
A Review of Past Software Strategy and Secure Software Engineering for Modern 
Cybernetics

Faisal Nabi*

Department of Information and Cybersecurity, University of Southern Queensland, Toowoomba, Australia

ABSTRACT
Secure software engineering is always a subject of debate among researchers and scientists. Some of have experience

with solutions through life cycles some of the findings originated from attacks by proposing software engineering-

based taxonomy. This paper considers the past and present challenges of secure software engineering. We will review

all aspects of software engineering and then evaluate the right path from the present to the future of secure software

engineering. Highlight the origin of flaws, errors and faults in software and how can we capture it in the initial stages

of lifecycle of software development.

Keywords: Software; Security; Flaw in design; Privacy; Secure software; SDLC security

INTRODUCTION
Take into account the situation of a manager or technical lead
who is in charge of creating a new "connected" software product,
such as a server application for the Web.

This linked device will leverage Internet infrastructure and/or
technology to fulfil one or more of its requirements. The topic of
security comes up early in the development cycle, perhaps during
the specification of requirements. The management has been
primarily focused on functional requirements and features, while
security has received minimal attention. This fictitious situation
raises a number of pertinent issues that have direct implications
for Secure Software Engineering (SSE):

• Are we really going to be attacked? Could an attack on the
software actually happen?

• Aren't network administrators responsible for security? How
do the vulnerabilities in the software we're creating get
opened?

• Existing solutions that we could enhance to offer the required
defences?

• Should we be alarmed? What impact would a security breach
have on our company, our products, and/or our clients?

• What security risks should we try to reduce as a development
team? What steps should we take to create secure software?

• How can we tell if we're successfully enhancing the security of
our software?

These six questions are due to insecure process of software
coding, design and reading requirement specification as compare
to function presented to customers and solution finders. The
questions are based on actual interactions the author has had
with managers and other developers; the situation is made up.
Furthermore, works like confirm the validity of the
aforementioned queries and their industry wide generalizations.
A software engineering manager or lead developer should be
better prepared to respond to the questions above after reading
this article. This paper's main contribution is to compile and
analyze SSE research, making it more publicly available to an
audience of practitioners, which is long needed (given the
current state of affairs). A fundamental question is, “Will we
really be attacked? Or, could the software really be at risk for
attack?” First, this question should not be dismissed lightly, since
at least theoretically any money, time, or other resources devoted
to security will be completely wasted if you are never attacked.
Second, this question is not trivial; it’s difficult to quantitatively
determine attack “attractiveness.” Intuitively, factors such as
connectivity, popularity, attack difficulty, and market
penetration play a role in estimating how attractive your
company or product is to would-be attackers, But it's impossible
to directly link these elements to the likelihood of an assault (i.e.,
used in risk analysis) [1-2] That being said, the assault probability
is probably not 0.

Information Technology & Software
Engineering Review Article

Correspondence to: Faisal Nabi, Department of Information and Cybersecurity, University of Southern Queensland, Toowoomba, Australia; E-
mail: faisal.nabi@yahoo.com

Received: 06-Dec-2022, Manuscript No. JITSE-22-20647; Editor assigned: 08-Dec-2022, PreQC No. JITSE-22-20647 (PQ); Reviewed: 22-Dec-2022, 
QC No. JITSE-22-20647; Revised: 12-May-2023, Manuscript No. JITSE-22-20647 (R); Published: 19-May-2023, DOI: 10.35248/2165-7866.23.13.

Citation: Nabi F (2023) A Review of Past Software Strategy and Secure Software Engineering for Modern Cybernetics. J Inform Tech Softw Eng. 
13:334.

Copyright: © 2023 Nabi F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 1

334



What SSE is and is not is defined in this section

Simply put, developing secure software does not always include
developing security software. SSE aims to use procedures,
principles, and techniques to create software that is devoid of
vulnerabilities and always maintains a secure state under attack
but still manages to serve authorized users. As was already said,
SSE does not always involve designing security software.
Although SSE techniques can be used to create security
software, they can also constructing any kind of programme.
Additionally, as will be covered momentarily, it is becoming
more crucial to consider using SSE approaches with application
software.

Software faults always cause of cybersecurity, this is another
reason of software security this needs to revive. It is important to
review cybersecurity issues, attacks and fault hoop wholes. We
provide first technique and definition and then covers the single
software error, fault flaw to failure of system based software
applications.

The goal of cyber-security is to protect networks, computers,
programmes, and data from unauthorized access and attacks.
This section introduces cyber-attacks and provides terminology
for them. Describing cyber-threats and cyber-security systems.
The second section proposes a classification of cyber-security
mechanisms that will be useful in assessing their impact on
privacy.

Cyber-attack classification

The goal of the attack is a first dimension for classifying an
attack. This is frequently related to how an adversary monetizes
the attack (for example, by stealing information and selling it to
advertisers or other third parties) criminals. Overall, the attack
objectives are classified as one of the following:

• Stealing information, such as device data, media files, and
user credentials; this action is typically carried out by spyware
malware

• Tracking user information, , monitoring users' sensitive data
(e.g., locations, activities, or health-related data); this action is
typically carried out by mobile malware

• Gaining control of a system, as trojans, botnets, and rootkits
do.

LITERATURE REVIEW

Structure of paper and objective

Following is an outline for this paper. Following a detailed 
definition of vulnerabilities, a description of their causes and 
how they relate to threats, and a discussion of ongoing 
classification efforts, a high-level overview of the SSE field and 
its associated issues is provided. Threat and vulnerability 
relationships can be utilized to specialize a conventional 
operational risk assessment calculation for software, as shown by 
the discussion of threats and vulnerabilities into the issue of risk 
analysis for computer and network security in general.

Research background

Many software engineers have a propensity to see computer and 
network security as an operational concern that the IT

Nabi F

Currently, there is a feature centered development culture that 
frequently pays little attention to security concerns, at least in 
the commercial sector [3].

To see that security has once again been neglected during the 
software development life cycle, one simply needs to glance at 
the never-ending stream of news headlines highlighting the most 
recent exploits (SDLC) The problem isn't that businesses don't 
care about security; rather, it's that managers and engineers 
don't know how software development activities relate to end-
product security [4,5].

For instance, the US-CERT vulnerability bulletins and NIST 
national vulnerability database both strongly suggest that the 
right question is not instead of asking "Will I be attacked?" ask 
"How will I be attacked?"

If we've learned anything from the past, it should be that the 
software we create will be utilized in hostile contexts, frequently 
out of our control, where it will be stressed to the breaking point 
and employed in unexpected ways to achieve nefarious goals. 
This has never been more accurate than it is right now, and 
things aren't going any better, especially for connected software.

Although firewall technology, operating systems, and secure/
encrypted connections have all seen significant advancements 
[6].

The software itself has been the primary cause of numerous 
security flaws. Experts expect that attackers will increasingly 
target the application layer directly due to advancements 
achieved in other areas such as operating systems, firewalls, and 
secure communications as well as the fact that attackers will take 
the easiest route [7].

Connectivity and technological convergence in embedded 
devices are other factors driving the rising interest in SSE.

Especially wireless phones. Numerous desktop programmes, 
including web browsers, email, media players, and instant 
messaging services, are integrating with mobile platforms. 
Numerous of these programmes have ongoing, widely known 
security problems. The prevalence of wireless phone users and 
the convergence of venerable desktop functions afflicted by 
security need the specification, design, and implementation of 
these features. More thoroughly tested to prevent the widespread 
security vulnerabilities that afflict desktop systems at the 
moment.

Software security is always a burning issue and need such a 
consideration to protect of its early stage of requirement 
engineering to process of SDLC level and need to reconsider 
SDLC and need to point out stages of security and insecurity. 
Although the material and concepts presented are generally 
applicable, this article is primarily aimed for software project 
managers and developers in the commercial sector. To be more 
precise, the consumer electronics and consumer software 
industries were taken into consideration when writing this essay. 
This paper's main contribution is to compile and analyse SSE 
research, making it more publicly available to an audience of 
practitioners, which is long needed (given the current state of 
affairs).

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 2



department or network administrators manage (even those with
years of experience) [8]. In the IT industry, by setting up
firewalls, updating virus definitions, and using the most recent
patches, security assurance can be attained. Keep in mind that
firewalls and Patches, according to Hoglund and McGraw, are
only "band-aid" fixes for software flaws. The software
development context is the ideal framework for addressing the
primary cause of the majority of computer security failures.

A nearly automatic response when security is brought up in the
context of development is to consider specific security features
like cryptography, authentication, and copy protection and how
the development team may incorporate or add software
components that offer these security capabilities. Because many
of these components:

• Frequently employ advanced and tested encryption.
• Frequently already exist, there is a propensity to use add-on

security components.

Given by the underlying Operating System (OS) platform,
packed, or packaged. Simply put, it makes financial sense to
reuse such components in terms of cost and security assurance.

The development team must understand that these
supplemental elements are not a security panacea, though.
Simply "bolting-on" security software will not provide security
assurance. The specifications, design, code, and chosen security
may be affected by implementation language in general.

Multiple software categories collaborate in a complete system,
such as a web server, and are packaged in several logical
components. And frequently arranged in layers (e.g., OS/
Kernel/Driver, network, and application). An opportunity for
an attacker arises from a vulnerability in any component at any
layer. Any layer of the system is vulnerable to attack, and
frequently the weakest layer will be the target. In fact, since
much research has led to security improvements in the operating
system, networking, and cryptography layers, attackers are
increasingly targeting the application layer. Secure software
engineering is concerned with engineering software (all types)
such that the end product provides some level of security
assurance. SSE is predicated on fact that attackers frequently
exploit vulnerabilities originating within the Software
Development Life Cycle (SDLC); during requirements, design,
implementation, or are missed during verification [9]. Section 3
more deeply explores and defines the term vulnerability and
associated high-level concepts.

The safe sector of software engineering is currently conducting
research on security based on: 

Current studies in the secure branch of software engineering
concentrate on security focusing on:

• Developer training,
• Processes used in software development,
• Best practices,
• Cases of requirements and abuse,
• The classification and listing of threats,
• Design and architecture,
• Model based testing.

According to scholarly research that has already been done and 
that is still needed, it appears that many of our upcoming 
technical issues will be related to requirements, design, and 
measurements. Issues facing the commercial sector involve 
effectively applying academic research achievements (particularly 
those related to decreasing implementation level faults) in real 
world contexts.

According to scholarly research that has already been done and 
that is still needed, it appears that many of our upcoming 
technical issues will be related to requirements, design, and 
measurements. The business sector faces difficulties in 
effectively using completed academic research (mainly focused 
on eliminating implementation level faults) in practical ways.

The gap between academic advancements and the state of 
industry practice in all fields, and implementation in particular, 
is still very vast.

About 50% of all exploited vulnerabilities are implementation 
level flaws; with the remaining 50 percent resulting from needs 
and design flaws. Even if the implementation tools were more 
commonly used, only a small proportion of developers (in 
comparison to the majority) would be skilled in their use [10].

Vulnerability indifferent cause and shapes

Vulnerabilities result from defects. The defects may be easily 
identifiable, code level bugs resulting from implementation, or 
may result from more deeply seated issues/oversights (i.e., flaws) 
in the design or requirements. The following list enumerates 
various phases of the SDLC and briefly highlights the ways in 
which vulnerabilities manifest:

Due to insufficient or frequently absent security centric 
requirements throughout the requirements definition phase. 
Requirements might not take malevolent and unanticipated uses 
into account, security requirements are frequently expressed as 
non-functional requirements, frequently mentioning a specific 
technology to utilize rather than identifying dangers and 
describing the threat environment. Unintentional/malicious 
applications of the software may not be addressed in subsequent 
stages of the software development life cycle, which is a 
coincidence.

Error handling, policy enforcement, and other security-related 
cross-cutting concerns were not sufficiently taken into account 
during the design phase, and as a result.

Component composition it’s also possible that security wasn't 
even considered at all when designing something.

The implementation phase, which is caused by the use of non-
type safe languages, unsecured Application Programming 
Interfaces (APIs), poor use of secure APIs, seeding by malicious 
developers, and a lack of secure coding practices, or simply 
insufficient developer education with regard to code-level flaws 
that attackers typically exploit.

Failure to detect vulnerabilities established in the requirements, 
design, and implementation phases during the verification/
testing phase. Testing staff might lack the architectural expertise 
and/or malevolent abilities required to identify security flaws.

Nabi F

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 3



Even security testing technologies are now restricted to black-box 
assaults and may not work effectively with the system being 
tested.

The maintenance phase, which is brought on by erroneous 
deployment configurations or flaws that updates and bug 
patches cause. Since patches are often generated in 
maintenance, vulnerabilities with origins there have a lot in 
common with those with origins in earlier periods. 
Vulnerabilities might arise in many of the same places as they 
did in earlier SDLC phases because the patch is a software 
product.

Vulnerabilities can infiltrate the software in a variety of ways and 
at different stages. In general, the sooner in the SDLC the 
vulnerability is discovered.

The more deeply introduced (or entrenched in), the more 
challenging (and expensive) it would be to fix the associated 
flaw. For instance, it might be relatively simple to fix a one-line 
code problem, yet it would be nearly impossible to "apply" a 
"patch" in the classic sense to a flaw that was deeply ingrained in 
the design. In this situation, a total redesign might be necessary 
to fix the design problem.

Threats are relative to their target vulnerabilities, as the germ 
metaphor shows. Threats are a warning that an attacker might 
try to take advantage of a target's vulnerability. Figures 1 and 
2 depicts a threat t, that aims at vulnerability, V that can 
be exploited.

Because exploited vulnerabilities are frequently localized around 
input/output interfaces and the software/system boundary (e.g., 
files, communication channels, and system resources like 
memory and CPU; it is important to note that the illustration 
places V close to the boundary.

DISCUSSION
Threats to software are only important to take into account 
when there are enabling vulnerabilities (or are likely to be 
present) in the intended use. Threats' potential for harm is 
correlated with the effects of exploited vulnerabilities. Threats 
that target the associated vulnerabilities cease to be a worry, and 
the programme is no longer at risk as a result of those specific 
threats. Figure 3 displays this relation. Remember that the 
vulnerability could be a typical code-level problem (like a buffer 
overflow) or a latent design flaw (perhaps an oversight spread 
from requirements) (Figures 1-3).

Figure 1: Threat target T vulnerability V.

Figure 2: Software immune to threat t.

Figure 3: Environment shields vulnerability V from threat t.

This is the research work previously done to explain the
vulnerability and its birth related work however this is
incomplete work to exemplify the birth of vulnerability in
software and design of software base applications.

The modern work of R and D on the software birth life cycle
research is no for more advance.

Modern evidence of software vulnerability birth
cycle

Current research is exemplified that design and flaws are logical
issues of software function and requirements from beginning of
its process life cycle. Therefore, need of comprehensive life cycle
is desired from birth to final phase of product for developers
and practitioners. There is need of a taxonomy based life cycle.

As stated in the introduction, our primary goal is to build a
software taxonomy of logical weaknesses in distributed multiple-
tier information systems' application layer. Various papers and
texts have established a number of approaches to evaluate the
security of technical infrastructure for information and
communication, which serve as a springboard for software
application.

In the component based software applications and systems, we
propose the SVAM for the main computer protection attributes
'Five Columns,' as mentioned, showing the life cycle of the
vulnerability and classifying the key point where the
vulnerability covers two or more delicate vulnerability classes,
such as 'Technical and Logical,' as defined in Figure 4 (Table 1).

Nabi F

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 4



Figure 4: Software vulnerability birth life cycle.

Table 1: Attack pattern properties.

Pattern name and classification A unique, descriptive identifier for the pattern

Attack prerequisites What conditions must exist or what functionality and what 
characteristics must the target software has, or what behavior must it 
exhibit, for this attack to succeed?

Description A summary of the assault including the course of action

Related vulnerabilities or weakness What specific vulnerabilities or weakness.

Method of attack Which sort of attack vector utilized (e.g. malicious data entry, 
maliciously crafted file, protocol corruption)?

• Coding faults are composed of faults in the software
development process that are introduced during software
development. These faults are the cause of errors in
programming logic and missing or incorrect requirements.

• Operational faults operational faults are called incorrect
software deployment. In most situations, failures can be
categorized as operational faults according to Aslam, 1995.

• Environment faults occur when a programmer does not
completely understand the limitations of the usable right
modules or the interactions between them according to Krsul,
1998.

• The source of this taxonomy is based on Faisal Nabi 2021
research work, the given below is an overview of vulnerability
and its causes (Figure 5).

This section discussed the role of threats and vulnerabilities in 
risk assessment. As previously stated, risk assessment is not 
trivial, despite its conceptual simplicity. In practice due to the 
difficulty of quantifying traditionally qualitative and intangible 
factors (e.g., target 19 secure software engineering attractiveness 
and reputation loss). The definition and discussion of threats, 
attacks, and vulnerabilities, as well as the treatment of risk 
assessment as explained in Figure 4 and Figure 5 to completely 
explain the software defects and its birth lifecycle in the light of 
modern research.

A comprehensive vulnerability taxonomy is detailed here for 
researcher and practitioners (Figure 6).

Nabi F

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 5

Figure 5: Taxonomy of software vulnerabilities causes 2021 
Faisal Nabi, et al.



Figure 6: Security based software vulnerability lifecycle.

Ap, is the probability of a successful attack,

L, is the loss resulting from a successful attack, and

M, is the cost of the mitigation countermeasure.

Applying the relationship among attack, threat, and 
vulnerability (discussed in the equation can be better adapted
for software security risk analysis. Realizing that Ap can be 
rephrased as the probability that an attacker will successfully 
exploit vulnerability V to realize a given threat, and that threats 
target vulnerabilities, the formula has been modified to 
approximate threat probability.

CONCLUSION
This paper provided a high-level overview of SSE in an attempt 
to answer practical questions about the field. Keeping 
vulnerabilities from being introduc

The challenge SSE rises to meet is to patch vulnerabilities prior 
to release rather than after the fact. Outside of the context of 
formal methods and automated theorem provers (which typically 
necessitate significant investment and expertise), proving the 
security of a typical software product necessitates testing for 
negative consequences (e.g., there are no vulnerabilities). 
Because testing for a negative can entail indefinite testing time, 
it is critical to incorporate security from the start and make cost-
effective decisions about when to stop testing.

A key overarching practical consideration is how to approach 
vulnerability prevention in a cost effective manner. This is not a 
novel thought.

SSE is addressed by risk analysis in general, which is based on 
the fact that some level of planning and up-front expenditure is 
required to obtain security assurance. In general, risk analysis 
must balance the upfront costs of vulnerability protection 
against the likelihood that attackers will target those 
vulnerabilities. The more precise the risk analysis, the better the 
contingent business decisions will be.

This paper discussed risk analysis aspects from previously 
studied fields, namely software engineering and computer/
network security, and provided an example of how the concepts 
translate to software.

REFERENCES
1. Warwick K. The promise and threat of modern cybernetics. South

Med J. 2007;100(1):112-125.
2. Glanville R. Cybernetics: Thinking through the technology. In Trad

Sys Theory. 2013;57-89.
3. Wang Y, Kinsner W, Zhang D. Contemporary cybernetics and its

facets of cognitive informatics and computational intelligence. IEEE
Trans Syst Man Cybern B Cybern. 2009;39(4):823-833.

4. Yang H, Chen F, Aliyu S. Modern software cybernetics: New trends.
J Syst Softw. 2017;124:169-186.

5. Levit GS, Hossfeld U, Olsson L. From the “modern synthesis” to
cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his
research program for a synthesis of evolutionary and developmental
biology. J Exp Zool B Mol Dev Evol. 2006;306(2):89-106.

Nabi F

This taxonomy explains the details of software based causes and 
defects that may violates the boundary condition of a software 
and it application specially component based software 
applications.

In light of our findings, we propose a classification and 
characterization of the two categories of vulnerability problems/
issues mentioned above (technical vs. logical vulnerabilities). 
These are classified as previously stated in the classification 
of each weakness based on its attack process (attack 
pattern technique). As a result of retaining the classification 
of two distinct vulnerability types, we created a classification 
tree that includes all sub-class attacks within each 
vulnerability class. A new taxonomy with detailed 
classification is shown here, distinguished by its distinct 
signature in the application layer.

Analysis of problem based discussion

Prioritizing software entails calculating a variant of the "value of 
protection” formula. The formula for "value of 
protection" represents a traditional framework for assessing 
computer/network security risks, classified as a "financial loss 
methodology. The original formula is as follows:

VoP=R-M, or

VoP=(Ap×L)-M

Where;

VoP, is the value of protection (aka priority),

R, is the risk, calculated as (Ap x L),

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334

6

https://sma.org/southern-medical-journal/article/the-promise-and-threat-of-modern-cybernetics/
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203753026-10/cybernetics-thinking-technology-ranulph-glanville
https://ieeexplore.ieee.org/document/4810135
https://ieeexplore.ieee.org/document/4810135
https://www.sciencedirect.com/science/article/abs/pii/S0164121216301595
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.21087
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.21087
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.21087
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.21087


6. Glushkov VM. Thinking and cybernetics. Russ Stud Philos.
1964;2(4):3-13.

7. Eglash R. African influences in cybernetics. The cyborg handbook.
1995:17-27.

8. Warwick K. Cybernetics: The modern science of systems. Kybernetes.
1994;23(7):76-85.

9. Eglash R. Cybernetics and American youth subculture. Cult Stud.
1998;12(3):382-409.

10. Yang H, Chen F, Aliyu S. Modern software cybernetics: Trends with
new cybernetics. J Syst Softw. 2016.

11. Trokhimchuck PP. Problems of complexity in modern cybernetics
and computing science and ways of their resolutions. Bulletin of
Kherson National Technical University. 2016;3(58):292-296.

Nabi F

J Inform Tech Softw Eng, Vol.13 Iss.2 No:1000334 (MRPFT) 7

https://www.tandfonline.com/doi/abs/10.2753/RSP1061-196702043
https://www.emerald.com/insight/content/doi/10.1108/03684929410068352/full/html
https://www.tandfonline.com/doi/abs/10.1080/095023898335474
https://www.sciencedirect.com/science/article/pii/S0164121216300656
https://www.sciencedirect.com/science/article/pii/S0164121216300656
https://elibrary.ru/item.asp?id=27496514
https://elibrary.ru/item.asp?id=27496514

	Contents
	A Review of Past Software Strategy and Secure Software Engineering for Modern Cybernetics
	ABSTRACT
	INTRODUCTION
	What SSE is and is not is defined in this section
	Cyber-attack classification
	Structure of paper and objective
	Research background
	Vulnerability indifferent cause and shapes
	Modern evidence of software vulnerability birth cycle
	Analysis of problem based discussion

	CONCLUSION
	REFERENCES




