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Abstract
Efficient TCR repertoire selection in the thymus is critical for immune function, ensuring the production of 

functional MHC-restricted and self-tolerant T cells. T cell education in the thymus involves positive and negative 
selection processes where apoptosis play an especially important role in eliminating useless or potentially dangerous 
thymocytes. For decades, positive and negative selection in T cell development has attracted the attention and 
considerable research has been conducted to improve our understanding of how ligand induced signaling through 
the T cell receptor (TCR) can lead to both: rescue from death in the case of positive selection and death in the case 
of negative selection. In this brief report, we review the basic concepts involved in the extrinsic and intrinsic pathway 
of apoptosis, and provide an overview of the events that leads immature T cells to survive or die by apoptosis during 
their intrathymic development.
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Introduction
T cells or T lymphocytes play a central role in immune response. 

They are generated from bone marrow-derived lymphocyte precursors 
that enter the thymic gland through blood vessels. Currently, little is 
known of the mechanisms that attract precursors to the thymus or 
facilitate their migration through the surrounding tissues. Also, the 
phenotype of Tcell precursors remains unclear but some markers, such 
as c-Kit (CD117), CD25, and CD34 have been reported to be associated 
with them [1]. In addition, the rationale for this ectopic delivery system 
has never been elucidated, although one thing is clear, it is not a steady-
state process.

The thymus, a primary lymphoid organ, plays a crucial role in 
the development of T cells providing an inductive microenvironment 
in which committed progenitors interact with stromal cells (and 
their soluble products) and extracellular matrix proteins to receive 
appropriate signals for survival, proliferation and differentiation [2,3]. 
Once in the thymus, the T cell precursors (or thymocytes, while in 
the thymus) undergo selection processes that lead to generation of 
mature T cells [4]. These mature T cells, which are immunocompetent 
resting cells, leave the thymus to populate the peripheral or secondary 
lymphoid tissues. Those thymocytes that are not selected die by 
genetically programmed cell suicide, a process known as apoptosis, and 
are phagocytized by thymic macrophages.

Apoptosis, or programmed cell death, is a process by which cells play 
an active role in their own death and undergo organized self-destruction 
without eliciting an inflammatory response. This cell death process 
plays significant role in development and aging, tissue homeostasis, in 
response to a variety of physiological and pathophysiological stimuli, 
and also in the selective deletion of developing T cells during their 
intrathymic journey.

Apoptosis Activation Pathways
Apoptosis can be mediated by different mechanisms and several 

stimuli, which may originate either extracellularly (the extrinsic 
apoptotic pathway) or intracellularly (the intrinsic apoptotic pathway), 
may trigger the process. The extrinsic pathway is activated from 
outside the cell by pro-apoptotic ligands that interact with specialized 
cell surface molecules, termed death receptors (DRs). The intrinsic 

pathway is activated from inside the cell by pro-apoptotic and anti-
apoptotic members of the B-cell leukemia/lymphoma 2 (Bcl-2) protein 
family and other mitochondrial molecules, such as hydrogen peroxide. 
Both pathways of apoptosis activation, however, converge to the same 
effector mechanism whose components belong to a family of cysteine 
proteases called caspases, which carries out important proteolytic 
events that breakdown structural component of the cell leading to 
partition of nucleus and cytoplasm into membrane bound-apoptotic 
bodies [for review, 5]. Unlike another form of cell death called necrosis, 
there is no inflammatory response during apoptosis process since 
cell fragments are quickly removed from the microenvironment by 
neighboring phagocytic cells.

The extrinsic or death receptor pathway of apoptosis

In the extrinsic apoptotic pathway, the caspase cascade is triggered 
by the activation of DRs on the cell surface. DRs are members of the 
tumor necrosis factor receptor (TNFR) superfamily, which includes: 
CD95 (Fas/Apo1) [6], TNF receptor 1 (TNFR-1/p55) [7], TNF 
receptor superfamily, member 25 (TNFRS25/TRAMP/WSL-1/Apo3/
DR3/LARD) [8], TNF-related apoptosis-inducing ligand– receptor 
1 (TRAIL-R1/DR4) [9],TRAIL-R2 (DR5/Apo2/KILLER) [10] and 
TNF receptor superfamily, member 21 (TNFRSF21/DR6) [11].The 
ligands for DRs are Fas Ligand (CD95L) that binds CD95, TNF and 
lymphotoxin α, which bind to TNFR1 [12], TNF-like weak inducer 
of apoptosis (TWEAK/Apo3 ligand) that binds to TNFRS25 [13] and 
TNF-related apoptosis-inducing ligand (TRAIL/Apo2 ligand) that 
is the ligand for both TRAIL-R1 [9] and TRAIL-R2 [14]. Until now, 
DR6 is an orphan TNF receptor superfamily member and its role 
as an apoptosis-inducing receptor is less clear and perhaps cell type 
dependent [11].
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CD95 is the best-characterized member of the TNFR superfamily 
and has served as a prototype because its role in lymphocyte regulation 
is better established. CD95 receptors are expressed on the surface of cells 
as preassociated homotrimers and are characterized by the presence of 
a cytoplasmic region termed the death domain (DD) [15]. CD95L, the 
ligand for CD95 is typically found in the plasma membrane of cells and 
like CD95 is expressed as homotrimers. Although constitutive CD95L 
expression is observed in some immune privileged tissues such as eye 
and testes, CD95L’s up regulation on T lymphocytes requires their 
activation by ligation of the T cell receptor (TCR). CD95L can induce 
apoptosis both in an autocrine (suicide) or paracrine (fratricide) CD95 
fashion, which means that CD95L can engage CD95 either on the same 
cell or on another cell [16]. CD95L is involved in the induction of cell 
death known as activation-induced cell death (AICD) because it is 
induced by lymphocyte activation and not by the absence of stimuli 
[17]. This process is highly needed to prevent an excessive immune 
response and eliminate autoreactive Tcells in the peripheral lymphoid 
organs.

In response to CD95L, CD95 recruits, through homotypic 
interaction of their DD, an adaptor molecule called Fas-associated 
death domain (FADD) [18]. In its N-terminal region, FADD contains a 
“death effector domain” (DED) that is responsible for engagement of at 
least two members of the caspase family caspase-8 and -10, which also 
display these DED domains. Both the DD and DED enable proteins 
containing the same domains to interact with one another. Besides, 
an inactive homologue of caspase 8, named cellular caspase inhibitor 
FLICE-like inhibitory protein (cFLIP), which is predominantly 
expressed in muscle and lymphoid tissues, can be recruited to DR 
following ligand binding via the adaptor molecule FADD [19]. Elevated 
levels of FLIP can displace caspase-8 from the activated DR complex, 
acting as a dominant inhibitor of caspase-8 and thereby preventing the 
activation of distal caspases and cell death [20]. Although originally 
identified in viral DNA as an inhibitor of DR signaling, literature has 
shown that cFLIP (along with caspase-8) is required for survival and 
proliferation of T cells, both in thymocyte development and after 
lymphocyte activation [21,22,23]. This set of proteins, i.e. the trimerized 
DR; the adaptor molecule FADD; the procaspase-8 and -10; and cFLIP, 
forms a large complex of proteins called the death-inducing signaling 
complex (DISC) that is essential for induction of apoptosis [24].

The binding of procaspase-8 and -10 to the DISC results in 
processing of the zymogen, and as a result the active caspase-8 
heterotetramer (containing two small and two large subunits) is 
released into the cytosol to propagate the apoptotic signal [25]. At 
present, our understanding on the activation of initiator caspases is 
very limited. The Induced Proximity model, first proposed in 1998, 
states that the initiator caspases autoprocess themselves when brought 
into close proximity of each other [26]. This model was further 
reinterpreted to be proximity-driven dimerization of initiator caspases, 
and consequently their activation [27]. It is still controversial whether 
caspase-10 can trigger cell death in the absence of caspase-8, since the 
expression levels of pro-caspase-10 in many cells are probably not high 
enough to launch apoptosis alone [28].

It has been established two CD95 signaling pathways [29]. Type 
I cells are characterized by high levels of CD95 DISC formation and 
increased amounts of active caspase-8. Activated caspase-8 directly 
leads to the activation of downstream effector caspase-3, -6 and -7. 
Type II cells are characterized by lower levels of CD95 DISC formation 
and, thus, lower levels of active caspase-8. In this case, signaling 

requires an additional amplification loop that involves the cleavage by 
caspase-8 of a member of the Bcl-2-family named protein Bid (BH3-
interacting domain death agonist) to generate truncated Bid (tBID). 
This fragment induces the proapoptotic functions of the mitochondria 
by causing aggregation of Bax (Bcl-2-associated X protein) or Bak 
(Bcl-2 antagonist/killer) and subsequent release of cytochrome c 
from mitochondria [30]. Once cytochrome c is released, it binds and 
activates the cytosolic protein Apaf-1 (Apoptotic protease activating 
factor 1) to facilitate the formation of the adaptor protein complex, 
named apoptosome, which mediates the activation of the initiator 
procaspase-9 [31]. Like caspase-8, caspase-9 can directly activate the 
effector caspases. Expression of anti-apoptotic Bcl-2 family members, 
such as Bcl-2 and Bcl-x, can block the CD95-mediated apoptosis in type 
II cells [29]. It appears likely, that the central function of mammalian 
Bcl-2 family members is to guard mitochondrial integrity and to 
control the release of mitochondrial proteins into the cytoplasm [32]. 
Accordingly, antiapoptotic Bcl-2 members sequester proapoptotic Bcl-
2 members by binding to their BH3 domains and thereby ultimately 
prevent Bax or Bak activation/oligomerization and consequently 
inhibit mitochondrial proapoptotic events [33]. Alternatively, Bcl-
2 also appears to inhibit apoptotic pathways that are independent of 
Apaf-1/caspase-9 and which might depend on caspase-7 as a central 
effector [34].

The role of initiator caspase-2 in DR signaling remains 
contradictory. Caspase-2 was shown to be processed in the course of 
TNFR1-mediated apoptosis [35]. In response to its ligands (TNF and 
lymphotoxin α), TNFR-1 is trimerized and recruit TNFR-associated 
death domain protein (TRADD) as adaptor molecules [36]. As 
TRADD does not contain a DED region, it works by binding to FADD 
via interactions between their death domains. So, both CD95 and 
TNFR-1 DRs use FADD as adaptor molecule to mediate cell apoptotic 
signals. TNFR-1, however, can use another pathway to transduce the 
signal for apoptosis by using the molecule termed receptor interacting 
protein (RIP), which interacts with TRADD via interactions between 
their death domains [37]. But like TRADD, RIP does not carry a death 
effector domain and another downstream effector molecule, named 
RIP associated ICH1/CED3 homologous protein with death domain 
(RAIDD). RAIDD contains both death domains (DD) and caspase 
recruitment domains (CARD) [38]. As interactions between the 
molecules at the DISC are based on the contacts between homotypic 
domains, RAIDD specifically binds RIP, through DD, and then recruits 
caspase-2 to the TNF receptor signaling complex, through CARD. 
The presence and the activation of procaspase-2 at CD95 DISC were 
reported in human T- and B-cell lines. However, it was also shown that 
procaspase-2 in the absence of procaspase-8 does not initiate CD95-
induced apoptosis [39]. Therefore, the exact role of procapase-2 in 
CD95-mediated apoptosis remains a matter for future studies.

The intrinsic or mitochondrial pathway of apoptosis

The intrinsic pathway of apoptosis is also called “death by neglect” 
or “activated cell autonomous death” (ACAD), and it does not require 
signals resulting from the engagement of DRs. This pathway of 
apoptosis can be triggered by many stimuli such as TCR stimulation, 
absence of survival signals, DNA damage, oxidative stress, cytokine 
and costimulators deprivation, viral infection, endoplasmic reticulum 
stress, as well as those induced by chemotherapeutic drugs [40,41]. 
Mitochondria play a pivotal role in this form of apoptosis [42,43]. In 
this apoptotic signaling pathway, pro- and anti-apoptotic members of 
Bcl-2 family play important role in the mediation and regulation of 
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cell death. The current model of how Bcl-2 family members regulate 
apoptosis describe that upon stress-apoptotic stimuli Bcl-2-interacting 
mediator of cell death (Bim) or p53-upregulated modulator of apoptosis 
(PUMA) proteins are activated and hence displace anti-apoptotic Bcl-2 
family members on the outer mitochondrial membrane, resulting in 
the release of Bax- and/or Bak-like pro-apoptotic factors. Bax- and/or 
Bak-like factors undergo a conformational change, insert into the outer 
mitochondrial membrane and provoke a sudden increase of the inner 
mitochondrial membrane permeability, the so called permeability 
transition (PT). This event leads to the release of pro-apoptotic proteins, 
including cytochrome c, Smac/DIABLO, and the serine protease 
HtrA2/Omi [44-47] into the cytoplasm [48]. Smac/DIABLO and 
HtrA2/Omi are reported to promote apoptosis by inhibiting inhibitors 
of apoptosis proteins (IAP) activity [46,49]. Mitochondria also release 
apoptosis-inducing factor (AIF) and endonuclease G, which appear to 
kill independently of caspases [50,51]. 

Like in the extrinsic pathway of apoptosis, the release of cytochrome 
c from mitochondria results in apoptosome formation followed by 
activation of procaspase-9, which in turn cleaves downstream effectors 
caspase-3, caspase-6 and caspase-7 [31]. 

Although apoptosome mediated caspase-9 activation is widely 
accepted as the initiating event in the intrinsic pathway of apoptosis, 
several other studies suggest that an initial caspase activation occurs 
upstream of the mitochondria and is required for mitochondrial 
permeabilisation [34,52,53,54]. The work by Lassus and his group 
demonstrates that one potential candidate working upstream of 
mitochondria is caspase-2 [52]. So, according to these works, in the 
intrinsic pathway of cell death, mitochondria can act only as amplifiers 
of caspase activity rather than initiator of caspase activation as occurs 
in the extrinsic pathway of apoptosis.

Apoptosis effector mechanisms: the caspases

As seen above, the two distinct pathways of apoptosis lead to the 
activation of effector caspases, which carry out the death signal through 
cleavage of many different cellular protein substrates vital for cell 
functions.

Caspase-3 is considered to be the most important of the executioner 
caspases. Once activated, caspase 3 cleaves several substrates, including 
the actin, intermediate filament proteins, the nuclear/mitotic 
apparatus protein NuMA, and cytokeratins [55,56].The caspase-
mediated cleavages of these structures, which are responsible for the 
maintenance of cell, contribute to apoptotic morphological changes 
often observed during apoptosis. Several biochemical changes observed 
in apoptotic cells also result from caspase-induced cleavages. Caspase 
3 cleaves the nuclease inhibitor ICAD (inhibitor of caspase-activated 
deoxyribonuclease), allowing subsequent internucleosomal cleavage 
of DNAby the constitutively expressed nuclear enzyme CAD [57-60]. 
In addition, caspase-3 cleaves many protein kinases whose activation 
leads to presentation of a variety of intracellular molecules on the 
cell surface that are recognized by receptors on the cell surface of the 
macrophages [61-65].

Caspase-3 also cleaves caspase-6, which in turn is activated. 
Caspase-6 appears to be uniquely capable of cleaving Lamin A in nuclei 
that contain this particular intermediate filament protein [66,67].

Caspase-7 is cleaved by caspase-3, caspase-9 and caspase-10, and, 
several substrates that are efficiently cleaved by caspase-3 can also be 

targeted by caspase-7, suggesting an at least partial redundancy of both 
caspases.

Upon activation, the caspases cause the morphological and 
biochemical changes characteristic of apoptosis, such as nuclear 
membrane breakdown, chromatin condensation, chromosomal DNA 
fragmentation, and the formation of apoptotic bodies. At last, the 
apoptotic cells are efficiently phagocytized by neighboring cells without 
an inflammatory response.

T Cell Development in the Thymus
The development of Tcells within the thymus is a complex process 

that involves several stages based on their expression of CD4 and 
CD8 co-receptors. At early stage of development, Tcell precursors 
have a CD4-CD8- “double negative” (DN) phenotype. This phase is 
also characterized by differential expression of the CD44 and CD25 
molecules, which define four differentiation stages of DN thymocytes, 
with the developmental progression being CD44+/CD25− (DN1) to 
CD44+/CD25+ (DN2) to CD25+/CD44− (DN3) and then to CD44−/
CD25− (DN4) cells [68,69].At this stage, thymocytes begin to rearrange 
and express their TCR β, γ and δ genes and the two lineages of T cell 
(αβ and γδ) also begin to diverge at this point [70]. Among the two 
types of T cells, αβ T cells are the most abundant and therefore we will 
focus only on αβ-expressing thymocytes development.

A first step toward the expression of a functional Tcell receptor 
(TCR) takes place since the ß locus of the TCR is rearranged and 
tested for functionality by pairing to the pre-TCRα-chain. In the case 
of productive ß rearrangement and successful formation of the pre-
TCR complex (β/pTα), thymocytes enter the cell cycle to expand, 
down-regulate CD25, and develop into CD44-CD25- (DN4) cells 
[71]. Pre-TCR signaling confers survival and allows development to 
proceed through a CD4+CD8+TCRlow double-positive (DP) subset of 
thymocytes, which constitute the vast majority of thymocytes since 
they represent about 80% of the total cells in the organ. The interaction 
with low affinity between the TCR and endogenous peptides presented 
by self-major histocompatibility complex (self-pMHC) expressed on 
epithelial cells in the thymic cortex will determine the positive selection 
of DP thymocytes by delivery of survival and differentiation signals. 
DP thymocytes that fail to engage self-pMHC die by apoptosis because 
they do not receive a survival signal. Positively selected DP thymocytes 
mature into TCR+CD4+CD8– and TCR+CD4–CD8+ single-positive 
(SP) cells, and migrate into the thymic medulla where they undergo 
negative selection. During this process, thymocytes that are not 
strongly activated by self-pMHC are allowed to survival and emigrate 
to peripheral lymphoid organs as mature T cells, naïve T helper cells 
(CD4) or cytotoxic T cells (CD8). In contrast, thymocytes reacting 
strongly to self-pMHC are eliminated by apoptosis.

So, programmed cell death during thymocyte development is used 
to eliminate useless precursor cells with non-rearranged or aberrantly 
rearranged non-functional antigen receptors. In addition, apoptosis 
is essential for deletion of auto reactive T cells in the thymus. This 
mechanism is the basis of central self-tolerance.

The intrathymic journey of thymocytes: a time to live or a 
time to die?

The thymus gland, located in the anterior mediastinum, consists 
of two encapsulated lobes that are divided by numerous septa into 
multiple lobules. Each lobule presents two different regions, i.e., cortex 
and medulla. The outer cortical portion is densely populated by the 
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least mature thymocytes and the inner medullary portion contains 
few, but fully mature, T cells. The thymic environment is formed by 
epithelial cells, which form a meshwork to provide mechanical support 
and stimuli for the proliferation and development of thymocytes, and 
by macrophages, dendritic cells, fibroblasts and matrix molecules [72]. 
The successful development of mature T cells depends on the constant 
migration of the thymocytes through the thymic microenvironment. 
Such migration is essential for thymocytes receive signals from different 
thymic stromal cells leading to their proliferation, differentiation and 
generation of diversity [73]. Although the mechanisms directing this 
migration is poorly understood, clear evidence has been obtained 
showing that thymic microenvironment, collectively, influences 
the process of thymocyte maturation through surface molecules 
and by secreting soluble polypeptides as cytokines (especially IL-7), 
chemokines (like CXCL-12, expressed by stromal cells in the cortex) 
and hormones.

Apoptosis in DN thymocytes

DN thymocytes, also called pro-Tcell, are located in the outermost 
cortex, which is the thymic zone where the rate of cell proliferation and 
death by apoptosis are extremely high. For thymocytes at this stage of 
maturation, the cytokine IL-7, also known as lymphopoietic cytokine, 
has a critical role in controlling life and death decisions. IL-7, one of 
the most important cytokines in thymus, is constitutively produced by 
stromal cells and plays a crucial role in thymopoiesis since it sustains 
thymocyte proliferation and survival [74]. Once presenting DN1 
phenotype, thymocytes needs IL-7 stimulus to survive and progress 
to DN2 stage [75]. The role of IL-7, as well as its cognitive receptor 
(IL-7R), at the DN1-DN2 transition involves up-regulation of the anti-
apoptotic proteins, bcl-2 and Mcl-1(myeloid cell leukemia 1), which 
can act as an apical molecule in apoptosis control, promoting cell 
survival by interfering at an early stage in a cascade of events leading to 
release of cytochrome c from mitochondria [76]. Experiments using IL-
7- or IL-7R-deficient mice show reduced numbers of thymocytes and 
no progress from DN1 to DN2 stage, confirming that the pro-survival 
signaling from IL-7/IL7R is vital for these cell subsets [77-79]. 

At the DN3/DN4 stage, proteins produced from productively 
rearranged TCRβ genes must be assembled into the pre-TCR complex, 
which consists of a TCRβ-chain, the invariant pTα-chain, and proteins 
of the CD3 receptor complex [80]. Only thymocytes that have a 
functional pre-TCR survive the transition from DN4 to DP, a process 
also known as β selection. 

Thymocytes that pass through the β-selection step represent the 
DN4 stage, or the pre-double positive (DP) stage of development.
One of the effects of pre-TCR signaling is the inactivation of tumor 
suppressor p53, thus ensuring survival of ß-selected cells and the 
release of the cell cycle block, allowing for the proliferative burst 
observed between the DN3 and DP stages [81]. Although pre-
TCR signals is the most important survival signaling only pre-TCR 
signaling is not sufficiently to maintain DN3/DN4 thymocytes alive as 
well as to support its differentiation to DP stage. So, other receptors, 
including members of the Notch signaling molecules family, and the 
CXC chemokine receptor 4 (CXCR4), are essential to the complete T 
cell development [82-84]. Among the four known Notch receptors, 
Notch1 has been shown to be a critical component in the process of 
T cell development [85]. Notch1 is expressed at relatively high levels 
in the DN thymocytes (least mature cells) and at very low levels in 
mature single positive (CD4+CD8- and CD4-CD8+) cells, an expression 
pattern consistent with a role for Notch in maintaining cells in a less 

differentiated state [86,87]. The Notch activity is mediated by cyclin 
dependent kinase-6 (CDK6) that contributes to the Notch receptor 
signaling as well as to the expression of its target genes. In the absence 
of CDK6, the Notch signaling pathway is deficient and fall of thymic 
cellularity is observed in all stages of differentiation [88]. Recent 
studies have demonstrated that inactivation of Notch1 at DN2-DN3 
stage induces DN3 thymocytes accumulation as a consequence of 
impairment in Vβ to DJβ rearrangement [89,90]. Furthermore, Ciofani 
and colleagues have shown the cooperation between Notch and pre-
TCR signals during β-selection process by using an in vitro model for 
T cell development, the Notch delta-like-1 ligand-expressing OP9-DL1 
stromal cells [91]. Also recently, Trampont and Janas, along with their 
collaborators, have demonstrated an important role for CXCR4, which 
is expressed by all early progenitors in the thymus, and its ligand, 
CXCL-12, in β-selection of thymocytes [92,93].

Stimulation either by Notch or CXCR4 receptors leads to the 
protein kinases AKT (also known as protein kinase B) phosphorylation 
through the phosphatidylinositol 3-kinase (PI3K). Via directly 
phosphorylating several substrates, AKT plays a central role in 
promoting cell survival and proliferation [94]. In the absence of 
AKT, DN3 thymocytes undergo apoptosis due to reduced expression 
of essential nutrient receptors, like the transferrin receptor protein 1 
(TfR1) also known as CD71), which depends on signals transmitted by 
this kinase to be expressed on cell surface [95,96].

Soon after the expression and signaling by pre-TCR molecules, 
genes encoding the TCR α chain are rearranged and both chains of 
αβTCR are expressed on the cell surface in association with CD3 and 
ζ proteins. Then, DN4 thymocytes undergo proliferation and migrate 
toward the inner cortex while up-regulating CD4 and CD8 molecules 
to become double-positive DP cells (CD4+CD8+). The function of CD4 
and CD8 molecules is to facilitate the interaction of the TCR with, 
respectively, non-polymorphic portions of class II MHC and class I 
MHC that are expressed on antigen presenting cell (APCs), including 
cortical and medullary thymic epithelial cells, and assist the TCR in 
binding and possibly in signaling.

Life and death during positive selection

DP thymocytes that have productively rearranged their genes and 
express a complete and functional αβTCRs are tested by the process 
named positive selection. So, DP thymocytes encounter, in the inner 
cortex, thymic epithelial cells that are displaying self-peptides bound 
to class I and class II MHC molecules. The goal of this selection is the 
generation of an immune system that is capable of recognizing a large 
number of antigens and of discriminating between self and non-self-
antigens.

The difficulty with positive selection is to explain how the TCR can 
engage self-MHC without stimulating apoptotic mechanisms required 
to avoid auto reactivity. One widely accepted model has been proposed 
to address this question: the “strength of signaling” hypothesis, 
proposing that quantitative attributes of TCR signaling instruct cell 
fate during thymocyte development [97]. Accordingly, relatively rare, 
low-affinity self-peptides presented by self-MHC induce survival and 
differentiation, allowing positive selection of DP thymocytes. It is 
believed that through this mechanism mature T cells whose precursors 
were positively selected by self-MHC will be able to recognize foreign 
antigens, which are generally structurally related to the self-peptides 
involved in thymic selection, displayed by the same MHC molecule 
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expressed on peripheral APCs. On the other hand, abundant, high 
avidity/affinity self-peptides induce clonal deletion [reviewed in 98].

The role of several intracellular mediators of activation has been 
extensively studied and none of them is exclusively associated with 
survival or death in developing thymocyte. Evidences have yet been 
demonstrated that mitogen-activated protein kinase (MAPK) cascades 
are activated after TCR/pMHC interaction to determine the fate of 
developing thymocyte [99-101]. The fourteen known MAPK isoforms 
that have been identified in mammalian cells can be divided into four 
groups: the classical MAPK (ERK1/2), p38 MAPK, c-Jun N-terminal 
kinase (JNK) and the atypical MAPK, which include ERK5, ERK3 and 
ERK8 [102-105]. Although the proximal TCR signaling components 
Lck and ZAP70 are activated similarly by both positively and negatively 
selecting ligands, the linker for activation of T cells (LAT), an adapter 
protein that couples the antigen receptor to downstream signaling 
pathways, is able to specifically recruit different signaling molecules that 
are essential for thymocyte selection [reviewed in 106]. Therefore, LAT 
may be the initial molecule responsible for triggering different signals 
in response to positive and negative ligands. The interactions between 
the TCR and the ligand are propagated through different downstream 
events: at least through Grb2 and RasGRP1/MAPK pathways [reviewed 
in 107]. It has been suggested that positively selecting ligands induce 
partial phosphorylation of LAT, which recruit few molecules of Grb2 
to the Golgi with only ERK1/2 activation, and cell survival. In contrast, 
negatively selecting ligands induce strong antigen receptor signals that 

recruit numerous Grb2 adaptor proteins to the plasma membrane with 
ERK1/2, p38, and JNK activation, and apoptosis [108-110].

In response to weak/moderate TCR signaling DP thymocytes can 
be induced to undergo maturation by the GTPase Ras pathway that 
leads to Raf1–MEK1⁄2–ERK1⁄ 2 activation, which in turn activates 
several transcription factors [111]. The Early growth response gene 1 
(Egr1) has been proposed as one of the earliest transcription factors 
expressed after TCR stimulation on DP thymocytes [112,113]. Bettini 
and collaborators, by using Egr1-deficient mice, have demonstrated 
a role for Egr1 in enhancing the expression of negative regulators 
of differentiation pathways, like the Inhibitor of differentiation/
DNA binding type 3 (Id3), and the anti-apoptosis molecule Bcl-
2 [114]. Recently, Lauritsen and co-workers have reported that 
another transcription factor, Erg-2, has a central role during positive 
selection since it up regulates the survival molecule Bcl-2 [115]. Other 
transcriptional factors, like retinoid-related orphan receptor gamma 
(RORγ) and T-cell factor-1 (TCF-1), and more recently the cMyb, have 
also been implicated during positive selection. Yuan and colleagues 
demonstrate that in the absence of cMyb DP thymocytes die due to 
the under expression of the anti-apoptotic molecule Bcl-xl [116]. Other 
authors have also reported that up regulation of the anti-apoptotic 
Bcl-xl molecule is a key event to thymocyte survival at DP stage [117]. 
Recent experiments have determined a complex and unique role of the 
BCL11B transcription factor in the control of both positive selection 
and survival of DP thymocytes [118]. In addition, ERK1⁄ 2 may also 

Figure 1: Simplified schematic representation of some intrathymic events that determine the developing T cell fate. In response to weak/moderate TCR signaling DP 
thymocytes can be induced to undergo maturation by the Ras pathway (left panel). The strong and prolonged interaction TCR/pMHC, with or without costimulatory 
molecules (represented by PD-1), will result in elimination of thymocytes by apoptosis (right panel). Thymocytes that fail to express a functional αβTCR cannot undergo 
maturation and they die due to lack of “survival signals” delivered throughout TCR (middle panel).



Citation: Francelin C, Verinaud L (2011) Apoptosis and the Developing T Cells. J Clin Cell Immunol S3:001. doi:10.4172/2155-9899.S3-001

Page 6 of 12

J Clin Cell Immunol                                                                                                                                 ISSN:2155-9899 JCCI, an open access journal 
Immune Response and 

Apoptosis

contribute to thymic selection by regulating the balance of pro- and anti-
apoptotic proteins in the cytosol since ERK-mediated phosphorylation 
of Bim can target it for degradation or inhibit its pro-apoptotic activity 
by reducing its binding to the anti-apoptotic molecules Mcl-1 and Bcl-
xl [119-121]. Although there are many different enzymatic pathways 
that activate thymocyte differentiation or death, a new report points the 
molecule identified as schnurri-2 (Shn2) as a crucial death dampener 
[122]. According to the authors, Shn2 functions downstream of TCR 
proximal signaling components to dampen Bax activation and the 
mitochondrial death pathway.

DP thymocytes that fail to express a functional αβTCR cannot 
undergo maturation and they die due to lack of “survival signals” 
delivered throughout TCR signaling. This “death by neglect” correlates 
with low expression of Bcl-xl and Bcl-2 survival factors and high 
expression of pro-apoptotic factors. Studies with thymocytes from 
animals that do not express Bak and Bax proteins have showed 
resistance to apoptosis, revealing that death in the thymic positive 
selection is dependent on the translocation of these pro-apoptotic 
factors from membrane to cytosol of mitochondria and the release of 
several apoptogenic factors including cytochrome c that leads to the 
activation of caspase-9 [123]. Other in vitro experiments using Bim-
deficient thymocytes have reported resistance to apoptosis as well as the 
thymocytes that express anti-apoptotic proteins, such as Bcl-2, Bcl-xl 
and Mcl-1[124]. Recently, Ryan and colleagues have also demonstrated 
that mitochondria in DP thymocytes are more primed for death signals 
than mitochondria from other thymocytes, pointing to the BIM protein 
as the critical fator for this increased sensitivity [125].

It has also been proposed that glucocorticoids (GCs) are the major 
players in death by neglect, acting as regulators of the differentiation 
and selection of developing thymocytes at this stage of maturation 
[126-128]. In fact, DP thymocytes are the most sensitive thymic sub-
population to GC-induced apoptosis [127].

Thymic stromal cells are known to produce GCs locally [129], 
and more recently, it was demonstrated that thymocytes can secrete 
GCs, too, in an age-dependent manner [130]. Therefore, thymocytes 
are located in a GC-rich microenvironment [131]. Until now, 
however, the higher susceptibility of DP thymocytes to apoptosis is 
not well understood. It has been shown that GCs control selection 
of DP thymocytes by modifying their TCR signal [132]. According 
to Talabér and colleagues the sensitivity of DP thymocytes to GC-
induced apoptosis correlates with rapid mitochondrial Glucocorticoid 
receptor (GR) translocation upon ligand binding, which could initiate 
apoptotic pathways [133]. In a recent report, Xue and his group have 
demonstrated that the increased expression of cell cycle proteins in 
DP thymocytes contributes to their intrinsically sensitive to apoptosis 
[134].

A novel modulator of thymocyte GC-induced apoptosis, Murine 
SWI3-related gene (SRG3), has been suggested to play an important 
role in regulating GC-induce apoptosis of DP thymocyte [135]. Some 
experiments have shown a strict correlation in SRG3 expression and 
GC-induced apoptosis. DP thymocytes that express low levels of 
SRG3 in consequence of the TCR signaling and Notch activity present 
resistance to GC-induce apoptosis [136].Also, Jeong and his group 
have observed that Nitric Oxide (NO) may also inhibit GC-induced 
apoptosis of immature thymocytes by down-regulating the SRG3 
expression [137].

So, during the positive selection process, thymocytes expressing 

useless or self-reactive TCRs are excluded by apoptosis from the T cell 
repertoire. On the other hand, this process also allows the positively 
selected thymocyte to survive and differentiate into TCR+CD4+CD8–

and TCR+CD4–CD8+ single-positive (SP) cells. Then, the thymocytes 
migrate into the thymic medulla, where they stay for as long as 10-
14 days before emigrate to the T cell areas of the secondary lymphoid 
organs[138]. In the medulla, the functional maturation of thymocyte 
will be completed since they will interact with APCs that are responsible 
for the negative selection process.

Life and death during negative selection

Some of positively selectedSPthymocytesmay present TCRs 
with high affinity/avidity for non-thymic peptides (or “tissue-
specific antigens”) that are expressed at high concentrations on 
thymic medullary epithelial cells, dendritic cells and macrophages. 
The expression of such tissue-specific proteins is controlled by the 
autoimmune regulator (AIRE) gene [139]. The strong and prolonged 
interaction with MHC and self-peptide will result in elimination of 
thymocytes by apoptosis. This mechanism has particular importance in 
the removal of cells that could recognize self-antigens in the periphery 
by presenting auto reactive receptors. So, through the clonal deletion of 
thymic immature T cell displaying potential self-reactivity, the negative 
selection process ensures that only T cells that do not recognize self-
antigens undergo their development.	

Apoptosis during the negative selection process appears to share 
some of the pathways that are used by T cell activation, although the 
threshold for activation of thymocyte apoptosis during the negative 
selection process is lower than the threshold for activation of mature 
T cells. 

Several lines of evidence indicate that costimulatory molecules may 
act together with TCR/CD3 complex to activate a pathway leading to 
programmed cell death of thymocytes [140]. Punt and coworkers have 
suggested a mechanism by which these auto reactive thymocytes are 
deleted in the thymic medulla: the simultaneous engagement of TCR 
and the molecule CD28 [141]. In the CD28-dependente mechanism, 
thymocytes recognizing self-antigens on thymic medullary epithelial 
cells expressing the stimulatory B7.1 molecule are killed by signals 
generated by simultaneous engagement of TCR (with pMHC) and CD28 
(with B7.1). Gao and colleagues have also reported that the perinatal 
treatment with anti–B7-1 and anti–B7-2 prevents T cell clonal deletion 
in vivo, and leads to an accumulation of T cells capable of inducing T 
cell fatal multiorgan inflammation [142]. Also, programmed death-1 
(PD-1), a member of the B7/CD28 family of costimulatory receptors, 
and its ligand, PD-1 ligand 1 (PD-L1), can also be directly implicated 
in thymocyte apoptosis since PD-1 ligation decreases phosphorylation 
of ERK and inhibits Bcl-2 up-regulation, both of which are critical for 
thymocyte maturation [143].

It has been also proposed that TCR-CD28 co-engagement may 
directly initiate an apoptotic program or may up-regulate a receptor 
specialized in the transduction of a death signal (the DRs). Indeed, 
death receptors such as tumor necrosis factor (TNF) receptor and 
DR3 have been implicated in thymocyte negative selection [144,145]. 
However, as a result of conflicting reports, it is not yet clear whether 
these DRs trigger a caspase cascade in thymocytes undergoing clonal 
deletion [146].

A large body of evidence has suggested that both JNK and p38 
MAPK play critical role during the negative selection process of 
thymocytes since they are highly activated in response to intrathymic 
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signals in vivo [99,147-151]. p38 MAPK and JUNK are activated by 
upstream MAPK kinases (MAPKK) termed, respectively, MEK3/
MEK6 and MEK4/MEK7, and their substrates include other kinases, 
cytosolic proteins and transcription factors through phosphorylation 
[152]. Once activated p38 and JUNK phosphorylate the pro-apoptotic 
molecule Bim, resulting in its translocation to mitochondria and an 
increase in apoptotic activity [153]. 

Currently, it is held that the pro-apoptotic molecule Bim and the 
nuclear orphan steroid receptor Nur77,a member of the Nurnuclear 
receptor family of intracellular transcription factors, play an especially 
important role in the death of thymocytes presenting high affinity 
TCR/pMHC interactions. Nur77 become activated through the ERK5 
MAPK signaling cascade that acts by sequential activation of MEKK2/3, 
MEK5, ERK5 and myocyte enhancer factor 2 (MEF-2) [154]. Although 
Nur77 family consists of three members, Nur77, Nor-1, and Nurr1, 
only Nur77 and Nor-1 are induced in thymocytes in response to strong 
engagement of their TCR and correlates with apoptosis [155].

Two mechanisms of action, which are not mutually exclusive, 
have been proposed to Nur77: a transcription-dependent mechanism 
involving genes up regulation and a transcription-independent 
mechanism involving translocation to mitochondria, leading to 
cytochrome c release. 

Rajpal et al., have shown that Nurr77 induces apoptosis in 
thymocytes through transcriptional activation of known pro-apoptotic 
genes, such as FasL and TRAIL, and also of the novel genes Nur77 
Downstream Gene 1 and 2 (NDG1 and NDG2).Although the role 
of caspases in negative selection is controversial, these authors have 
shown that NDG1 encodes a novel protein that may initiate apoptosis 
through caspase-8 [156]. 

A growing body of evidence from recent studies, however, suggests 
that mitochondrial targeting of Nur77, but not its transcriptional 
activity, is essential for its pro-apoptotic effect. Accordingly, Nur77 
translocates to mitochondria through interaction with Bcl-2, resulting 
in cytochrome c release and apoptosis by conversion of Bcl-2 from an 
anti- to pro-apoptotic mediator during negative selection [154,157].
These data might reconcile conflicting results found so far, showing 
that the defective negative selection in Bim-/- mice is only inefficiently 
blocked by overexpression of Bcl-2 [153,158]. Thompson and Winoto 
have suggested a new model where negative selection would work 
through two effector molecules that converge at the mitochondria via 
their interaction with Bcl-2 molecule: “while Bim antagonizes Bcl-2, 
Nur77 converts Bcl-2 to a killer form” [154].

It is also important to note that not all thymocytes expressing 
high avidity/affinity to self-peptides are excluded during the process 
of negative selection. Cells displaying regulatory functions, such as 
CD4+CD25+ Foxp3+ regulatory T cells (nTregs), NKT and CD8ααT 
cells, are also generated during thymocyte development by strong TCR/
pMHC interactions [159]. However, exactly how these interactions 
occur to initiate different signals with distinct cellular consequences is 
not clear until now and so many unanswered questions remains to be 
clarified [98].It has been recently reported that transforming growth 
factor-beta (TGF-β) has a critical function for promoting nTreg 
cells survival during the negative selection process [160]. By using 
a model of TGF-β receptor-deficient cells nTreg, the authors have 
shown that apoptosis in such cells is associated with high expression 
of proapoptotic proteins Bim, Bax, and Bak and low expression of the 
antiapoptotic protein Bcl-2.

So, by the intrathymic mechanism of negative selection, 
autoreactive thymocytes are eliminated through apoptosis and only 
self-tolerant T cells are exported to the periphery. 

The thymic microenvironment in infectious disease: an 
altered place for developing T cells

Literature has demonstrated that the thymus undergoes intense 
atrophy during viral and parasitic infectious diseases [reviewed in 
161]. So, it is plausible to suppose that structural and morphological 
alterations in the thymic microenvironment, which are induced by 
direct or indirect effects of different pathogens, can impair positive 
and negative selection processes and lead to the entrance of immature 
potentially self-reactive or non-self-tolerant lymphocytes, or even 
both, into the peripheral circulation.

The deleterious effects on the thymus during infections 
can be reproduced in experimental models using either intact 
microorganisms or products such as cell wall components and toxins. 
The administration in vivo of the bacterial superantigen staphylococcal 
enterotoxin B (SEB) produced by Staphylococcus aureus, for example, 
leads to thymus atrophy that is associated with thymocyte depletion 
[162]. The thymus is also a target organ in acute experimental 
Chagas’ disease caused by the protozoan parasite Trypanosoma cruzi. 
This parasite causes alterations in the thymic microenvironment 
that include increased levels of apoptosis, particularly of cortical 
thymocytes bearing the phenotype CD4+CD8+, and an altered profile of 
intrathymic migratory responses of thymocytes that is correlated with 
the presence of potentially autoreactive thymus-derived immature DP 
cells in peripheral lymphoid organs of infected animals[163].

We have also studied thymic atrophy using different experimental 
models of infection. Thymic alterations in mice infected with 
Paracoccidioides brasiliensis, a dimorphic fungus that causes the 
most prevalent form of systemic mycosis in Brazil, include loss 
of corticomedullary delimitation, presence of a juxtacapsular 
inflammatory infiltrate and cortical degeneration caused by 
increased levels of apoptosis in DP thymocyte [164]. More recently, 
we have reported that the thymus gland is also a target organ during 
experimental infection with Plasmodium berghei, the causative agent 
of Malaria [165].The severe thymic atrophy observed during this 
infection is mainly characterized by increased depletion of intrathymic 
DP thymocytesand the presence of immature thymocytes (mainly DN 
and DP) in mesenteric lymph nodes and spleen [166].

Another aspect deserving attention is the fact that the thymus 
can be directly affected by pathogens, including viruses, parasites, 
and fungi, contradicting the idea that T cell maturation occurs at an 
antigen-free site [163-169]. The infection of thymic cells raises the 
hypothesis of the generation of central immunological tolerance for at 
least some antigens derived from the infectious agent. This issue still 
remains unexplored and represents a potentially important field of 
investigation.

Since T cell differentiation in the adult thymus depends on 
sequential interactions between lymphoid progenitors and stromal cells 
found in distinct regions of the cortex and medulla, it is most probably 
that thymic alterations observed during infectious diseases may result 
in a disruption of the normal intrathymic T cell development, which 
may lead to an altered exportation of T cell to the periphery, with 
severe consequences on the control of the immune response against 
the invading pathogen.

http://en.wikipedia.org/wiki/Nur_(biology)
http://en.wikipedia.org/wiki/Nuclear_receptor
http://en.wikipedia.org/wiki/Nuclear_receptor
http://en.wikipedia.org/wiki/Intracellular
http://en.wikipedia.org/wiki/Transcription_factor
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We suppose that more studies on the thymus under biological 
pressure of a given infection can contribute to better understand the 
behavior of this organ in respect to thymocyte development for the 
generation of an appropriate T cell repertoire.

Concluding Remarks
The survival of developing T cells is a complex and tightly regulated 

process that depends on signals the cells receive from the thymic 
microenvironment, like cytokines, chemokines, and mainly from the 
TCR/pMHC interaction.By preventing the maturation of thymocytes 
bearing TCR with no or insufficient affinity for self-MHC molecules, 
the positive selection process promotes the development of T cells 
with self MHC-restricted TCRs. By preventing the maturation of 
thymocytes bearing TCR with high affinity/avidity for self-peptides, 
the negative selection process ensures that thymocytes leaving the 
thymus are tolerant to the host’s own proteins and thus contributes to 
prevention of autoimmunity.

It is noteworthy that during T cell development some CD4+ SP 
thymocytes do not acquire the functional feature of helper cells, which 
trigger and/or enhance an immune response in the periphery, but 
rather differentiate into regulatory T cells, which block the immune 
response.

Studying the process of positive and negative selection of 
thymocytes is extremely difficult. Fetal thymus organ cultures are 
not well suited to distinguish between negative selection and a failure 
of positive selection. Also, the use of normal thymocytes is limited 
because they are fated to undergo apoptosis when placed in culture. On 
the other hand, the use of tumor cell lines has been hampered by the 
resistance that several of these lines display to death inducible by TCR 
engagement. The use of transgenic mice has increased dramatically 
in recent years and can contribute to our knowledge about T cell 
development. However, because transgenesis may alter a balanced 
genotype and produce unpredictable effects, careful interpretation of 
the results is advised. Another approach that can be explored is the 
study of the intracellular signals that discriminate between thymocyte-
positive and -negative selection in an altered microenvironment 
induced by different pathogens. 

Exploring the intrathymic events that are involved during T cell 
development provides an exciting research avenue since extremely 
important issues that need to be resolved in details for our complete 
understanding of the immune system still remain. 
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