, and the pH was regulated to 4.6 using 
acid. This media was sterilized in an autoclave with all necessary 
equipment and tools [8]. Table 2 shows the composition of the 
culture media.

Process modeling: The process was modeled by three kinetic models, 
namely, those of Monod, Andrews and Verhulst. These models were 
solved in continuous and discrete time by using the Laplace and Z 
transforms, except for the Verhulst model. The ode 45 technique 
was applied on GNU Octave software, copyright © 1998–2018 
John W. Eaton, to solve the continuous Verhulst model. Finally, to 
solve the Verhulst model in discrete time, the model equations were 
linearized, and the Z transform was applied to obtain the discrete 
model equations.

Model representation: The space state representation was used to 
solve the equation in the GNU Octave software.

Figure 1: Graphic of Protein contents of different strains of 
Pleurotuscystidiosus mushrooms (g/100 mg of dried sample). Results 
show mean ± SEM in three trials.
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RESULTS AND DISCUSSION

The first step was to apply the mass balance on the Saccharomyces 
cerevisiae fermentation process using the Monod kinetic model. After 
obtaining the Monod model equations, they were represented in 
a state space matrix as shown in Equation 1, which is the process 
representation for the continuous Monod kinetic model.
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x=Variation of cell concentration over time; S=Variation of substrate 
concentration over time;  μ max=Maximum specific rate of cell 
growth; KS=Saturation constant.

Equation 2 represents the same state space as Equation 5, but in 
discrete time. This model was obtained through the application of 
the Z transform to the continuous Monod equations.
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xn=Cell concentration at time n.

The same methodology applied in the Monod model was also 
applied to the Andrews model. The state space for continuous and 
discrete time is represented in Equations 3 and 4, respectively.

 

( )

2

0

0

2

0

0 0
                      3

0 0

0

max

S
S

max

S
S

S
SK S
K xx x

SS S
S

SK S
K

  
  
  
  + +  

         = +                    
   − +   + +   
   

′

′ 





µ

µα β

( )

2

1 0

1 0

2

1 0

0 0
                    4

0 0

1

max

S
Sn n

n n

max

S
S

S
SK S
Kx x x

S S S

S
SK S
K

+

+

   
   
   +
   + +   

          = +                      − +    + +    

′

′  

µ

µα β

To solve the continuous Verhulst model, the differential Equations 

(5 and 6) and the ode 45 technique were applied. This model was 
not presented in state space representation because it is nonlinear.
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dx/dt=Variation of cell concentration over time; dS/dt: Variation of 
substrate concentration over time; 

xmax=Maximum cell concentration.

The Z transform cannot be applied to a nonlinear model. To write 
the Verhulst model in discrete time, the continuous model was 
first linearized. Then, the Z transform was applied to the difference 
equations, and the state space for the discrete Verhulst model was 
obtained (Equation 7).
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After obtaining the mathematical representations for the Monod, 
Andrews and Verhulst models, the next step was to calculate the 
parameters. Table 3 shows the values obtained for the parameters. 
The continuous Monod model was plotted using all the parameter 
values. A comparison of the model and experiment 4 points is shown 
in Figure 2. For cell growth, which includes 2 h of fermentation, 
the experimental points are closer to the model curve than are the 
points after 2 h. For substrate consumption, the points are close 
to the model curve until the substrate concentration of the model 
curve reaches 0 g.L-1. Compared with the points of experiment 4, 
the same trend is observed for the discrete Monod model (Figure 
3). Conceptually, the discrete model is more suitable for describing 
fermentation processes. These processes can describe population 
variations because individuals (in this case, cells) are always integer 
numbers, not fractions (for example, a population cannot contain 
1000.5 cells). Analyzing the Andrews models in Figures 4a and 4b, 
the models (discrete and continuous) show a slower cell growth rate 
for 2 h of fermentation. The substrate consumption also decreases 
more slowly than do the experimental points until it reaches 0 g.L-1. 

Table 1: Fold reduction in well area covered (WAC) by influenza virus spots (%) in TIZ treated cultures compared to untreated cultures in single cycle 
infection. 

Airlift bioreactor

Experiment Air flow (L.m-1)
Substrate concentration

(g.L-1)

1 15 5

2 10 5

3 5 5

4 15 10

Note: Adapted from Ferreira et al.[19].

Table 2: Composition of the culture media.

pH Glucose KH
2
PO

4
MgSO

4
7H

2
O Yeast extract (NH

4
)
2
SO

4
Distilled water Surfynol

4.6
10
g.L-1 5.0 g.L-1 0.5 g.L-1 1.5 g.L-1 4.0 g.L-1 - 1.0 mL

Note: Adapted from Ferreira et al.[19].
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Finally, we analyze the Verhulst model. In contrast to the Monod 
and Andrews models, the trends of the continuous and discrete 
time are not similar in the Verhulst models. This difference occurred 
because the continuous model was linearized prior to applying the 
Z transform and obtaining the discrete models. The Z transform 
can only be applied to linear systems. In Figures 5a and 5b, all the 
points of experiment 4 are closer to the curves of the continuous 
model than are all the other models. By contrast, the trends seen 
from the Monod model are observed in the discrete Verhulst model, 
in which the points of cell growth are closer to the model curve for 
2 h of fermentation. The next step was to compare all continuous 
models and all discrete models. Figures 6a and 6b shows that even 
without calculating the accuracy of each model, the Verhulst model 

showed the best adjustment to the points of experiment 4 among 
the continuous and discrete models. To confirm the information 
observed in Figures 6a and 6b, the medium error for each model 
was calculated. The results are shown in Table 4. After the models 
were compared, the discrete and continuous Verhulst models were 
simulated for another initial condition, namely, a cell concentration 
of 1.2 g.L-1 and a substrate concentration of 5 g.L1. The results were 
compared with experiments 1, 2 and 3. The results are shown in 
Figures 7a and 7b. The Verhulst model showed the best accuracy for 
describing the Costa xanthan gum work [20]. Finally, the precisions 
of the continuous and discrete Verhulst models were calculated, and 
the results are shown in Figure 8.

Table 3: Composition of the culture media.

Parameter Unit Estimation

μ
max

(L.h-1) 0.8109* e 1.3**

ks (g.L-1) 5.136

k's (g.L-1) 42.1577

α Dimensionless 2.8649

β Dimensionless 0.012

µ
monod

(h-1) 0.5357

µ
andrews

(h-1) 0.48

Note: *μmáx=0.8109 was applied for the Andrews and Monod model. **μmáx=1.3 was applied for the Verhulst model.

Figure 2: Comparison of the continuous Monod model and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.

Figure 3: Comparison of the discrete Monod model and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.
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Figure 4a: Comparison of the Andrews models continuous and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.

Figure 4b: Comparison of the Andrews models discrete and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.

Figure 5a: Comparison of the Verhulst models continuous and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.
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Figure 5b: Comparison of the Verhulst models discrete and the experimental points (Experiment 4). 
Note: ( ) S(t); ( ) S exp.; ( ) X(t); ( ) X exp.

Figure 6a: Comparison of all the continuous models. Note: ( ) M-S(t); ( ) V-S(t); ( ) A-S(t); ( ) 
S-S(t); ( ) M-X(t); ( ) V-X(t); ( ) A-X(t); ( ) X exp.

Figure 6b: Comparison of all the discrete models. Note: ( ) M-S(t); ( ) V-S(t); ( ) A-S(t); ( ) 
S-S(t); ( ) M-X(t); ( ) V-X(t); ( ) A-X(t); ( ) X exp.
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Table 4: Error comparison for the continuous and discrete Monod, Andrews and Verhulst models.

Continuous cell growth model

Time (h)
Experimental 

data
Monod Verhulst Andrews

Value Error Value Error Value Error

0 1.520 1.520 0.000 1.520 0.000 1.520 0.000

0.5 2.000 1.987 -0.013 2.278 0.278 1.847 -0.153

1 3.000 2.597 -0.403 3.078 0.078 2.245 -0.755

1.5 3.930 3.396 -0.534 3.770 -0.160 2.729 -1.201

2 4.000 4.438 0.438 4.272 0.272 3.316 -0.684

2.5 4.280 5.803 1.523 4.592 0.312 4.030 -0.250

3 4.990 7.584 2.594 4.778 -0.212 4.897 -0.093

3.5 5.000 9.916 4.916 4.882 -0.118 5.950 0.950

4 5.000 12.959 7.959 4.938 -0.062 7.233 2.233

Continuous substrate consumption model.

Time (h)
Experimental 

data

Monod Verhulst Andrews

Value Error Value Error Value Error

0 10.000 10.000 0.000 10.000 0.000 10.000 0.000

0.5 9.340 8.651 -0.689 9.823 0.483 9.052 -0.288

1 8.900 6.889 -2.011 8.826 -0.074 7.901 -0.999

1.5 5.730 4.584 -1.146 5.340 -0.390 6.500 0.770

2 3.500 1.574 -1.926 1.517 -1.983 4.800 1.300

2.5 0.120 -2.366 -2.486 0.269 0.149 2.731 2.611

3 0.050 -7.508 -7.558 0.043 -0.007 0.220 0.170

3.5 0.030 -14.241 -14.271 0.007 -0.023 -2.829 -2.859

4 0.000 -23.027 -23.027 0.001 0.001 -6.544 -6.544

Discrete cell growth model.

Time (h)
Experimental 

data

Monod Verhulst Andrews

Value Error Value Error Value Error

0 1.520 1.520 0.000 1.520 0.000 1.520 0.000

0.5 2.000 1.927 -0.073 1.994 -0.006 1.847 -0.153

1 3.000 2.443 -0.557 2.616 -0.384 2.244 -0.756

1.5 3.930 3.098 -0.832 3.433 -0.497 2.726 -1.204

2 4.000 3.928 -0.072 4.504 0.504 3.312 -0.688

2.5 4.280 4.980 0.700 5.909 1.629 4.025 -0.255

Substrate consumes discrete model.

Time (h)
Experimental 

data

Monod Verhulst Andrews

Value Error Value Error Value Error

0 10.000 10.000 0.000 10.000 0.000 10.000 0.000

0.5 9.340 8.815 -0.525 8.641 -0.699 9.046 -0.294

1 8.900 7.313 -1.587 6.859 -2.041 7.886 -1.014

1.5 5.730 5.409 -0.321 4.520 -1.210 6.477 0.747

2 3.500 2.994 -0.506 1.452 -2.048 4.765 1.265

2.5 0.120 -0.067 -0.187 -2.574 -2.694 2.685 2.565
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Figure 7a: Comparison of the Verhulst models discrete and the experimental points (Experiment 4). 
Note: ( ) S(t) Verhuslst; ( ) S (E1); ( ) X(t) Verhuslst; ( ) X(E1); ( ) X(E1); ( ) X(E1); 

Figure 7b: Simulation of the continuous and discrete Verhulst models for an initial cell concentration of 1.2 g.L-1 and an initial substrate 
concentration of 5.0 g.L-1, and comparison with experiments 1, 2 and 3. Note: ( ) Sb+1; ( ) Sex3; ( ) Xn+1; ( ) Xexp3; ( ) Xexp2; ( ) 
Xexp2; ( ) Xexp1; ( ) Sexp1.

Figure 8: Dispersion chart for the accuracy of the Verhulst model. The initial cell concentration was 1.2 g.L-1, and the initial substrate concentration 
was 5.0 g.L-1. Note: ( ) Modelo × Exp1; ( ) Modelo × Exp1; ( ) Modelo × Exp1;
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CONCLUSION

Although discrete representations are not largely applied to 
bioprocesses, this work shows that the discrete representation 
has the same accuracy as the continuous models do. This finding 
indicates that the Z transform can be applied to fermentation 
processes. The parameters obtained for the Saccharomyces 
cerevisiae culture on a batch process in an Airlift bioreactor were 
µmáx=0.81 h-1 and Y(x/S)=0.35 gcel.gsac-1. The linear models 
(continuous or discrete) describe the cell growth for two hours of 
fermentation and the substrate consumption until it is completely 
depleted. The Andrews model does not accurately describe this 
process because it does not account for substrate inhibition. 
The model that best represents this process is the nonlinear 
Verhulst model, as observed in a similar process by Costa, with 
a medium error of 0.166 g.L-1 for cell growth and 0.346 g.L-

1 for substrate consumption. When the initial conditions were 
changed, the precision of the Verhulst model did change, but it 
still satisfactorily represented the process. 
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