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ABSTRACT
End resection is a central step in DNA homologous recombination (HR) and the HR-mediated repair of DNA

double-strand breaks (DSBs), which degrades 5’-end strands at DSBs by several kilo-bases and thus creates 3’-end

single-strand DNA overhangs. A critical long-standing question is how the 3’-end strands are protected during end

resection. Now, this question is answered. Liu et al. found that the protection of 3’-end strands is achieved by the

formation of an RNA-DNA hybrid. RNA polymerase III is responsible for catalyzing the RNA strand in the hybrid.

Thus, RNA polymerase III is an essential factor for HR, and the RNA-DNA hybrid is an essential HR intermediate.
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INTRODUCTION
DNA Homologous Recombination (HR), a ubiquitous basic
biological process, plays an essential role in cell growth, gamete
production, genome diversity, and evolution of species [1,2]. It is
also crucial in maintaining genomic integrity because it is
required for the repair of DNA double-strand breaks (DSBs) [3].
In humans, the defects of HR cause cancers, neurodegenerative
diseases, and aging [4,5]. Thus, a thorough elucidation of an HR
process at the molecular level can not only advance the
understanding of basic DNA metabolism but also promote the
development of relevant drugs for treating cancers and
neurodegenerative diseases.

LITERATURE REVIEW
In the 1930s, the phenomena of recombination of genetic

materials were observed [2], and in 1944, the genetic materials
were identified to be DNA [6]. Since then, HR has been
extensively studied for nearly 80 years, and a great progress has
been made in understanding the molecular process of an HR
event [1,2,7]. Based on the current model, HR comprises three
major steps: end resection, strand invasion, and resolution of
Holliday junctions [5]. End resection involves removing a few
kilobases from the 5’-end strand at DNA DSBs but keeping the
3’-end strand intact [8]. Next, RAD51 binds to the 3’-end single-

strand DNA (ssDNA) strand to generate a nucleofilament [1].
This nucleofilament invades a homologous DNA molecule
(often a sister chromatid) and acts as a primer for subsequent
DNA pol δ-mediated DNA synthesis, resulting in the formation
of a Holliday junction [9]. Finally, this Holliday junction is
resolved by the nucleases Mus81-Eme1 [10], GIN1 [11], and
SLX4 [12]. Although a frame of the HR process is established,
numerous critical questions remain unanswered. For example,
the basic mechanism for protecting the 3’-end strand during end
resection was not known. Previous studies suggested that RPA
(replication protein A, a single-strand DNA binding protein in
eukaryotes) binding might protect the 3’-end strands from the
digestion by Dna2 or other nucleases during end resection
[13,14]. However, this suggestion or hypothesis lacked solid
experimental evidence. In addition, it is very unlikely that RPA
binding protects the 3’-end strand because of the following three
principal reasons. First, cells do not have a mechanism that
ensures that RPA binding to the 3’-end ssDNA strand is
certainly prior to nuclease attack. Second, cells do not have a
mechanism to guarantee that every nucleotide on a 3’-end strand
of several kilobases in length is bound by RPA. Third, RPA
binding to ssDNA, as other proteins interact with dsDNA or
ssDNA, frequently dissociates, and the dissociation leaves one or
several regions of the 3’-end ssDNA strand exposed to nuclease
attack. More critically, in fission yeast RPA binding stimulates
Dna2 digestion of ssDNA [15].
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In the last several decades, astonishing progress was the
identification of a number of protein factors directly involved in
the HR process, including the MRN (MRE11-RAD50-NBS1)
complex [16,17], CtIP [18], DNA2 and EXO1 [19,20], BRCA1/2
[21,22], RAD51 [23,24], RAD52 [25,26], RPA [27], DNA
helicase BLM [28-30], histone remodeling factors (INO80 [31],
RNF8/168 [32,33]), SLX4 [12], GEN1 [11], and so forth. These
factors are either required for end resection or directly
participate in strand invasion and resolution of Holliday
junctions. In mammalian cells, although mutations on the
majority of these factors do not cause cell death, their defects
result in severe genomic instability and predispose to a variety of
carcinogenesis [4,5]. In addition, HR defects also cause severe
developmental disorders [34].

Recently, RNA polymerase III (RNAPIII) was identified as an
essential factor for HR in human cells [35]. RNAPIII was
demonstrated to catalyze RNA synthesis at DSBs. This RNAPIII-
catalyzed RNA strand pairs with the 3’-end ssDNA strand to
form an RNA-DNA hybrid, protecting the 3’-end ssDNA strand
during end resection (Figure 1). Thus, a long-standing crucial
question of how the 3’-end ssDNA strand is protected during
end resection was finally resolved. In more detail, RNAPIII is
recruited to DSBs through a specific interaction between the
MRE11 subunit of the MRN complex and the specific subunits
RPC4 and RPC6 of RNAPIII. It is independent of the cell cycle
phase that RNAPIII is recruited to DSBs, but RNA synthesis
takes place only in the S/G2 phase. When the RNA synthesis is
dysfunctional either by a reduced level of RNAPIII or by
inhibition of RNAPIII activity, the rate of HR correspondingly
decreases. Moreover, as expected, genetic deletion significantly
increases when the RNAPIII-mediated RNA synthesis is
disrupted. Thus, RNAPIII is a newly uncovered essential factor
for HR and HR-mediated repair of DSBs, and the RNA–DNA
hybrid is an essential intermediate.

Figure 1: RNA polymerase III plays an essential role for the
protection of the 3'-ssDNA overhangs in DNA homologous
recombination.

DISCUSSION AND CONCLUSION
Next, an impending question is how the RNA strand in the

RNA–DNA hybrids is removed. Logically, an RNA helicase, or

an RNA nuclease, or a combination of them, should be involved
in removing the RNA strand. A biochemical approach, together
with genetics, can identify the enzymes responsible for digesting
or removing the RNA strand. The discovery of the RNA–DNA
hybrid intermediate may also promote the solution of some
other long-standing questions, such as what are the exact
biochemical actions of BRCA1, BRCA2, and RAD52 in HR.
Furthermore, it is also highly anticipated that a thorough
elucidation of the HR process, including the mechanism of
removing the RNA strand, should provide new avenues to
develop drugs against some types of cancers.
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