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Abstract
The study of human thymocytes requires an appropriate matrix to enable the proper function of thymocytes. 

Although OP9-DL1 cells have been well established as an ideal co-culture system for the generation of T-cells from 
their progenitors; their ability to support a mixed population of mature human thymocytes for in vitro HIV infection 
studies has yet to be established. We assessed the effects of co-culturing a heterogeneous population of mature 
human thymocytes with a mouse derived cell line (OP9) transduced with the notch ligand delta like 1 (OP9-DL-1) and 
compared this to standard co-culture with human thymic epithelial cells (TEC). Co-culturing thymocytes with OP9-
DL1 cells resulted in higher viability and lower apoptosis when compared to TEC co-cultures. The subset distribution 
and CD127 expression of thymocytes varied slightly between conditions. Thymocytes co-cultured with OP9-DL1 
cells had a lower proportion of CD3+DP cells and higher proportion of SP4 cells compared to TEC co-cultures. The 
mature CD3+CD4+CD8- (SP4) cells also had lower levels of CD127 expression in OP9-DL1 cultures when compared 
to TEC. Interleukin-7 stimulation of thymocytes resulted in a decrease in CD127 expression in OP9-DL1 co-cultures, 
as previously observed with TEC co-cultures. Thymocytes co-cultured with OP9-DL1 tended to have higher levels 
of IL-7 induced STAT-5 phosphorylation and had higher levels of Interleukin-7 induced Bcl-2 expression. OP9-DL1 
cells provide a microenvironment which is permissive to HIV infection in thymocytes in vitro. Co-culturing thymocytes 
with OP9-DL1 will facilitate the study of human thymocytes and aid in the study of exogenous stimuli or infection on 
individual thymocyte subsets. 
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Introduction
The immune system is a highly specialized system that relies on the 

interplay of a large network of factors such as lymphoid organs, cells 
and molecular messengers (eg. chemokines and cytokines). Disrupting 
just one factor can result in altered immune regulation leading to 
immunodeficiency, autoimmunity or impaired T-cell development. 

The thymus is a target organ of HIV-1 infection. Examination 
of the thymus of HIV+ pediatric patients reveals a loss of lymphoid 
cells, disruption of the cortico-medullary boundary and a general 
destruction of thymic architecture which may contribute to impaired 
immune regulation and altered immune reconstitution in HIV disease 
[1,2]. The exact mechanisms of HIV-1-induced thymic dysfunction 
have yet to be fully elucidated. Targets of HIV-1 within the thymus 
are primarily CD4-expressing thymocytes, however other cells such as 
macrophages, dendritic cells, and epithelial cells can also be infected 
[2-5]. Reduced thymic output following HIV-1 infection can be due to 
increased cell death of infected thymocytes or a decrease in immature 
thymocyte proliferation following HIV-1 infection [6,7]. Thymic 
function may also be disrupted at the positive/negative selection stages 
in development possibly due to altered responses to cytokine signals.

Thymocyte development strongly relies on the thymic environment. 
The architecture of the thymus is such that thymocytes receive different 

signals from the thymic stroma as they migrate through the thymus. 
The stroma delivers environmental cues which T-cells require in order 
to survive, proliferate and differentiate [8]. Interaction of T-cells with 
thymic epithelial cells (TEC) results in the release of a multitude of 
soluble factors such as interleukin-1 (IL-1), IL-6 and IL-7 which are 
required in T-cell development [9-12]. Due to such requirements, the 
study of thymocyte function in vitro has been highly dependent on the 
use of complex culture systems. 

Evidence for the direct infection of thymocytes with HIV-1 has 
been provided with the use of fetal thymic organ cultures (FTOC), and 
in thymocyte/TEC suspension cultures. Thymocytes in these cultures 
are able to support high levels of HIV replication [13-16]. The ability 
of HIV to infect thymocytes in vitro was dependant on direct contact 
between thymocytes and TEC [4]. Although the FTOC has been 
proven to be an excellent system for the study of thymocytes, [17-19] 
the limitation of this system is the technical difficulties of establishing 
organ cultures, the requirement for mouse lobes although the source 
of thymocytes is human, as well as the high cost and manipulation 
associated with animal studies. The in vitro co-culture system of 
dispersed thymocytes and TEC requires the primary isolation of TEC 
which requires several days to achieve. The optimal in vitro co-culture 
system for the study of HIV infection of thymocytes would be a cell 
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line that could provide similar signals to thymocytes than direct TEC 
contact resulting in infection.

A cell suspension model, developed by Zuniga-Pflücker, involving 
the OP9-DL1 culture system has been shown to allow the development 
of hemopoietic stem cells (HSC) into mature T-cells [20]. OP9 are a 
murine bone marrow derived stromal cell line, which expresses the 
notch ligand Delta like 1 (DL1). The advantage of this system is its 
simplicity and versatility. Although the system is based on a mouse 
cell line, the use of this co-culture system has been adapted to human 
cells and has been successful in supporting the development of human 
T-cells [21,22].

The OP9-DL1 cell has been developed to serve as a matrix for the 
study of thymocyte development, but its potential uses beyond this have 
not been evaluated. TEC/thymocyte interactions result in the release 
of soluble factors which in turn activate the thymocytes allowing for 
productive infection with HIV [4]. Determining if OP9-DL1 cultures 
can provide the appropriate survival and activation signals in order to 
study the effect of exogenous stimuli on mature thymocytes beyond the 
positive and negative stage of selection has yet to be evaluated. Here we 
compare co-culture systems of human thymocytes with either human 
TEC or OP9-DL-1 cells in order to determine if OP9-DL1 can serve as 
a matrix to support human thymocytes for the study of HIV infection 
on specific thymic subsets. 

Materials and Methods
Thymocyte isolation

Thymic tissue was obtained during elective cardiac surgery at 
the Children’s Hospital of Eastern Ontario (CHEO) with informed 
consent obtained prior to surgery. Thymocytes were isolated as 
previously described [23]. Briefly thymic tissue was cut into 1-3 mm3 
pieces with a scalpel and dispersed with the plunger of a 60 mm 
syringe prior to being separated on a Ficoll-PaqueTM PLUS (Amersham 
Pharmacia, Piscataway, NJ) density gradient. The isolated cells were 
resuspended in McCoys 5A selective media (Invitrogen, Burlington, 
On) supplemented with 2 mM glutamine, 100 µ/ml penicillin, 100 µg/
ml streptomycin (Sigma-Aldrich Inc, Oakville Ont, Canada) and 10% 
fetal calf serum (FCS) (Cansera, Rexdale, Ont. Canada). Cell purity was 
assessed by flow cytometry. Freshly isolated thymocytes were stored at 
4°C for 4-10 days as required prior to use as previously described [23]. 

Thymic epithelial cell isolation

TEC were isolated as previously described [23]. Briefly, the 
dispersed thymic tissue was digested in DNase/collagenase (Invitrogen, 
Burlington, Ont) (1500 units/ml) for 90 minutes at 37°C. The resulting 
fragments were then washed and platted with 7 ml of serum free media, 
D-MEM/F12 selective media supplemented with 100 υ/ml penicillin, 
100 µg/ml streptomycin, 20 νg/ml epidermal growth factor, 10-9 M 
cholera toxin, insulin 3 υg/ml and transferin 10 µg/ml (all from Sigma-
Aldrich, Oakville, Ont,). After 24-hour incubation media was replaced 
and cells were fed every 3-4 days in serum free media. 

OP9-DL1 cells

OP9-DL1 cells were provided by Dr. Zuniga-Pflücker [20]. Cells 
were maintained in MEM-α (Invitrogen, Burlington, Ont, Canada) 
with 20% FCS and passaged every 3-4 days by trypsinization.

Thymocyte phenotype

The following fluorochrome labelled monoclonal antibodies were 

used CD3-ECD (clone UCHT1), CD4-FITC (clone 13B8.2), CD8-
PC5 (clone B9.11), and CD127-PE (clone R34.34) (all from Beckman-
Coulter, Missisauga, Ont, Canada). The distribution of the following 
developmental stages of T-cell maturation were evaluated following 96 
hours of co-culture: (TN) CD3-CD4-CD8-, (immature single positive 
CD4 ISP4+) CD3-CD4+CD8-, (DP) CD3+/-CD4+CD8+ and (SP) CD4+ 

or CD8+ cells. The expression of CD127-PE (Beckman-Coulter, 
Missisauga, Ont, Canada) was measured on the various subsets at the 
onset of culture and overtime with stimulation with IL-7. 

Thymocyte cultures

Thymocytes were either cultured alone or co-cultured with TEC or 
OP9-DL1 cells. Briefly 2x106 thymocytes/ 8 x104 TEC or OP9-DL1 were 
cultured in 2 ml of McCoys 5A selective media supplemented with 2 
mM glutamine, 100 υ/ml penicillin, 100 and µg/ml streptomycin and 
10% FCS in a 12 well plate for 24-96 hours at 37ºC. For stimulation 
experiments thymocyte cultures were stimulated with IL-7 0-5000 πg/
ml (R & D, Minneapolis, MN, 387 USA).

Apoptosis

Apoptosis was measured by annexin V/Propidium Iodide (PI) 
staining using a commercial kit from Molecular Probes, Invitrogen 
according to manufacturer protocol. Briefly bulk thymocytes were 
co-cultured for 96 hours with either OP9-DL1 or TEC. Subsequently 
1x105 thymocytes were resuspended in annexin V binding buffer and 
stained with annexin V and PI in the dark at room temperature for 15 
minutes. The cells were then diluted with 400 µl of binding buffer prior 
to analysis by flow cytometry.

IL-7 induced Intracellular pSTAT-5

To assess the effect of co-culture on the ability of thymocytes 
to respond to IL-7, STAT-5 phosphorylation in response to IL-7 
was measured as previously described [24]. IL-7 induced STAT-5 
phosphorylation was measured by stimulating thymocytes with IL-7 (R 
& D, Minneapolis, MN, 387 USA) at 1 νg/ml for 15 minutes at 37°C and 
5% CO2. The cells were prepared for intracellular staining by Caltag “fix 
and Perm” (Invitrogen, Burlington, Ont, Canada) reagents according 
to the manufacturer’s protocol. Briefly the cells were fixed with reagent 
A for 15 minutes followed by 10 minute incubation in ice cold methanol 
in order to optimize the FITC signal prior to permeabilization with 
reagent B for 20 minutes and staining with pSTAT-5-FITC (Alexa 
Fluor 488 mouse antihuman STAT5 pY694, BD Biosciences, San Jose, 
CA, USA). All flow cytometry was conducted on a Epics Coulter Altra.

IL-7 induced Bcl-2 expression

To determine the effect of co-culture on thymocyte function, 
we measured Bcl-2 expression following IL-7 stimulus as previously 
described [24]. Briefly 1x105 thymocytes were stimulated with IL-7 1 
νg/ml for 48 hours at 37°C and 5% CO2 in the presence of either TEC 
or OP9-DL1 cells. The cells were prepared for intracellular staining by 
Caltag “fix and Perm” reagents following the manufacturer’s protocol. 
Briefly the cells were fixed with reagent A for 15 minutes, washed and 
resuspended in permeabilization reagent B for 20 minutes. The cells 
were stained with Bcl-2-FITC (BD Biosciences, San Jose, CA, USA).

IL-7-induced glucose uptake 

IL-7-induced glucose uptake was measured following the modified 
procedures of Swainson et al. [25]. Briefly Thymocytes were either 
cultured alone or co-cultured with TEC or OP9-DL1 cells. Thymocytes 
(2x106) with TEC (8x104) or OP9-DL1 (8x104) were cultured with 
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medium or IL-7 (10 νg/ml) for 96 hours at 37°C and 5% CO2. 
Thymocytes (1x105) were then washed and resuspended in 100 µl of 
Krebs/ringer buffer and incubated at 37°C for 30 minutes. Thymocytes 
were incubated with 2 µci of 3H-D-glucose (GE Healthcare, Piscataway, 
NJ) for 45 minutes at 37°C. Glucose uptake was terminated by the 
addition of ice cold Krebs/ringer buffer and washed 3 times to remove 
any residual glucose. The cells were solubilised in 0.1% SDS and 
radioactivity was measured by liquid scintillation counting on a Wallac 
MicroBeta TriLux (Perkin Elmer,Waltham,MA). 

In vitro HIV-1 infection of thymocytes

Thymocytes were infected in vitro with a clinical isolate HIVcs204 
following previously described methods [26]. Briefly, prior to infection, 
thymocytes were resuspended to a concentration of 2x106 cells/ml in 
McCoys 5A media with polybrene (Sigma-Aldrich) (3 μg/ml) for 1 
hour at 37ºC. Thymocytes (6x106) were then washed twice with PBS 
and the pellet was infected with cell-free HIV-1cs204 supernatants at 
a multiplicity of infection (M.O.I) of 0.01 for 2 hours at 37ºC with 
shaking every 30 minutes or mock-infected with equivalent volumes 
of PBMC culture supernatants. Thymocytes were then washed twice in 
PBS and resuspended in McCoys 5A complete medium (Invitrogen).

PCR for the detection of HIV-1 in thymocytes

To confirm HIV infection of thymocytes, genomic DNA was 
isolated from infected thymocytes as early as 24 hours post infection 
(p.i.). Viral DNA was detectable by nested PCR targeting the gag region 
of HIV. Briefly, genomic DNA was isolated from infected thymocytes 
using the QIAGEN DNeasy blood and tissue kit (Qiagen, Mississauga, 
ON,). In the first round of PCR, DNA (1/10) was amplified with outer 
P24 primers (400 nm) fwd: 5’-ATAGAGGAAGAGCAAAACAAAA-3’; 
rvs: 5’-GTTCCTGAAGGGTACTAGTAGT-3’. The second round PCR 
used 5 µl of the product from the first round of PCR with inner p24 
primers (400 nm) fwd 5’-CAAAATTACCCTATAGTGCA-3’ and rvs 
5’-ATGTCACTTCCCCTTGGTTCT-3’. Amplification conditions were 
as follows: 2 min at 95°C, (94°C for 60 s, 55°C for 60 s and 72°C for 60 
s) for 30 cycles and 7 min at 72°C.

Statistical analysis

All statistical analyses and graphing were performed using 
GraphPad Prism 5.0 Software, (SanDiego, CA, USA). Statistical 
significance was determined by either Students t-test for paired 
samples or Anova with Dunnett post-test pairwise comparison. All 
flow cytometry was analysed using the FCS Express 2.0 software (De 
Novo Software, Thornhill, Ontario, Canada). 

Results
Thymocytes co-cultured with OP9-DL1 cells are protected 
from spontaneous apoptosis

Within a co-culture system, contact with epithelial cells results 
in the release of soluble factors that are required for the viability of 
thymocytes. Thymocytes were cultured alone or co-cultured with 
either human TEC or OP9-DL1 cells for 96 hours and cell viability was 
assessed by trypan blue exclusion. Cell viability was decreased over 
time in thymocytes that were cultured alone (Figure 1A) indicating 
that thymocytes on their own (i.e. without co-culture) lack appropriate 
signals for survival. The cellular viability of thymocytes co-cultured 
with TEC only slightly decreased over time with 84 ± 3% of cells viable 
after 96 hours. The viability of thymocytes co-cultured with OP9-DL1 
was also maintained with 92 ± 9% of thymocytes remaining viable after 

96 hours of co-culture, indicating that both culture systems are able to 
provide the survival signals required for thymocytes in a short term 
culture. During the 96 hour culture there was a decrease in cell number 
in all culture conditions. This could possibly be due to the requirement 
for IL-7 and Flt3 ligand which is known to support differentiation of 
thymocyte in OP9-DL1 cultures [27-29]. The addition of IL-7 to either 
co-culture system resulted in higher levels of viability and increased 
the number of thymocytes in culture (data not shown). In order to 
confirm that the co-culture systems provide adequate survival signal, 
we measured apoptosis of the cells in culture. The level of spontaneous 
apoptosis as measured by annexin V+/ PI- in thymocytes and after 96 
hours was 56 ± 27% when cells were cultured alone and 57 ± 14% when 
thymocytes were co-cultured with TEC (Figure 1C). Co-culture with 
OP9-DL1 however resulted in protection from apoptosis with only 13 
± 5% of thymocytes staining annexin V+PI-, significantly lower than 
co-cultures with TEC (p= 0.009; Figure 1C). When the proportion of 
total annexin V+ cells was evaluated (annexin V+/ PI+ and annexin V+/ 
PI-) similar results were obtained. 

The effect of co-culture on thymocyte phenotype

In order to determine if the subset distribution of total human 
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Figure 1: The effect of co-culture on cellular viability. Thymocytes were co-
cultured with either TEC or OP9-DL1 cells at a ratio of 1:25 or cultured alone 
as a control for 96 hours. A) Viability of the thymocytes was assessed by 
trypan blue exclusion every 24 hours. Thymocytes cultured alone resulted in 
the largest decrease in cell viability over time, whereas in co-culture with OP9-
DL1 cells thymocyte viability over 96 hours in culture was maintained. n=4, 
*p≤ 0.0001 and **p=0.001 by analysis of variance and p< 0.05 by Dunnett’s 
simultaneous test versus time 0. B) Representative flow histograms where 
10,000 events were acquired and apoptosis of the cells was determined 
by annexin V/PI staining. C) There was a significantly lower spontaneous 
apoptosis in OP9-DL1 cocultures when compared to TEC co-cultures (n=4, 
p=0.009 by paired student T-test).
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thymocytes is altered in short term co-cultures, we measured the 
phenotype of thymocytes co-cultured with either TEC or OP9-DL1 
for 96 hours. Short term co-culture with OP9-DL1 cells resulted in 
a lower proportion of cells in the CD3+DP subsets in comparison to 
TEC cultures, although this did not reach statistical significance. There 
were also a higher proportion of SP4 cells when compared to TEC 
co-cultures (12% vs. 29% respectively p=0.04; Figure 2B). Since IL-7 
is critical for thymocyte function and the expression of its receptor 
is highly regulated on thymocytes, we measured the effect of co-
culture on the expression of the IL-7 receptor (CD127). Co-culturing 
thymocytes with OP9-DL1 resulted in lower CD127 expression on SP4 
cells when compare to TEC co-cultures (29.8 ± 14.5% vs. 51.8 ± 1.3%, 
p=0.05 respectively; Figure 2C). Culture conditions had no significant 
effect on CD127 expression on the other thymic subsets.

IL-7 downregulates CD127 expression on thymocytes in 
OP9-DL1 co-cultures

Since IL-7 is an important mediator of thymocyte differentiation 
and maturation, we measured the effect of co-culture on the ability of 
thymocytes to respond to IL-7. One established aspect of IL-7 activity 
is the downregulation of CD127 receptor expression on the surface 

of T-cells [23]. To determine the effect of OP9-DL1 co-culture on 
IL-7 regulation of the CD127 receptor we measured the effect of IL-7 
stimulation of thymocytes in OP9-DL1 co-cultures. IL-7 stimulation 
resulted in a rapid decrease in CD127 on mature thymocytes (Figure 
3). The decrease was similar to what has been previously reported for 
thymocytes co-cultured with TEC [23]. At higher concentrations of 
IL-7 (5000 πg/ml) the decrease in CD127 expression was maintained 
through 96 hours in DP, SP4 and SP8 thymic subsets. The kinetics of 
CD127 decrease varied with the concentration of IL-7. At the lower 
concentration of 100 πg/ml of IL-7 the decrease in CD127 was transient 
with a recovery of CD127 receptor expression observed by 48 hours 
(Figure 3). 

Co-culture is required to maintain IL-7 responsiveness of 
thymocytes 

To determine if human thymocytes in co-culture remained 
functional ex vivo, we co-cultured thymocytes with TEC or OP9-DL1 
and measured IL-7 responsiveness. IL-7 stimulation did not induce 
phosphorylation of STAT-5 in thymocytes when cultured alone (Figure 
4). Thymocytes that were co-cultured with OP9-DL1 had a significantly 
higher level of basal pSTAT-5 when compared to thymocytes co-
cultured with TEC, as measured by the percentage of pSTAT-5+ cells 
(5.3 ± 1.8% vs. 1.0 ± 0.4%; p=0.007). IL-7 stimulation of thymocytes 
resulted in a statistically significant increase in pSTAT-5 (Figure 4), 
which is consistent with previous reports [30-32]. Thymocytes that 
were co-cultured with OP9-DL1 cells tended to exhibit a greater 
degree of Stat-5 phosphorylation in response to IL-7 than thymocytes 
co-cultured with TEC (OP9-DL1: 17.4 ± 5.8% vs. TEC: 11.3 ± 1.1%; 
p=0.07), although this did not reach statistical significance. However 
the absolute increase in pSTAT-5 induced by IL-7 was similar in both 
co-culture conditions (OP9-DL1: 10.2% ± 1.4% increase and TEC: 
12.1% ± 6.6% increase). 

IL-7-induced Bcl-2 expression is enhanced in thymocytes co-
cultured with OP9-DL1 cells

IL-7 has been reported to induce Bcl-2 expression in thymocytes 
[32,33]. IL-7 had little effect on Bcl-2 expression in thymocytes 
cultured alone (Figure 5). We observed a higher level of basal Bcl-2 
expression in bulk thymocytes following 96 hours of culture in OP9-
DL1 co-cultures when compared to TEC co-cultures as measured by 
the percentage of cells expressing Bcl-2 (TEC: 1.0 ± 0.0% vs. OP9-DL1: 
7.0 ± 1.7%; p=0.002). IL-7 stimulation resulted in a higher percentage 
of cell expressing Bcl-2 in thymocytes co-cultured with OP9-DL1 when 
compared to thymocytes co-cultured with TEC (59.0 ± 10.4% vs. 20.3 
± 6.1%; Figure 5B p=0.003). The absolute increase in Bcl-2 expression 
following IL-7 stimulation of thymocytes was also significantly higher 
in thymocytes co-cultured with OP9-DL1 then with thymocytes co-
cultured with TEC (52.0 % ± 9.8% vs. 19.3 % ± 6.1%; P=0.012).

IL-7-induced glucose uptake is enhanced in 
thymocytes co-cultured with OP9-DL1 cells

To determine the effect of IL-7 on metabolic processes, IL-7-
induced glucose uptake in thymocytes was measured. IL-7 has been 
demonstrated to induce glucose uptake in recent thymic emigrants 
and circulating T-cells [25,34]. Thymocytes were either cultured 
alone or co-cultured with TEC or OP9-DL1 cells and stimulated with 
IL-7 (10 νg/ml) for 96 hours (Figure 5C). Thymocytes that were co-
cultured with OP9-DL1 cells tended to have a higher level of basal 
glucose uptake when compared to thymocytes co-cultured with TEC, 
however this difference did not reach statistical significance (OP9-DL1: 
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Figure 2: Effect of co-culture on thymocyte phenotype. Thymocytes were 
co-cultured with TEC or OP9-DL1 for 96 hours. A) Representative figure of 
subset distribution of total thymocytes where 10,000 events were acquired. B) 
OP9-DL1 co-culture resulted in a trend towards a lower proportion of CD3+DP 
(p=0.07) compared to TEC and a statistically significant higher proportion in 
SP4 cells (p=0.04) when compared to TEC cultures. n=4 p=0.04 by student 
t-test C) CD127 expression on individual subsets was determined by staining 
total thymocytes and gating on individual subsets. Thymocytes co-cultured 
with OP9-DL1 cells had a lower level of CD127 expression on SP4 cells when 
compared to TEC co-cultures. (n=4 p=0.05 Student t-test).



Citation: Young CD, Angel JB (2012) An In vitro Model for the Study of HIV Infection of Thymocytes. J Clin Cell Immunol S7:002. doi:10.4172/2155-
9899.S7-002

Page 5 of 8

J Clin Cell Immunol                                                                                                                                 ISSN:2155-9899 JCCI, an open access journal Immune regulation and HIV

4401 ± 1333 cpm vs. TEC: 2163 ± 1665 cpm; p=0.07). Thymocytes 
that were co-cultured with OP9-DL1 had greater levels of glucose 
uptake following IL-7 stimulation then thymocytes co-cultured with 
TEC (OP9-DL1: 8044 ± 345 cpm vs. TEC: 4144 ± 941 cpm; p=0.001). 
Although thymocytes co-cultured with OP9-DL1 cells had higher 
levels of IL-7-induced glucose uptake the absolute increase in glucose 
uptake following IL-7 was similar in both culture systems.

Thymocytes co-cultured with OP9-DL1 cells are infected by 
HIV-1 

Thymocytes were infected in vitro at an m.o.i of 0.01 with a dual 
tropic strain of HIV and cultured alone or co-cultured with either OP9-
DL1 or TEC as co-culture conditions provide the required stimulus 
for thymocytes to be infected [4,14]. CD4 expressing thymocytes are 
the main targets of HIV and have been shown to express both CXCR4 
and CCR5 [35,36]. To demonstrate infection of thymocytes, the 
presence of HIV-1 DNA in thymocytes was measured by nested PCR. 
HIV infected thymocytes cultured alone had no detectable gag DNA 
(Figure 6B) confirming the requirement for cell contact with TEC for 
HIV infection in vitro [4,14]. HIV infected thymocytes that were co-
cultured with either TEC or OP9-DL1 cells had detectable viral DNA 
(Figure 6A). HIV infection did not affect the overall expression of CD4 
on thymocytes (Figure 6B). This is the first time that OP9-DL1 cells 
have been shown to provide the appropriate microenvironment for 
HIV infection of thymocytes. 

Discussion 
T-cell development requires a specialized microenvironment that 
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is mainly provided by the thymic stroma [37]. A number of culture 
systems have been developed to study T-cell development in vitro, 
however they primarily involve work with mice. The OP9 murine 
cells were first used to support the development of B-cells; however 
the cell line would not support T-cell development, possibly because 
it did not provide notch signalling which is required for T-cell 
commitment and development. The OP9-DL1 and OP9-DL4 culture 
systems, which provide notch signalling, have been widely used for 
the study of commitment of precursors cells and subsequent T-cell 
development [20]. Although the system is based on a mouse stromal 
cell line it has been demonstrated to support the development of 
human hematopoietic stem cells, and human cord blood in long term 
cultures [21,22]. 

To understand the potential role that exogenous stimuli or viral 
infection may play in thymic dysfunction there is a requirement for an 
in vitro culture system that can support a heterogeneous population 
of human thymocytes. It has been previously established that contact 
with TEC is required in order to maintain thymocyte viability and 
allow permissiveness for in vitro HIV infection [4]. In this study we 
evaluated the capability of OP9-DL1 cells to support the function of 
human thymocytes and allow for the permissiveness for in vitro HIV 
infection.

Our results confirmed the importance of a co-culture system 
for functional thymocyte studies since thymocytes cultured alone 
exhibited significantly reduced viability and responded poorly to IL-7 
(Figure 1, Figure 4, Figure 5). Several factors are released upon co-
culture of thymocytes with TEC that play a role in thymocyte viability, 
proliferation and activation. Such factors include hormones such as 
thymulin [38-40] and cytokines, including IL-1, IL-6, and IL-7 [41]. 
The viability of thymocytes was the greatest with OP9-DL1 co-culture; 
therefore they appear to be a good candidate for co-culture with a 
heterogeneous population of thymocytes. 

Co-culture with OP9-DL1 cells protects thymocytes from apoptosis 
(Figure 1C). In vivo the majority of thymocytes are undergoing 
apoptosis due to the selection process. Thymocytes studied ex-vivo may 

have already received certain signals and have entered the apoptotic 
pathway prior to isolation and co-culture. Notch signalling leads to 
protection from T-cell receptor (TCR)-induced apoptosis as well as 
glucocorticoid induced apoptosis, hence thymocytes co-cultured with 
OP9-DL1 may be expected to have reduced apoptosis [42-45].

To compare the co-culture systems we determined the effect of 
the co-culture systems on cell subset distribution of a heterogeneous 
population of thymocytes in a short term culture. Thymocyte subset 
distribution was slightly different within the OP9-DL1 co-culture when 
compared to co-culture with TEC. The proportion of CD3+DP cells 
was lower, while the proportion of SP4 cells was higher in thymocytes 
that were co-cultured with OP9-DL1 cells. Since the maturation and 
development of T-cells requires long term culture [5], the effect on 
phenotype that we observed within 96 hours is probably not due to 
maturation of cells from CD3+DP to SP4 cells. One possible explanation 
could be decreased proliferation in the CD3+DP subset resulting 
in an alteration in the proportion of cells within the other subsets 
of thymocytes co-cultured with OP9-DL1. The observed difference 
between the two culture systems is probably not due to differences in 
notch signalling since TEC also express notch ligands such as jagged-1, 
jagged 2 and DL1 [46]. 

The expression of CD127 is highly regulated in thymocytes [47]. 
Our data revealed a lower level of CD127 expression on SP4 cells 
within OP9-DL1 cultures when compared to TEC. Multiple cytokines 
have regulatory effect on the expression of CD127. IL-2, IL-4 and IL-7 
stimulation results in decreased CD127 expression on the surface 
of both thymocytes and mature CD4+ and CD8+ T-cells [23,24,48-
51]. Therefore, the lower levels of CD127 on SP4 cells may be due 
to cytokines produced OP9-DL1/thymocyte cultures. In fact, mean 
CD127 expression was lower in all subsets within the OP9-DL1 co-
culture system, but this difference only reached statistical significance 
within the SP4 subset. Both OP9-DL1 and human TECs are capable of 
producing IL-7 [52]. However, the level of IL-7 produced within these 
systems is likely negligible since co-culture alone did not affect CD127 
expression on SP8 cells (Figure 2) and we have shown that as little as 
100 πg/ml of IL-7 can significantly reduce CD127 expression on SP8 
cells (Figure 3). Therefore, the amount of endogenous IL-7 is too low to 
affect the outcome of our assays.

As a gauge of IL-7 function, we measured the effect of IL-7 
stimulation on CD127 expression within an OP9-DL1 co-culture. We 
were able to demonstrate that human thymocytes in OP9-DL1 co-
cultures were able to respond to IL-7, as measured by CD127 down 
regulation and that this response was greater than previously reported 
with TEC co-cultures [23]. This suggests that co-culture with OP9-DL1 
may enhance IL-7 responsiveness of thymocytes.

We again demonstrated the importance of using a co-culture 
system in studies of thymocyte function since thymocytes that 
are cultured without the benefit of co-culture are unresponsive 
to IL-7 stimulation as measured by STAT-5 phosphorylation and 
Bcl-2 induction. Interactions between TEC or OP9-DL1 cells and 
thymocytes were sufficient for thymocytes to remain responsive to 
IL-7. Thymocytes co-cultured with OP9-DL1 cells had higher levels 
of basal STAT-5 phosphorylation than thymocytes co-cultured with 
TECs. This may be due to soluble factors that are released following 
thymocyte/OP9-DL1 cell interactions which lead to cell activation 
and hence STAT-5 phosphorylation. Although the level of STAT-5 
phosphorylation following IL-7 stimulation was higher in OP9-DL1 
cultures, the absolute change in STAT-5 phosphorylation following 
stimulation was similar in the two co-culture systems. Therefore, the 
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higher level of STAT-5 phosphorylation in OP9-DL1 cultures may 
be due to the activation state of the thymocytes rather than a specific 
increase in IL-7 responsiveness.

Given its role in the apoptotic pathway, the level of basal Bcl-2 
expression could be indicative of the propensity of the thymocytes 
towards cell survival. We demonstrated that co-culture of thymocytes 
with OP9-DL1 cells resulted in higher level of Bcl-2 expression when 
compared to cells cultured with TEC or cultured alone. Bcl-2 is 
upregualted in thymocytes in order to protect cells from apoptosis 
[53,54] and notch signalling leads to increases in Bcl-2 expression in 
thymocytes [55]. Hence the decrease in apoptosis that was seen in co-
culture with OP9-DL1 may be due to this increased level of Bcl-2. Our 
data also demonstrated higher levels of glucose uptake in thymocytes 
co-cultured with OP9-DL1 cells. Increases in glucose metabolism are 
one way in which cells regulate survival [34,56] and notch signalling 
cooperates with IL-7 to increase proliferation of immature thymocytes, 
glucose metabolism and Bcl-2 induction [57-59]. 

Through the evaluation of these co-culture systems on IL-7 activity, 
we demonstrated that IL-7 activity, as measured by Bcl-2 induction and 
glucose uptake, was greater in thymocytes in OP9-DL1 co-culture than 
those in TEC cultures, indicating that OP9-DL1 cells create a milieu in 
which thymocytes are more responsive to IL-7. 

Although the use of OP9-DL1 cells as a support system for the 
generation of CD4+ and CD8+ T-cells from progenitor cells in vitro 
has been well established we demonstrate for the first time that 
OP9-DL1 cells are able to support the function and responsiveness 
of a heterogeneous population of mature human thymocytes, as 
well as provide the necessary signals that are required for in vitro 
infection with HIV. Our data clearly show that co-culture of human 
thymocytes with OP9-DL1 cells result in greater IL-7 responsiveness 
than co-cultures with human TEC. This demonstrates that they are 
an appropriate candidate for further studies of the effect of exogenous 
stimuli on thymocyte function. Although the backbone of the OP9-
DL1 system is a murine cell, the co-culture was able to support human 
thymocytes and in fact was associated with greater viability of human 
thymocytes. The use of OP9-DL1 cells will provide a useful tool for 
future studies on the effect of HIV infection on the function of mature 
human thymocytes. 
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