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Introduction
Remote sensing of reflectance spectra of Earth and other planetary 

bodies can be useful for identifying mineral distribution on their 
surfaces, especially in remote regions that are exceedingly challenging 
to perform field-based investigation, and those planetary surfaces 
yet to have in situ observation, mapping, characterization, sampling, 
and analyses [1-8]. Many different factors, however, can influence the 
surface spectra, such as various alteration and weathering processes, and 
observational conditions [2,3,5,9-12]. Because a reflectance spectrum 
is a complex non-linear mixture of the above mentioned factors [13-
16], it is highly challenging to segregate each factor and extract the true 
mineral spectra, based solely on remotely observed reflectance spectra, 
and thus confidence in the resulting signatures should be gained by 
comparing with the reference spectra obtained by field or laboratory 
measurements [17]. Though challenging, investigating the spectral 
change due to the variation of elemental composition should not 
be avoided, since it is one of the ultimate goals of remote sensing of 
reflectance spectra of planetary surfaces [2,18]. Compared to terrestrial 
surfaces, those of extraterrestrial bodies such as the Moon and asteroids 
are not covered by liquid water and vegetation, and have negligible to 
no atmosphere, and thus may be considered to be the best places to 
observe the true nature of mineral spectra [19-25]. Yet, there are many 
factors to contaminate reflectance spectra of such planetary surfaces 
such as regolith particles, space weathering, and horizontal and vertical 
mixing by impact cratering, thus identifying the variation of mineral 
distribution on extraterrestrial bodies is still difficult [10,22,26-30]. 
Therefore, studying the spectral change using simple pure minerals 

that compose Earth and planetary surfaces is a critical foundational 
step to analyze reflectance spectra and is a prerequisite of reflectance 
spectroscopy, in light of continued application to planetary surfaces 
[8,31-35].

Deconvolution of reflectance spectra has been a common procedure 
for interpreting the experimental data of minerals and observation 
data of terrestrial and extraterrestrial surfaces. Among the most 
recognized spectral deconvolution methods in planetary science is the 
modified Gaussian model (MGM) [36,37]. In their paper, Sunshine 
et al. [36] showed that for 1 µm absorption band of orthopyroxene, 
Gaussian functions in the wavelength space fit better than Gaussians 
in the frequency space. The MGM express reflectance spectrum by the 
following function:
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where R is reflectance, x is wavelength, and sk, µk and σk are the 
strength (amplitude), center (mean) and width (standard deviation) 
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for kth Gaussian function, respectively. K is the number of Gaussian 
functions. The function C(x) is continuum of reflectance spectra:

1
0( ) = +

CC x C
x

where C0 and C1 are respectively intercept and slope of the 
continuum in frequency space.

The technical difficulty of applying the modified Gaussian model 
(MGM) is due to a local minima problem. The numerical algorithm 
of the widely used MGM utilizes the steepest descent method [36,38] 
or total inversion algorithm [37,39], both of which are not guaranteed 
to converge into a global solution. The analyzer can find an optimal 
solution only when the appropriate initial parameters are provided, 
based on preliminary knowledge of mineralogy [40,41]. With 
inaccurate initial parameters, however, these gradient descent methods 
converge into local minima, and thus the analyzer must manually 
adjust initial parameters and calculate the model iteratively to obtain 
the desired solution [16,42]. This would be a significant obstacle when 
one needs to automatically analyze large spectral databases obtained 
by space missions. In addition, preliminary knowledge of mineralogy 
may not always be available for space/ground-based observations, 
especially when the reflectance spectra are the only useful obtained data 
for interpreting the mineralogy of target bodies. Given the recent rapid 
increase of reflectance spectral data, automation of deconvolution 
analysis without requiring preliminary information on mineralogy 
is warranted. Makarewicz et al. [43] and Parente et al. [42] recently 
developed an algorithm to select initial band parameters automatically, 
based on inflection points of the derivatives of observed spectra. 
Although their algorithm does not depend on prior information, 
many spurious local minima and inflection points due to noise lead 
the authors to apply a smoothing filter, yielding arbitrariness on their 
analyses.

In order to overcome the local minima problem, the exchange 
Monte Carlo method, also known as parallel tempering [44], has been 
widely applied in the fields of physics, chemistry, biology, engineering 
and materials science [45]. Nagata et al. [46] developed a Bayesian 
spectral deconvolution model combined with the exchange Monte 
Carlo method with application to visible to near-infrared (Vis/NIR) 
reflectance spectra of fayalite and forsterite. This method is an improved 
algorithm of the Markov chain Monte Carlo method, aimed to avoid 
local minima traps [47] and to remove the arbitrariness originated 
from initial parameters. In order to solve the local minima problem, the 
simulated annealing scheme [48] has been incorporated into the model 
of Nagata et al. [46]. This algorithm introduces a pseudo-temperature 
and attempts to find the global minimum by heating and cooling the 
system. Nagata et al. [46] showed that the method can deconvolve 
reflectance spectral data of fayalite and forsterite into a few Gaussians 
with a continuum, purely based on the observed data, without requiring 
preliminary information of the band structure of olivine absorptions. 
In this paper, we report the applicability of the exchange Monte Carlo 
method to more complex rock-forming minerals (i.e., clinopyroxene). 
As described below, since the behavior of pyroxene spectra with the 
change of chemical composition is relatively well understood, the 
use of reflectance spectra of pyroxene minerals is suitable for testing 
the new spectral deconvolution method. Clinopyroxene (Cpx), with 
its general formula being (M2)(M1) (SiAl)2O6, is one of the most 
important rock-forming mineral groups due to both its rich abundance 
on solid bodies in the solar system and distinguished absorption 
features [20,34,49]. Cpx includes a wide range solid solution of Mg, 
Fe and Ca compositions and has two crystal structures of C2/c and 
P21/c [50], which could reflect various physical and chemical processes 

inside planetary bodies, such as the thermal history of magma [51]. 
Due to its wide range of chemical compositions, reflectance spectra of 
Cpx minerals vary significantly, and are generally grouped into three 
types: type-A, B and A/B [20,52,53]. Three major absorption bands 
are observed in type-B spectra, centered around 1.0, 1.2, and 2 µm, 
attributed to spin-allowed crystal field transitions of Fe cations in the 
octahedral (M1 and M2) sites [20]. These band centers are known to 
vary due to total iron and calcium content [19,52-55]. On the other 
hand, type-A spectra lack a strong 2 µm band, interpreted as a low Fe2+ 
content in the M2 site [53]. Type-A/B spectra are intermediate between 
type-A and B, although the boundaries are not well defined. MGM 
analyses have been performed to natural Cpx [36,53], synthetic Cpx 
[56], and mixtures of orthopyroxene-clinopyroxene [37,41].

Methods
Exchange Monte Carlo method

The technical details of the exchange Monte Carlo method is 
described elsewhere [46], thus we briefly summarize the key parameters 
of the model. In our study, the hyperparameters for Gamma and Gauss 
distributions used to yield probability densities of the parameters are 
those identified in Nagata et al. [46]: ηa = 3.0, λa = 2.0, ν0 = 1.25, ξ0 = 2.5, 
ηb = 5.0 and λb = 0.04. The total number of temperatures L in our study 
was 80, and the inverse temperature βl given by:
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Figure 1 shows typical examples of the evolution of root mean 
square (RMS) during the exchange Monte Carlo calculations for 
sample 088 using 4 Gaussian functions. Rapid decreases of RMS for 
the lowest temperature can be observed at about Monte Carlo steps = 
300, 500, 700, 1500, and 6000, due to the parameter exchange between 
the lowest and middle temperatures. From Figure 1, it can be observed 
that the RMSs of higher temperatures are generally larger than those of 
lower temperatures, showing attempts to find better global minimum 
with wider fluctuations. On the other hand, for lower temperatures, 
each iteration attempts to find local minimum within a parameter 
range narrower than higher temperatures. After the Monte Carlo step 
exceeds 104, although the model still attempts to find better solution 

Figure 1: Evolution of root mean square (RMS) with every 10 Monte Carlo 
steps during the exchange Monte Carlo calculation for sample 088 with 4 
Gaussian functions. Significant reduction of RMS for the lowest temperature 
can be observed approximately at Monte Carlo steps: 300, 500, 700, 1500, 
and 6000, which shows that the parameter exchange between the lowest and 
middle temperatures have occurred. The first 100,000 steps were used for the 
burn-in period and the last 20,000 steps for the expectation value calculations.
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with certain fluctuations of parameters, the RMSs remain almost 
constant, and the expectation values of parameters converge to the best 
solution. Similar to Nagata et al. [46], the Monte Carlo calculation was 
iterated through 100,000 steps for the burn-in period and 20,000 steps 
for the expectation value calculations. Errors of band parameters are 
estimated from 2σ based on ten runs using a different series of random 
numbers.

The number of Gaussian functions, K, is an important parameter 
for deconvolution analysis. The model usually improves with more 
Gaussians. Though, too many Gaussians may cause overfitting, and 
the solution can be physically unrealistic. We performed spectral 
deconvolution using a various number of Gaussian functions. For 
one spectrum, we varied K from 3 to 10, thus the total number of free 
parameters ranges from 11 to 32, including the intercept and slope of 
the continuum. In order to select an optimal K for the deconvolution, 
we calculate the free energy, or stochastic complexity [57,58], which 
is an evaluation function for the model section problem [46]. With 
increasing K, we find that the free energy decreases, and when K is 
higher than about 5, it converges and fluctuates around a low value. 
Thus, we chose minimum Ks from the region where the free energies 
converge and interpret them as optimal Ks, listed in Table 1.

Spectral data

We used the visible to near-infrared spectra of synthetic 

clinopyroxene samples with a wide compositional range collected at 
the KECK/NASA Reflectance Experiment Laboratory (RELAB) at 
Brown University [59,60]. The sample IDs for the RELAB catalogue 
is summarized in Table 1. In order to compare our results with 
conventional MGM analyses, we collected 31 reflectance spectra that 
have been analyzed by a previous study [56]. The method of synthesis 
is detailed in Turnock et al. [61]. Individual synthetic pyroxene grains 
typically have 15-25 µm in size, however, these grains formed clumps 
[56]. Thus, samples are crushed and sieved at <45 µm. The spectra were 
measured at 5 nm intervals over the wavelength range of 0.3-2.6 µm. 
The incidence and emission angles were 30° and 0°, respectively 
[56,59,60]. We performed spectral deconvolution only over the 
wavelength range of 0.4-2.6 µm, since the standard deviations become 
larger near the shorter wavelengths [46]. The chemical compositions 
of the samples are measured with electron microprobe by Klima et al. 
[56]. The compositions of individual pyroxene samples are indicated in 
molar ratio with endmember compositions of enstatite (En: Mg2Si2O6), 
ferrosilite (Fs: Fe2Si2O6) and wollastonite (Wo: Ca2Si2O6) and plot on 
a pyroxene quadrilateral (Table 1 and Figure 2). Minor compositions 
typical for natural CPx samples, such as Cr, Mn, Al and Fe3+, are not 
observed [56]. Only the mineral structure of sample 088 is reported to 
be P21/c [62], while the mineral structures for the remaining samples 
are not available. Based on the nomenclature of clinopyroxene [50], we 
assumed low-Ca pyroxene specimens with Wo < 20 to be pigeonite, 
high-Ca pyroxene with Wo > 45 and En > 25 diopside, and high-Ca 

Compositionb 1 µm band 1.2 µm band
Sample 

ID Minerala En Fs Wo Center (µm) FWHM (µm) Strength Center (µm) FWHM (µm) Strength

9 Pigeonite 43 47 10 0.956 ± 0.0014 0.223 ± 0.004 -1.32 ± 0.03 1.229 ± 0.008 0.30 ± 0.03 -0.24 ± 0.03
11 Pigeonite 36 50 14 0.9579 ± 0.0003 0.2342 ± 0.0007 -2.040 ± 0.004 1.243 ± 0.0011 0.230 ± 0.003 -0.416 ± 0.0013
53 Pigeonite 23 70 8 0.9646 ± 0.0003 0.233 ± 0.0011 -2.042 ± 0.004 1.258 ± 0.0013 0.244 ± 0.003 -0.458 ± 0.005
88 Pigeonite 0 90 10 0.9801 ± 0.0004 0.2114 ± 0.0007 -1.334 ± 0.003 1.245 ± 0.002 0.351 ± 0.003 -0.3592 ± 0.0008
50 Augite 19 58 23 0.9808 ± 0.0003 0.235 ± 0.0013 -2.307 ± 0.007 1.278 ± 0.002 0.265 ± 0.003 -0.510 ± 0.005
51 Augite 39 34 27 0.991 ± 0.002 0.20 ± 0.010 -1.6 ± 0.11 1.26 ± 0.014 0.34 ± 0.07 -0.35 ± 0.08
54 Augite 6 70 23 0.988 ± 0.0013 0.250 ± 0.008 -2.50 ± 0.02 1.290 ± 0.007 0.30 ± 0.010 -0.70 ± 0.02
55 Augite 18 56 26 0.998 ± 0.002 0.201 ± 0.005 -1.9 ± 0.12 1.261 ± 0.003 0.331 ± 0.005 -0.475 ± 0.008
56 Augite 18 60 22 0.9715 ± 0.0004 0.241 ± 0.002 -1.32 ± 0.014 1.260 ± 0.002 0.257 ± 0.006 -0.32 ± 0.011
57 Augite 36 39 25 0.9915 ± 0.0004 0.1998 ± 0.0008 -1.414 ± 0.004 1.269 ± 0.004 0.28 ± 0.02 -0.182 ± 0.005
58 Augite 28 45 27 1.001 ± 0.004 0.198 ± 0.007 -1.3 ± 0.14 1.26 ± 0.011 0.28 ± 0.02 -0.29 ± 0.03
66 Augite 15 48 38 1.0128 ± 0.0003 0.1804 ± 0.0005 -1.43 ± 0.02 1.227 ± 0.004 0.386 ± 0.009 -0.443 ± 0.009
67 Augite 52 9 39 1.016 ± 0.003 0.17 ± 0.011 -1.0 ± 0.14 1.3 ± 0.13 0.3 ± 0.2 -0.2 ± 0.10
68 Augite 29 33 38 1.008 ± 0.006 0.20 ± 0.011 -1.8 ± 0.3 1.26 ± 0.010 0.33 ± 0.014 -0.38 ± 0.012
73 Augite 36 25 39 1.0099 ± 0.0003 0.163 ± 0.0010 -1.083 ± 0.007 1.12 ± 0.011 0.53 ± 0.014 -0.22 ± 0.010
74 Augite 24 37 39 1.0108 ± 0.0005 0.181 ± 0.002 -1.32 ± 0.03 1.204 ± 0.006 0.41 ± 0.010 -0.41 ± 0.013
85 Augite 0 61 39 1.024 ± 0.002 0.165 ± 0.007 -0.91 ± 0.05 1.23 ± 0.05 0.4 ± 0.13 -0.2 ± 0.13
87 Augite 0 71 29 1.000 ± 0.004 0.200 ± 0.007 -2.10 ± 0.06 1.245 ± 0.005 0.409 ± 0.006 -0.707 ± 0.009
33 Diopside 42 8 49 1.04 ± 0.03 0.5 ± 0.3 -0.3 ± 0.14 1.5 ± 0.11 0.8 ± 0.2 -0.1 ± 0.10
36 Diopside 27 24 49 1.03 ± 0.03 0.6 ± 0.5 -0.7 ± 0.3      
39 Diopside 29 22 49 1.04 ± 0.013 0.5 ± 0.4 -0.7 ± 0.3      
43 Diopside 45 6 49 1.08 ± 0.010 0.51 ± 0.04 -0.44 ± 0.07      
75 Diopside 46 9 45 1.03 ± 0.02 0.16 ± 0.02 -0.7 ± 0.13 1.2 ± 0.10 0.3 ± 0.2 -0.18 ± 0.07
77 Diopside 52 3 45 1.0193 ± 0.0002 0.161 ± 0.001 -0.701 ± 0.003 1.106 ± 0.0012 0.507 ± 0.004 -0.208 ± 0.002
79 Diopside 38 15 47 1.024 ± 0.0013 0.165 ± 0.003 -0.93 ± 0.03 1.05 ± 0.02 0.62 ± 0.03 -0.51 ± 0.04
37 Hedenbergite 16 35 49 1.04 ± 0.02 0.29 ± 0.09 -0.8 ± 0.4 1.3 ± 0.2 0.2 ± 0.3 -0.2 ± 0.3
70 Hedenbergite 14 41 45 1.028 ± 0.007 0.17 ± 0.010 -1.1 ± 0.10 1.23 ± 0.05 0.36 ± 0.07 -0.4 ± 0.2
71 Hedenbergite 23 31 46 1.025 ± 0.002 0.171 ± 0.002 -1.06 ± 0.02 1.24 ± 0.03 0.2 ± 0.10 -0.1 ± 0.11
76 Hedenbergite 18 35 46 1.03 ± 0.011 0.19 ± 0.04 -0.6 ± 0.2 1.2 ± 0.10 0.4 ± 0.11 -0.20 ± 0.07
82 Hedenbergite 1 50 49 1.06 ± 0.02 0.23 ± 0.09 -1.0 ± 0.3      
83 Hedenbergite 0 49 51 1.07 ± 0.02 0.25 ± 0.04 -0.4 ± 0.14 1.21 ± 0.02 0.26 ± 0.05 -0.7 ± 0.2
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pyroxene with Wo > 45 and Fs > 25 hedenbergite. The remaining samples 
with intermediate Wo contents are assumed to be augite. Many of the 
samples locate in the “forbidden zone” where pyroxene exists merely 

as a metastable state under standard temperature and pressure [51]. 
These samples, however, were synthesized under a high-pressure up 
to 22.5 kbar [56], and thus are stable even under standard temperature 

2 µm band Continuum
Sample ID Center (µm) FWHM (µm) Strength C0 C1 Kc

9 2.046 ± 0.004 0.69 ± 0.02 -0.66 ± 0.02 -1.38 ± 0.02 -9.69E-3 ± 0.05 4
11 2.1228 ± 0.0003 0.6938 ± 0.0009 -1.171 ± 0.0014 -0.5536 ± 0.00010 -1.51E-4 ± 0.0007 4
53 2.1798 ± 0.0006 0.712 ± 0.002 -1.133 ± 0.002 -0.3729 ± 0.0002 -1.86E-3 ± 0.005 4
88 2.2022 ± 0.0002 0.6354 ± 0.0007 -0.565 ± 0.0010 -0.8344 ± 0.0002 -5.94E-2 ± 0.0010 4
50 2.2620 ± 0.0006 0.728 ± 0.002 -1.263 ± 0.003 -0.3828 ± 0.00014 -2.20E-4 ± 0.006 4
51 2.29 ± 0.04 0.73 ± 0.12 -0.90 ± 0.07 -0.393 ± 0.006 -4.85E-3 ± 0.12 5
54 2.2860 ± 0.0009 0.706 ± 0.004 -1.321 ± 0.006 -0.556 ± 0.003 -3.05E-3 ± 0.010 5
55 2.3060 ± 0.0005 0.731 ± 0.004 -1.072 ± 0.004 -0.264 ± 0.0014 -3.85E-3 ± 0.009 5
56 2.190 ± 0.0013 0.751 ± 0.009 -0.769 ± 0.008 -0.258 ± 0.004 -2.89E-3 ± 0.02 4
57 2.264 ± 0.0010 0.59 ± 0.011 -0.58 ± 0.010 -1.00 ± 0.02 -6.46E-2 ± 0.014 4
58 2.285 ± 0.0010 0.76 ± 0.02 -0.79 ± 0.02 -0.19 ± 0.02 -2.38E-2 ± 0.03 5
66 2.3139 ± 0.0009 0.665 ± 0.003 -0.804 ± 0.004 -0.24 ± 0.013 -4.77E-2 ± 0.02 5
67 2.328 ± 0.003 0.52 ± 0.02 -0.50 ± 0.02 -0.45 ± 0.05 -9.43E-2 ± 0.09 5
68 2.328 ± 0.0012 0.652 ± 0.008 -0.92 ± 0.011 -0.33 ± 0.03 -5.26E-2 ± 0.06 6
73 2.3078 ± 0.0006 0.494 ± 0.002 -0.427 ± 0.002 -0.952 ± 0.009 -4.66E-2 ± 0.02 4
74 2.312 ± 0.0013 0.614 ± 0.005 -0.682 ± 0.009 -0.50 ± 0.03 -6.63E-2 ± 0.05 5
85 2.290  ± 0.004 0.54 ± 0.02 -0.34 ± 0.02 -0.58 ± 0.05 -1.21E-1 ± 0.09 6
87 2.2882 ± 0.0005 0.638 ± 0.002 -1.058 ± 0.002 -0.4928 ± 0.0002 -7.09E-4 ± 0.002 5
33 2.33 ± 0.07 0.8 ± 0.3 -0.2 ± 0.10 -0.17 ± 0.07 -3.79E-2 ± 0.04 6
36 2.33 ± 0.06 0.2 ± 0.2 -0.07 ± 0.09 -0.86 ± 0.04 -4.20E-3 ± 0.11 6
39 2.30 ± 0.011 0.39 ± 0.03 -0.17 ± 0.010 -0.52 ± 0.07 -4.34E-2 ± 0.14 5
43 2.39 ± 0.013 0.26 ± 0.06 -0.111 ± 0.009 -0.29 ± 0.03 -2.62E-2 ± 0.04 5
75 2.33 ± 0.02 0.59 ± 0.06 -0.44 ± 0.03 -0.29 ± 0.05 -7.15E-2 ± 0.05 6
77 2.310 ± 0.0012 0.574 ± 0.004 -0.338 ± 0.002 -0.344 ± 0.002 -4.53E-4 ± 0.003 4
79 2.297 ± 0.002 0.47 ± 0.02 -0.42 ± 0.02 -1.01 ± 0.03 -8.65E-2 ± 0.09 5
37 2.3 ± 0.3 0.3 ± 0.7 -0.08 ± 0.09 -0.74 ± 0.05 -1.20E-1 ± 0.11 7
70 2.302 ± 0.002 0.58 ± 0.02 -0.63 ± 0.02 -0.32 ± 0.04 -3.74E-2 ± 0.09 6
71 2.302 ± 0.002 0.52 ± 0.013 -0.47 ± 0.010 -0.72 ± 0.03 -1.29E-1 ± 0.07 5
76 2.25 ± 0.02 0.36 ± 0.05 -0.11 ± 0.05 -1.55 ± 0.05 -2.05E-1 ± 0.2 5
82 2.297 ± 0.003 0.39 ± 0.05 -0.16 ± 0.02 -0.40 ± 0.04 -2.36E-2 ± 0.06 7
83 2.35 ± 0.02 0.4 ± 0.4 -0.05 ± 0.02 -0.48 ± 0.04 -9.79E-3 ± 0.06 10

aBased on Morimoto et al.  [50].
bData from Klima et al.  [56]. En: Enstatite; Fs: Ferrosilite; Wo: Wollastonite.
cNumber of Gaussian function.

Table 1: Compositions of synthetic clinopyroxene samples and results of spectral deconvolution calculated using the exchange Monte Carlo method. Errors are estimated 
from 2σ based on ten runs using different series of random numbers.

Figure 2: Clinopyroxene quadrilateral with the sample names. Compositions are measured with an electron probe microanalyzer (EPMA) by Klima et al. [56]. EPMA 
data for sample 088 is not available, thus it is plotted as an open circle based on the initial composition of the synthesis. The nomenclature of clinopyroxene is based 
on Morimoto et al. [50].
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and pressure for a geological timescale [63]. All of the reflectance 
spectra of synthetic pyroxene samples are shown in Figure 3. Spectra of 
pigeonite and augite are shown in Figures 3A-3C. The band minima of 
1 μm absorptions for pigeonite and augite locate slightly shorter than 
1 μm, similar to synthetic orthopyroxene [64]. Their band minima of 
2 μm absorptions, caused by spin-allowed crystal field transition of 
Fe2+ in the M2 site [52,65], locate at longer than 2 μm similar to Fe-
rich low-Ca pyroxene (orthopyroxene). Pigeonite and augite also 
show distinctive 1.2 μm absorption bands, which is attributed to spin-
allowed crystal field transition of Fe2+ in the M1 site [66]. In Figures 3A-
3C, the spectra of pigeonite and augite specimens, which are assigned 
to type-B spectra [52], show distinctive 1 and 2 μm absorption bands. 
On the other hand, some of the high-Ca pyroxene (i.e., diopside and 
hedenbergite) lack distinctive 2 μm absorption bands, as shown in 
Figures 3D and 3E. They are assigned to type-A pyroxene, in which the 
M2 sites are saturated cations other than Fe2+, such as Ca2+ [52]. The 
spectrum of sample 083 has a broad 1 μm absorption band, probably 
due to a composite absorption by M1 bands near 1 and 1.2 μm [56]. 
This type of spectrum, exemplified by sample 083, may not be a suitable 

subject for MGM analyses, since the shape of 1 μm absorption band is 
far from Gaussian. However, since our objective in this paper is to test 
the applicability of the exchange Monte Carlo method and to compare 
the results with those of conventional MGM analyses, we included 
sample 083 in our analysis. Fitting additional small absorption bands 
centered near 0.50 and 0.55 μm in type-B spectra, which are associated 
with spin-forbidden crystal field transitions [66], is beyond the scope 
of this paper, since our focus was to evaluate the applicability of the 
model to two major absorption bands of clinopyroxene centered about 
1 and 2 μm.

Results
Deconvolution with the exchange Monte Carlo method

Deconvolution results of pyroxene spectra are shown in Figure 4. 
The best optimized parameters for 1, 1.2, and 2 μm bands are 
summarized in Table 1. Errors estimated from 2σ based on ten runs 
using different series of random numbers are also shown. Most of the 
spectra are best fitted by 4 to 6 Gaussians with appropriate continuum. 

Figure 3: Visible to near infrared reflectance spectra of synthetic clinopyroxene. (3A) Pigeonite, (3B) Low-Ca augite, (3C) High-Ca augite, (3D) Diopside, (3E) 
Hedenbergite.
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Figure 4: Spectral deconvolution results of synthetic Cpx samples using the exchange Montel Carlo method. Each Gaussian (blue solid lines) and continuum functions 
(black broken lines) compared to the synthetic spectra using the exchange Monte Carlo calculations (red lines) which approximate the original spectra (solid black 
lines). The residual errors between the modeled and the actual spectra are shown as solid black lines at top in each figure (offset +0.1 for clarity).
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For example, sample 053 is fitted with 4 Gaussians with their centers 
locating at 0.091, 0.965, 1.258, and 2.180 μm and a nearly constant 
continuum. For pigeonite and augite, our results show that the spectra 
are mainly fitted with 3 Gaussians with their centers locating at about 1, 
1.2, and 2 μm, and with one Gaussian in the wavelength region ranging 
from ultraviolet to visible and with a continuum being nearly constant 
or gradually decreasing toward shorter wavelengths (Figures 5a-5d). 
Each Gaussian function could be physically interpreted to represent 
spin-allowed crystal field transitions with 1 μm for Fe2+ in the M1 and 
M2 sites, 1.2 μm for Fe2+ in the M1 site and 2 μm for Fe2+ in the M2 
site (Figures 6a-6d). A Gaussian in the wavelength region ranging 
from ultraviolet to visible could represent oxygen-metal charge 
transfers which are centered within the ultraviolet region [34] (Figure 
7). Although additional small bands centered near 0.7 μm may be 
necessary to improve the fitting such as shown in sample 054, we find 
that the additional band does not significantly affect the band center for 
1, 1.2, and 2 μm absorptions. Our deconvolution results for pigeonite 
and augite are consistent with those by Klima et al. [56].

Deconvolution analyses for type-A spectra including some of the 
diopside and hedenbergite are not as straightforward as type B, since 
the 1 μm bands are too narrow or too wide for a single Gaussian to fit, 
and some of the 1 and 2 μm bands are asymmetrical. The non-Gaussian 
shape of type-A spectra results in larger errors of band parameters when 
compared to type-B spectra (Table 1). Also, more Gaussian functions 
are needed to fit type-A spectra, reflecting the complex shape of the 

spectra. For example, samples 037 and 082 were fitted with 7 Gaussians, 
while sample 083 with 10 Gaussians of which 4 Gaussians are centered 
below 0.5 μm. Comparing our fitting results of sample 082 and 083 with 
those reported by Klima et al. [56], we find that the exchange Monte 
Carlo method yields more symmetrical configurations for Gaussians 
in 1 μm band. We also find that our optimal deconvolution results for 
samples 082 and 083 do not require the very weak absorption bands 
which were assigned as M2 absorptions in Klima et al. [56]. These M2 
absorptions in Klima et al. [56] are significantly weak compared with 
the strongest M1 absorption in 1 μm band, and the M2 absorption 
near 1 μm was mostly covered with the M2 absorptions. For type-A 
spectra, it is difficult to resolve the discrepancy between the results 
obtained by Klima et al. [56] and this study, however, since both of 
the modeling results can reproduce the observed spectra almost 
equally well. Nevertheless, the large errors of band parameters for 
type-A spectra indicate that caution should be taken when performing 
spectral deconvolution for type-A spectra using MGM. Thus, being 
able to estimate errors in the fitting results based on random initial 
parameters is also an advantage of the exchange Monte Carlo method 
for assessing the statistical robustness of fitting results, which has not 
been performed by previous MGM analyses.

Band shift as functions of Ca, Fe, and Mg Contents

The center positions of Gaussian functions corresponding to 1, 1.2, 
and 2 μm absorptions are summarized in Table 1. Position shifts of 1 

Figure 5: Center wavelengths of 1 µm band of Cpx samples as a function of the Mg, Fe and Ca contents. (a) band center as a function of the Fe and Ca contents. 
(b) band center as a function of the Fe content. Broken lines show linear approximations for pigeonite (y = 0.00057x + 1.02 where y is the band center in µm, x the 
Fe content) and diopside-hedenbergite (y = 0.00054x + 0.93). (c) band center as a function of the Mg content. Approximate lines for pigeonite (y = -0.00059x + 1.05) 
and diopside-hedenbergite (y = -0.00058x + 0.98) are shown. Note that sample 043 was omitted as an outlier from the linear approximation of diopside-hedenbergite 
in (b) and (c). (d) band center as a function of the Ca content.
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μm band as functions of Ca, Fe, and Mg components (solid solution) 
are shown in Figure 5, while position shifts of 2 μm band are shown in 
Figure 6. Our results are found to be consistent with those of Klima et 
al. [56], suggesting that the exchange Monte Carlo method developed 
in this study is able to extract results similar to those obtained by 
conventional MGM analysis.

The band centers of 1 μm absorption have a linear dependence on 
Wo (Ca/(Mg+Fe+Ca) molar%) contents, moving to longer wavelengths 
with increasing Wo. For diopside and hedenbergite with Wo ≈ 50, the 
band centers of 1 μm absorption largely scatter within the range of 
1.03-1.08 μm. Pigeonite also shows a large variance as a function of Wo 
component, however, the band centers of 1 μm absorptions have a linear 
dependence on En (Mg/(Mg+Fe+Ca) molar%) or Fs (Fe/(Mg+Fe+Ca) 
molar%) components. The band centers of 1 μm absorption of augite 
scatter widely as a function of Fs content, and distinct dependence on 
Fs content were not observed. For diopside and hedenbergite samples, 
with the exception of sample 043, the band centers of 1 μm absorptions 
seem to have a linear dependence on Fs content, moving to longer 
wavelengths with increasing Fs content. En content seems to have no 
obvious influence on the band center of 1 μm absorption, except for 
pigeonite. We find that pigeonite, augite and diopside-hedenbergite 
can be separated with the use of 1 μm band position as a function of Fs 
or En content, as shown in Figure 5.

The band centers of 2 μm absorption seem to follow an 
approximation line on the space of Fs and Wo contents (Figure 6a). 
The band centers of 2 μm absorption for pigeonite and augite move to 

longer wavelengths with an increase of Wo content. The average center 
wavelengths of 2 μm absorptions for diopside and hedenbergite remain 
almost constant at around 2.3 μm, but they scatter significantly around 
the average value, reflecting the asymmetry shape of 2 μm absorptions 
for some of the type-A spectra. The band centers of 2 μm absorptions 
of pigeonite move longer wavelengths with increasing Fs content. 
Overall, the band center of 2 μm absorption is separated between low-
Ca clinopyroxene (pigeonite) and high-Ca pyroxene (augite, diopside, 
and hedenbergite) with a gap from 2.20-2.25 μm. Klima et al. [56] 
interpreted the gap to be a transition zone of mineral structure between 
P21/c and C2/c. Our results generally agree with their interpretation 
with one exception, i.e., sample 056 is assumed to be pigeonite in Klima 
et al. [56].

The diagram between 1 µm and 2 µm band positions is shown in 
Figure 7. Generally low-Ca pyroxene locates in a shorter wavelength 
region, while high-Ca pyroxene locates in a longer wavelength region 
[19,41,52,56]. Our results are consistent with previous studies based on 
MGM analysis [41,56].

Discussion
In order to avoid the local minimum problem, a Bayesian spectral 

deconvolution method with the exchange Monte Carlo algorithm has 
been applied to visible to near infrared reflectance spectra of synthetic 
Cpx with wide ranging Mg, Fe, and Ca contents. The results obtained 
in this study generally agree well with conventional MGM analyses. 
Here, we discuss some potential interpretations for the deconvolution 

Figure 6: Center wavelengths of 2 µm band of Cpx samples as a function of the Mg, Fe and Ca contents. (a) band center as a function of the Fe and Ca contents. (b) 
band center as a function of the Fe content. (c) band center as a function of the Mg content. (d) band center as a function of the Ca content.
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results, as well as the discrepancies with previous results obtained by 
MGM analyses.

Fitting type-A spectra

Type-A spectra generally appear in high-Ca pyroxene such as 
diopside and hedenbergite, although previous studies suggest that there 
is no simple relationship between chemical composition of natural 
pyroxenes and type-A spectra [20,52,53]. The spectral data of samples 
076, 037, 083, and 036 are categorized in type-A, which lack distinctive 
2 µm bands. Since the absorption near 2 µm is mainly caused by spin-
allowed crystal field transition of Fe2+ in the M2 site, the absence of 2 µm 
band from type-A spectra is interpreted as a result of the replacement 
of Fe2+ in M2 site by other cations such as Ca2+ and Fe3+ [52,67]. On 
the other hand, spin-allowed crystal field transition due to the M1 site, 
with the absorption center locating near 1 and 1.2 µm, appear strong, 
and the two bands are combined to yield single broad band around 1 
µm. It is difficult to fit type-A spectra with manually provided initial 
parameters (e.g., center, strength of Gaussian) using a conventional 
MGM algorithm, since the final solutions directly depend on the initial 
parameters, especially for the broad 1 µm band due to its non-Gaussian 
shape [56]. Although it is still difficult for the exchange Monte Carlo 
method to delineate the optimal number of Gaussians, we find that the 
center wavelengths of Gaussian functions for the broad 1 µm band do 
not move significantly with varying K. For example, the broad 1 µm 
band of sample 083 was fitted with two major Gaussian functions which 
could correspond to crystal field absorptions due to the M1 site whose 
center wavelengths of absorptions locate near 1 and 1.2 µm. Although 
the estimated errors are large, the overall result is consistent with 
previous deconvolution analyses of type-A spectra [53,56], suggesting 
that even with manually provided initial parameters, previous analyses 
obtained statistically optimal results. Since manually fitting type-A 
spectra is more difficult than type-B spectra, the exchange Monte Carlo 
method can be a useful tool for future deconvolution analysis for type-A 
spectra, of which are likely to appear in high-Ca pyroxene [52,53]. In 
addition, natural Cpx incorporate many minor compositions such as 
Al, Ti, Mn and Cr [49,50]. Such minor elements in natural Cpx yield 
more complex spectra than synthetic Cpx, thus the scheme presented 
in this paper can be useful to deconvolve such spectra.

1 µm band position vs. Ca-Fe-Mg content

Figure 5a indicates that the Cpx seem to follow a linear relationship 
among the 1 µm band position, with Fs and Wo contents. As shown 
as broken lines in Figures 5b and 5d, linear relationships are observed 
for pigeonite and diopside-hedenbergite with their Fs or En content. It 

should be noted that for diopside-hedenbergite, linear approximation 
was performed for all of the samples except sample 043. Sample 043 was 
omitted as an outlier because the spectrum shows higher reflectance and 
weaker absorptions compared with other samples, generally suggestive 
of the effect of glass [16,56,68]. Although it has been well documented 
for low-Ca pyroxene that the linear dependence of 1 µm band centers 
on Fs or En content [19,41,52,54,56], the relationship between the 
1 µm band center and Fs or En content for high-Ca pyroxene has been 
poorly constrained by MGM analyses. Clénet et al. [41] analyzed only 
two high-Ca natural pyroxene samples in the diopside-hedenbergite 
region, thus no clear relationship has been derived. Although Klima 
et al. [56] analyzed 13 high-Ca pyroxene samples in the diopside-
hedenbergite region; they observed no clear relationship between the 
1 µm band center and Fs or En content. Our analyses show that the 
1 µm band center of high-Ca pyroxene (i.e., diopside and hedenbergite) 
depends on Fs or En content with the band center moving longer 
wavelengths with increasing Fs content. This tendency is similar to the 
relationship between the 1 µm band center and the Fe/Mg ratio of Ca-
free orthopyroxene [64]. For Ca-saturated synthetic Cpx in which most 
of the M2 site is dominated by Ca2+, varying Fe/Mg ratio would affect 
only Fe/Mg in the M1 site because the M2 site is dominated with larger 
Ca2+ cations. Thus, the change of Fe/Mg would appear only in the 1 µm 
band center caused by a crystal field transition in the M1 site, but not in 
the 2 µm band center caused by the absorption due to the M2 site. We 
note, however, that large errors are included in the modeling results for 
type-A spectra (Table 1), thus additional data is necessary to confirm 
our interpretation.

Band center in three-dimensional spaces

As mentioned above, both the 1 µm and 2 µm bands seem to plot 
on approximate lines in the three-dimensional (3D) space of Fs-Wo 
content (Figures 5a and 6a). Low-Ca pyroxene samples (pigeonite) 
used in this study locates in the high-Fe and low-Ca regions with both 
the band centers being at shorter wavelengths. On the other hand, 
high-Ca pyroxene samples (diopside and hedenbergite) used in this 
study locates in the low-Fe and high-Ca regions with both the band 
centers being at longer wavelengths. Augite with intermediate-Wo 
contents distribute a in a linear trend between low-Ca and high-Ca 
pyroxene. Each mineral group displays three distinct clusters on these 
3D spaces. The linear trend seen in both 1 µm and 2 µm bands could 
be understood from a crystallographic point of view. Whereas high-Fe 
and low-Ca Cpx samples contain more Fe2+ cations in both the M1 and 
M2 sites, leading to a decrease of the bond lengths due to the smaller 
size of Fe2+, which results in an increase in the crystal field splitting 
[34,69,70], low-Fe and high-Ca Cpx samples have larger Ca2+ cations, 
which dominate the M1 and M2 sites, leading to an increase in the 
bond lengths and a decrease in the crystal field splitting.

Application to future remote reflectance spectroscopy

Despite requiring meticulous parameter adjustment and prior 
information of mineralogy, MGMs using gradient descent method 
have been applied to reflectance spectra not only of laboratory data but 
also remote sensing data of the Moon [71], Mars [4,6,72-75], and some 
asteroids [76,77]. By applying the exchange Monte Carlo method to 
spectra of synthetic Cpx samples, we have shown that it is able to yield 
results consistent with both conventional gradient descent methods 
and crystal field theory. This means that the exchange Monte Carlo 
method could be applicable to at least some of the previous remote 
sensing data which have been analyzed using conventional MGM 
methods. Because the application of MGM analyses has been limited 
due to meticulous parameter adjustment, the exchange Monte Carlo 

Figure 7: 1  µm band and 2  µm band diagram of synthetic Cpx samples 
calculated using the exchange Monte Carlo method.
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method may have a potential to expand the applicability of MGM to a 
variety of space/ground-based observations, especially when we cannot 
obtain prior information of the target body beforehand. Remote 
sensing data of terrestrial reflectance spectroscopy have been validated 
with various reference spectra observed by in situ sample analyses, 
increasing the confidence of interpretation of remote sensing data 
[12,17,78,79]. However, such an analysis is not always available due 
to various geological contexts. The situation is more serious for space/
ground-based observations of small bodies in the solar system, because 
reflectance spectra are the only available compositional information for 
most of the small bodies such as Phobos, Deimos [80,81] and asteroid 
1999 JU3 which is the target of Japanese space mission Hayabusa 2 
[82]. In fact, asteroids are clustered based solely on reflectance spectra, 
although their detailed mineral compositions are poorly constrained 
[83]. Considering the large number of small bodies in the solar system, 
it is unlikely to send probes to each small body to conduct in situ 
sample analysis or sample return. Given the limited data and resource, 
interpreting reflectance spectra without assuming a priori information 
is essential not only for planetary science but also for mission planning. 
The exchange Monte Carlo method could be significantly useful under 
such circumstances, where meaningful compositional information 
other than reflectance spectra is not available.

Conclusions
We applied a Bayesian spectral deconvolution method with the 

exchange Monte Carlo algorithm to visible/near infrared reflectance 
spectra of synthetic clinopyroxene of diverse compositional variation, 
in order to avoid the local minimum problem and to remove the 
arbitrariness originated from initial parameters, inherent in the 
previous Modified Gaussian model. Our results indicate that the 
exchange Montel Carlo method is able to yield the consistent results 
obtained by conventional Modified Gaussian model. Since our model 
does not rely on a preliminary knowledge of the reflectance spectrum 
of mineral, the results suggest that previous spectrum analyses have 
obtained statistically optimal results. The successful application of our 
model to reflectance spectra of minerals indicates that this model could 
be applied to an automatic deconvolution analysis for a large spectral 
database, especially useful for space missions when preliminary 
knowledge of mineralogy is not available. Given the recent and future 
advancement of space missions, the exchange Monte Carlo method 
could be a useful tool for analyzing a wide range of minerals and remote 
sensing data of rocky bodies in the solar system.
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