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Introduction
In the last ten years, placenta, fetal membranes (i.e. amnion and 

chorion), and amniotic fluid have been extensively investigated as 
a potential non-controversial source of stem cells. They are usually 
discarded after delivery and are accessible during pregnancy through 
amniocentesis and chorionic villus sampling [1] Several populations 
of cells with multi-lineage differentiation potential and immune-
modulatory properties have been isolated from the human placenta 
and fetal membranes; they have been classified by an international 
workshop [2] as human amniotic epithelial cells (hAECs) [3-8] human 
amniotic mesenchymal stromal cells (hAMSCs) [9,10] human chorionic 
mesenchymal stromal cells (hCMSCs) by Igura et al. and Anker et al., 
and human chorionic trophoblastic cells (hCTCs). In the amniotic fluid 
(AF), two main populations of stem cells have been isolated so far: 

1. Amniotic Fluid Mesenchymal Stem Cells (AFMSCs) and

2. Amniotic Fluid Stems (AFS) cells.

Although only recently described, these cells may, given the easier
accessibility of the AF in comparison to other extra-embryonic tissues, 
hold much promise in regenerative medicine. 

Amniotic Fluid (AF): Function, Origin and Composition
The AF is the clear, watery liquid that surrounds the growing 

fetus within the amniotic cavity. It allows the fetus to freely grow and 
move inside the uterus, protects it from outside injuries by cushioning 
sudden blows or movements by maintaining consistent pressure and 
temperature, and acts as a vehicle for the exchange of body chemicals 
with the mother [11,12]. 

In humans, the AF starts to appear at the beginning of the second 
week of gestation as a small film of liquid between the cells of the 
epiblast. Between days 8 and 10 after fertilization, this fluid gradually 
expands and separates the epiblast (i.e. the future embryo) from the 
amnioblasts (i.e. the future amnion), thus forming the amniotic cavity 
[3-8]. Thereafter, it progressively increases in volume, completely 
surrounding the embryo after the 4th week of pregnancy. Over the 
course of gestation, AF volume markedly changes from 20 ml in the 

7th week to 600 ml in the 25th week, 1000 ml in the 34th week and 800 
ml at birth. 

During the first half of gestation, the AF results from active sodium 
and chloride transport across the amniotic membrane and the non-
keratinized fetal skin, with concomitant passive movement of water 
[13]. In the second half of gestation, the AF is constituted by fetal urine, 
gastrointestinal excretions, respiratory secretions, and substances 
exchanged through the sac membranes [14-16]. 

The AF is primarily composed of water and electrolytes 98% to 99%, 
but also contains chemical substances (e.g. glucose, lipids, proteins, 
hormones, and enzymes), suspended materials (e.g. vernix caseosa, 
lanugo hair, and meconium), and cells. AF cells derive both from extra- 
embryonic structures (i.e. placenta and fetal membranes) and from 
embryonic and fetal tissues [17,18]. Although AF cells are known to 
express markers of all three germ layers by Cremer et al. in 1981, their 
exact origin still represents a matter of discussion; the consensus is 
that they mainly consist of cells shed in the amniotic cavity from the 
developing skin, respiratory apparatus, and urinary and gastrointestinal 
tracts [19-21]. AF cells display a broad range of morphologies and 
behaviors varying with gestational age and fetal development [22]. In 
normal conditions, the number of AF cells increases with advancing 
gestation; if a fetal disease is present, AF cell counts can be either 
dramatically reduced (e.g. intrauterine death, urogenital atresia) or 
abnormally elevated (e.g. anencephaly, spina bifida, exomphalos) 
[23,24]. Based on their morphological and growth characteristics, 
viable adherent cells from the AF are classified into three main groups: 
epithelioid (33.7%), amniotic fluid (60.8%), and fibroblastic type (5.5%) 
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passages) and, as demonstrated by growth kinetics assays, possess a 
greater proliferative potential (average doubling time of 25-38 hours) in 
comparison to that of bone marrow-derived MSCs (average doubling 
time of 30-90 hours) [48-50]. Moreover, AFMSCs’ clonogenic potential 
has been proved to exceed that of MSCs isolated from bone marrow (86 
× 4.3 vs. 70 × 5.1 colonies) [51]. Despite their high proliferation rate, 
AFMSCs retain a normal karyotype and do not display tumorigenic 
potential even after extensive expansion in culture [52,53]. 

Analysis of AFMSC transcriptome demonstrated that: (1) 
AFMSCs’ gene expression profile, as well as that of other MSC 
populations, remains stable between passages in culture, enduring 
cryopreservation and thawing well; (2) AFMSCs share with MSCs 
derived from other sources a core set of genes involved in extracellular 
matrix remodeling, cytoskeletal organization, chemokine regulation, 
plasmin activation, TGF-b and Wnt signaling pathways; (3) in 
comparison to other MSCs, AFMSCs show a unique gene expression 
signature that consists of the upregulation of genes involved in 
signal transduction pathways (e.g. HHAT, F2R, F2RL) and in uterine 
maturation and contraction (e.g. OXTR, PLA2G10), thus suggesting 
a role of AFMSCs in modulating the interactions between the fetus 
and the uterus during pregnancy [54]. 

The cell-surface antigenic profile of human AFMSCs has been 
determined through flow cytometry by different investigators. 
Cultured human AFMSCs are positive for mesenchymal markers 
(i.e. CD90, CD73, CD105, CD166), for several adhesion molecules 
(i.e. CD29, CD44, CD49e, CD54), and for antigens belonging to the 
major histocompatibility complex I (MHC-I). They are negative for 
hematopoietic and endothelial markers (e.g. CD45, CD34, CD14, 
CD133 and CD31). 

AFMSCs exhibit a broad differentiation potential towards 
mesenchymal lineages. Under specific in vitro inducing conditions, 
they are able to differentiate towards the adipogenic, osteogenic, and 
chondrogenic lineage 

Despite not being pluripotent, AFMSCs can be efficiently 
reprogrammed into pluripotent stem cells (iPS) via retroviral 
transduction of defined transcription factors (Oct4, Sox2, Klf-4, c-Myc). 
Strikingly, AFMSC reprogramming capacity is significantly higher 
(100-fold) and much quicker (6 days vs. 16-30 days) in comparison to 
that of somatic cells such as skin fibroblasts. As iPS derived from adult 
cells, AF-derived iPS generate embryoid bodies (EBs) and differentiate 
towards all three germ layers in vitro and in vivo form teratomas when 
injected into SCID mice [54]. 

Pre-clinical studies

After AFMSC identification, various studies investigated their 
therapeutic potential in different experimental settings. Different 
groups demonstrated that AFMSCs are able not only to express cardiac 
and endothelial specific markers under specific culture conditions, but 
also to integrate into normal and ischemic cardiac tissue, where they 
differentiate into cardiomyocytes and endothelial cells [55-58]. In a rat 
model of bladder cryo-injury, AFMSCs show the ability to differentiate 
into smooth muscle and to prevent the compensatory hypertrophy of 
surviving smooth muscle cells [59]. 

AFMSCs can be a suitable cell source for tissue engineering of 
congenital malformations. In an ovine model of diaphragmatic hernia, 
repair of the muscle deficit using grafts engineered with autologous 
mesenchymal amniocytes leads to better structural and functional 
results in comparison to equivalent fetal myoblast-based and acellular 

[25]. In the event of fetal abnormalities, other types of cells can be 
found in the AF, e.g. neural cells in the presence of neural tube defects 
and peritoneal cells in the case of abdominal wall malformations [26-
28]. The majority of cells present in the AF are terminally differentiated 
and have limited proliferative capabilities [29,30]. 

In the 1990s, however, two groups demonstrated the presence in the 
AF of small subsets of cells harboring a proliferation and differentiation 
potential. First, Torricelli reported the presence of hematopoietic 
progenitors in the AF collected before the 12th week of gestation [31]. 
Then Streubel was able to differentiate AF cells into myocytes, thus 
suggesting the presence in the AF of non-hematopoietic precursors 
[32]. These results initiated a new interest in the AF as an alternative 
source of cells for therapeutic applications. 

Amniotic Fluid Mesenchymal Stem Cells (AFMSCs)
Mesenchymal stem cells (MSCs) represent a population of 

multipotent stem cells able to differentiate towards mesoderm-derived 
lineages (i.e. adipogenic, chondrogenic, myogenic, and osteogenic) 
[32,33]. Initially they are identified in adult bone marrow, where they 
represent 0.01% of total nucleated cells [34], MSCs have since been 
isolated from several adult (e.g. adipose tissue, skeletal muscle, liver, 
brain), fetal (i.e. bone marrow, liver, blood), and extra-embryonic 
tissues (i.e. placenta, amnion) [35]. 

The presence of a subpopulation of AF cells with mesenchymal 
features, able to proliferate in vitro more rapidly than comparable fetal 
and adult cells, was described for the first time in 2001 [36]. In 2003, 
In’t Anker demonstrated that the AF can be an abundant source of 
fetal cells that exhibit a phenotype and a multilineage differentiation 
potential similar to that of bone marrow-derived MSCs; these cells were 
named AF mesenchymal stem cells (AFMSCs). Soon after this paper, 
other groups independently confirmed similar results. 

Isolation and culture

AFMSCs can be easily obtained: in humans, from small volumes (2-5 
ml) of second and third trimester AF [37,38], where their percentage is
estimated to be 0. 9% to 1.5% of the total AF cells [39], and in rodents,
from the AF collected during the second or third week of pregnancy
[40,41]. Various protocols have been proposed for their isolation; all are 
based on the expansion of unselected populations of AF cells in serum-
rich conditions without feeder layers, allowing cell selection by culture
conditions. The success rate of the isolation of AFMSCs is reported by
different authors to be 100% [42,43]. AFMSCs grow in basic medium
containing fetal bovine serum (20%) and fibroblast growth factor (5 ng/
ml). Importantly, it has been very recently shown that human AFMSCs 
can be also cultured in the absence of animal serum without losing
their properties [44]; this finding is a fundamental prerequisite for the
beginning of clinical trials in humans.

Characterization

The fetal versus maternal origin of AFMSCs has been investigated 
by different authors. Molecular HLA typing and amplification of the 
SRY gene in AF samples collected from male fetuses [45] demonstrated 
the exclusive fetal derivation of these cells. However, whether AFMSCs 
originate from the fetus or from the fetal portion of extra-embryonic 
tissues is still a matter of debate [46]. 

AFMSCs display a uniform spindle-shaped fibroblast-like 
morphology similar to that of other MSC populations and expand 
rapidly in culture [47]. Human cells derived from a single 2 ml AF 
sample can increase up to 180 × 106 cells within four weeks (three 
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equal to 90 × 104 cells/fetus at 20 weeks of pregnancy in humans and to 
10,000 cells/fetus at E12.5 in mice [86] Human AFS cells can be derived 
either from small volumes (5 ml) of second trimester AF (14-22 weeks 
of gestation) or from confluent back-up amniocentesis cultures. Murine 
AFS cells are obtainable from the AF collected during the second week 
of gestation [87-89]. 

Cells and tissue development

Cell isolation is based on a two-step protocol consisting of the 
prior immunological selection of c- kit positive cells from the AF 
(approximately 1% of total AF cells) and of the subsequent expansion 
of these cells in culture [90-95]. Isolated AFS cells can be expanded 
in feeder layer-free, serum-rich conditions without evidence of 
spontaneous differentiation in vitro. Cells are cultured in basic medium 
containing 15% of fetal bovine serum and Chang supplement. 

Characterization

Karyotype analysis of human AFS cells deriving from pregnancies 
in which the fetus was male revealed the fetal origin of these cells [96]. 

AFS cells proliferate well during ex vivo expansion. When cultivated, 
they display a spectrum of morphologies ranging from a fibroblast-like 
to an oval-round shape. As demonstrated by different authors, AFS cells 
possess a great clonogenic [97,98]. Clonal AFS cell lines expand rapidly 
in culture (doubling time 1⁄4 36 h) and, more interestingly, maintain 
a constant telomere length (20 kbp) between early and late passages. 
Almost all clonal AFS cell lines express markers of a pluripotent 
undifferentiated state: Oct4 and NANOG [99-103]. However, they have 
been proved not to form tumors when injected in severe combined 
immunodeficient (SCID) mice e [104]. The cell-surface antigenic 
profile of AFS cells has been determined through flow cytometry by 
different investigators Cultured human AFS cells are positive for ES cell 
(e.g. SSEA-4) and mesenchymal markers (e.g. CD73, CD90, CD105), 
for several adhesion mole- cules (e.g. CD29, CD44), and for antigens 
belonging to the MHC-I. They are negative for hematopoietic and 
endothelial markers (e.g. CD14, CD34, CD45, CD133, CD31) and for 
antigens belonging to the major histocompatibility complex II (MHC-II). 

As stability of cell lines is a fundamental prerequisite for basic and 
translational research, AFS cell capacity of maintaining their baseline 
characteristics over passages has been evaluated based on multiple 
parameters. Despite their high proliferation rate, AFS cells and derived 
clonal lines show a homogeneous, diploid DNA content without 
evidence of chromosomal rearrangement even after expansion to 250 
population doublings [105,106]. Moreover, AFS cells maintain constant 
morphology, doubling time, apoptosis rate, cell cycle distribution, 
and marker expression (e.g. Oct4, CD117, CD29, CD44) up to 25 
passages. During in vitro expansion, (A) Human AFS cells mainly 
display a spindle-shaped morphology during in vitro cultivation 
under feeder layer-free, serum-rich conditions. (BeC) Clonal human 
AFS cell lines retain long telomeres and a normal karyotype after 
more than 250 cell divisions. (B) Conserved telomere length of AFS 
cells between early passage (20 population doublings, lane 3) and late 
passage (250 population doublings, lane 4). Short length (lane 1) and 
high length (lane 2) telomere standards provided in the assay kit. (C) 
Giemsa band karyogram showing chromosomes of late passage (250 
population doublings) cells adapted from De Coppi et al. However, 
cell volume tends to increase and significant fluctuations of proteins 
involved in different networks (i.e. signaling, antioxidant, proteasomal, 
cytoskeleton, connective tissue, and chaperone proteins) can be 
observed using a gel-based proteomic approach [107]; the significance 

implants [60]. Engineered cartilaginous grafts have been derived from 
AFMSCs grown on biodegradable meshes in serum-free chondrogenic 
conditions for at least 12 weeks; these grafts have been successfully used 
to repair tracheal defects in foetal lambs when implanted in utero [61]. 
The surgical implantation of AFMSCs seeded on nanofibrous scaffolds 
and predifferentiated in vitro towards the osteogenic lineage into a 
leporine model of sternal defect leads to a complete bone repair in 2 
months’ time [62]. 

Intriguingly, recent studies suggest that AFMSCs can harbor trophic 
and protective effects in the central and peripheral nervous systems. 
Pan showed that AFMSCs facilitate peripheral nerve regeneration 
after injury and hypothesized that this can be determined by cell 
secretion of neurotrophic factors [63,64]. After transplantation into 
the striatum, AFMSCs are capable of surviving and integrating in the 
rat adult brain and migrating towards areas of ischemic damage [65]. 
Moreover, the intra- ventricular administration of AFMSCs in mice 
with focal cerebral ischemia-reperfusion injuries significantly reverses 
neurological deficits in the treated animals [66]. 

Remarkably, it has also been observed that AFMSCs present in vitro 
an immunosuppressive effect similar to that of bone marrow-derived 
MSCs [67]. Following stimulation of peripheral blood mononuclear 
cells with anti-CD3, anti-CD28, or phyto-hemagglutinin, irradiated 
AFMSCs determine a significant inhibition of T-cell proliferation with 
dose-dependent kinetics [68]. 

Amniotic Fluid Stem Cells (AFSCs)
The first evidence that the AF could contain pluripotent stem 

cells was provided in 2003 when Prusa described the presence of a 
distinct subpopulation of proliferating AF cells (0.1% to 0.5% of the 
cells present in the AF) expressing the pluripotency marker Oct4 at 
both transcriptional and proteic levels [69]. Oct4 (i.e. octamer binding 
transcription factor 4) is a nuclear transcription factor that plays a 
critical role in maintaining ES cell differentiation potential and capacity 
of self –renewal [70-72]. Other than by ES cells, Oct4 is specifically 
expressed by germ cells, where its inacti- vation results in apoptosis, 
and by embryonal carcinoma cells and tumors of germ cell origin, 
where it acts as an oncogenic fate determinant [73-76]. While its role in 
stem cells of fetal origin has not been completely addressed, it has been 
recently demonstrated that Oct4 is neither expressed nor required by 
somatic stem cells or progenitors [77-79]. 

After Prusa, different groups confirmed the expression of Oct4 and 
of its transcriptional targets (e.g. Rex-1) in the AF [80,81]. Remarkably, 
Karlmark transfected human AF cells with the green fluorescent 
protein gene under either the Oct4 or the Rex-1 promoter and 
established that some AF cells were able to activate these promoters. 
Several authors subsequently reported the possibility of harvesting AF 
cells displaying features of pluripotent stem cells [82,83]. Thereafter, the 
presence of a cell population able to generate clonal cell lines capable of 
differentiating into lineages representative of all three embryonic germ 
layers was definitively demonstrated [84]. These cells, named AF stem 
(AFS) cells, are characterized by the expression of the surface antigen 
c-kit (CD117), which is the type III tyrosine kinase receptor of the stem 
cell factor [85].

Isolation and culture

The proportion of c-kitþ cells in the amniotic fluid varies over the 
course of gestation, roughly describing a Gaussian curve; they appear 
at very early time points in gestation (i.e. at 7 weeks of amenorrhea 
in humans and at E9.5 in mice) and present a peak at mid-gestation 
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of these modifications warrants further investigations but needs to 
be taken into consideration when interpreting experiments run over 
several passages and comparing results from different groups. 

AFS cells and, more importantly, derived clonal cell lines are able to 
differentiate towards tissues representative of all three embryonic germ 
layers, both spontaneously, when cultured in suspension to form EBs, 
and when grown in specific differentiation conditions. 

EBs consists of three-dimensional aggregates of ES cells, which 
recapitulate the first steps of early mammalian embyogenesis [108-
110]. As ES cells, when cultured in suspension and without anti-
differentiation factors, AFS cells harbor the potential to form EBs 
with high efficiency: the incidence of EB formation (i.e. percentage 
of number of EB recovered from 15 hanging drops) is estimated to 
be around 28% for AFS cell lines and around 67% for AFS cell clonal 
lines. Similarly to ES cells, EB generation by AFS cells is regulated 
by the mTor (i.e. mammalian target of rapamycin) pathway and is 
accompanied by a decrease of Oct4 and Nodal expression and by an 
induction of endodermal (GATA4), mesodermal (Brachyury, HBE1), 
and ectodermal (Nestin, Pax6) markers [111,112]. 

In specific mesenchymal differentiation conditions, AFS cells 
express molecular markers of adipose, bone, muscle, and endothelial 
differentiated cells (e.g. LPL, desmin, osteocalcin, and V-CAM1). 
In the adipogenic, chondrogenic, and osteogenic medium, AFS 
cells respectively develop intracellular lipid droplets, secrete 
glycosaminoglycans, and produce mineralized calcium [113]. In 
conditions inducing cell differentiation towards the hepatic lineage, 
AFS cells express hepatocyte-specific transcripts (e.g. albumin, alpha-
fetoprotein, multidrug resistance membrane transporter 1) and 
acquire the liver-specific function of urea secretion [114]. In neuronal 
conditions, AFS cells are capable of entering the neuroectodermal 
lineage.  

Cells and tissue development

AFS cells differentiation into lineages representative of the 
three embryonic germ layers. (A) Hepatogenic differentiation: urea 
secretion by human AFS cells before (rectangles) and after (diamonds) 
hepatogenic in vitro differentiation. (B) Neurogenic differentiation: 
secretion of neurotransmitter glutamic acid in response to potassium 
ions. (C) Osteogenic differentiation: mouse micro CT scan 18 weeks 
after implantation of printed constructs of engineered bone from 
human AFS cells; arrow head: region of implantation of control 
scaffold without AFS cells; rhombus: scaffolds seeded with AFS cells. 
Adapted from de Coppi et al. [114] neuronal markers (e.g. GIRK 
potassium channels), exhibit barium-sensitive potassium current, and 
release glutamate after stimulation. (Ongoing studies are investigating 
AFS cell capacity to yield mature, functional neurons [115-118]. AFS 
cells can be easily manipulated in vitro. They can be transduced with 
viral vectors more efficiently than adult MSCs, and, after infection, 
maintain their antigenic profile and the ability to differentiate into 
different lineages [119]. AFS cells labeled with super- paramagnetic 
micrometer-sized iron oxide particles (MPIOs) retain their potency 
and can be non-invasively tracked by MRI for at least four weeks after 
injection in vivo [119]. 

Preclinical studies

Despite the very recent identification of AFS cells, several reports 
have investigated their potential applications in different settings. 

Bone: Critical-sized segmental bone defects are one of the most 
challenging problems faced by orthopaedic surgeons. Autologous and 

heterologous bone grafting are limited respectively by the small amount 
of tissue available for transplantation and by high refracture rates. 
Tissue engineering strategies that combine biodegradable scaffolds with 
stem cells capable of osteogenesis have been indicated as promising 
alternatives to bone grafting. However, bone regeneration through cell-
based therapies has been limited so far by the insufficient availability of 
osteogenic cells. The potential of AFS cells to synthesize mineralized 
extracellular matrix within porous scaffolds has been investigated by 
different groups. After exposure to osteogenic conditions in static two-
dimensional cultures, AFS cells differentiate into functional osteoblasts 
(i.e. activate the expression of osteogenic genes such as Runx2, Osx, 
Bsp, Opn, and Ocn, and produce alkaline phosphatase) and form 
dense layers of mineralized matrix. As demonstrated by clonogenic 
mineralization assays, 85% of AFS cells versus 50% of MSCs are capable 
of forming osteogenic colonies. When seeded into three-dimensional 
biode- gradable scaffolds and stimulated by osteogenic supplements 
(i.e. rhBMP-7 or dexamethasone), AFS cells remain highly viable up 
to several months in culture and produce extensive mineralization 
throughout the entire volume of the scaffold [80-110]. In vivo, when 
subcutaneously injected into nude rodents, pre-differ entiated AFS cell-
scaffold constructs are able to generate ectopic bone structures in four 
weeks’ time. AFS cells embedded in scaffolds, however, are not able to 
mineralize in vivo at ectopic sites unless previously predifferentiated in 
vitro. These studies demonstrate the potential of AFS cells to produce 
three-dimensional mineralized bioengineered constructs and suggest 
that AFS cells may be an effective cell source for functional repair 
of large bone defects. Further studies are needed to explore AFS cell 
osteogenic potential when injected into sites of bone injury [100-120]. 

Cartilage: Enhancing the regeneration potential of hyaline cartilage 
is one of the most significant chal- lenges for treating damaged cartilage. 
The capacity of AFS cells to differentiate into functional chondrocytes 
has been tested in vitro. Human AFS cells treated with TGF-b1 have 
been proven to produce significant amounts of cartilaginous matrix (i.e. 
sulfated glycosaminoglycans and type II collagen) both in pellet and 
alginate hydrogel cultures. 

Skeletal muscle: Stem cell therapy is an attractive method to 
treat muscular degenerative diseases because only a small number of 
cells, together with a stimulatory signal for expansion, are required to 
obtain a therapeutic effect. The identification of a stem cell population 
providing efficient muscle regeneration is critical for the progression of 
cell therapy for muscle diseases [121-130]. 

AFS cell capacity of differentiating into the myogenic lineage 
has recently started to be explored. Under the influence of specific 
induction media containing 5-Aza-20-deoxycytidine, AFS cells are 
able to express myogenic-associated markers such as Mrf4, Myo-D, 
and desmin 231 both at a molecular and proteic level However, when 
transplanted undifferentiated into damaged skeletal muscles of SCID 
mice, despite displaying a good tissue engraftment AFS cells did not 
differentiate towards the myogenic lineage. Further studies are needed 
to confirm the results of this single report. 

Heart: Cardiovascular diseases are the first cause of mortality in 
developed countries despite advances in pharmacological, interventional, 
and surgical therapies Cell trans- plantation is an attractive strategy to 
replace endogenous cardiomyocytes lost by myocardial infarction. Fetal 
and neonatal cardiomyocites are the ideal cells for cardiac regeneration 
as they have been shown to integrate structurally and functionally into 
the myocardium after trans- plantation However, their application 
is limited by the ethical restrictions involved in the use of fetal and 
neonatal cardiac tissues. 
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Chiavegato [20] investigated human AFS cell plasticity towards the 
cardiac lineage. Undif- ferentiated AFS cells express cardiac transcription 
factors at a molecular level (i.e. Nkx2. 5 and GATA-4 mRNA) but do 
not produce any myocardial differentiation marker. Under in vitro 
cardiovascular inducing conditions (i.e. co-culture with neonatal 
rat cardiomyocytes), AFS cells express differentiated cardiomyocyte 
markers such as cTnI, indicating that an in vitro cardiomyogenic-
like medium can lead to a spontaneous differentiation of AFS cells 
into cardiomyocyte-like cells. In vivo, when xenotransplanted in the 
hearts of immunodeficient rats 20 minutes after creating a myocardial 
infarction, AFS cell differentiation capabilities were impaired by cell 
immune rejection. More recently, we have proved that we could activate 
the myocardial gene program in GFP-positive rat AFS (GFP-rAFS cells) 
[131-140] by co-culture with rCMs. The differentiation attained via a 
paracrine/contact action was confirmed using immunofluorescence, 
RT-PCR, and single-cell electrophysiological tests. Moreover, despite 
only a small number of Endorem-labeled GFP-rAFS, cells acquired an 
endothelial or smooth muscle phenotype and to a lesser extent CMs 
in an allogeneic acute myocardial infarction (AMI) context, and there 
was still improvement of ejection fraction as measured by magnetic 
resonance imaging (MRI) three weeks after. This could be partially due 
to a paracrine action perhaps mediated by the secretion of thymosin b4 
by Bollini et al. [8]

Hematopoietic system: Hematopoietic stem cells (HSCs) lie at the 
top of hematopoietic ontogeny and, if engrafted in the right niche, can 
theoretically reconstitute the organism’s entire blood supply. Thus, the 
generation of autologous HSCs from pluripotent, patient-specific stem 
cells offer real promise for cell-therapy of both genetic and malignant 
blood disorders. 

The hematopoietic potential of c-kitþ hematopoietic lineage 
negative cells present in the amniotic fluid (AFKL cells) has been 
recently explored. In vitro, human and murine AFKL cells exhibit 
strong multilineage hematopoietic potential. Cultured in semisolid 
medium, these cells are able to generate erythroid, myeloid, and 
lymphoid colonies. Moreover, murine cells exhibit the same clonogenic 
potential (0.03%) as hematopoietic progenitors present in the liver at 
the same stage of development. In vivo, mouse AFKL cells (i.e. 2 × 104 
cells intravenously injected) are able to generate all three hematopoietic 
lineages after primary and secondary transplantation into 
immunocompromised hosts (i.e. sublethally irradiated Rag-/- mice), 
demonstrating their ability to self-renew. These results clearly show 
that c-kitþ cells present in the amniotic fluid have true hematopoietic 
potential both in vitro and in vivo [100-144]. 

Kidney: The incidence and prevalence of end stage renal 
disease (ESRD) continues to increase worldwide. Although renal 
transplantation represents a good treatment option, the shortage of 
compatible organs remains a critical issue for patients affected by ESRD. 
Therefore, the possibility of developing stem cell-based therapies for 
both glomerular and tubular repair has received intensive investigation 
in recent years. Different stem cell types have shown some potential 
in the generation of functional nephrons but the most appropriate cell 
type for transplantation is still to be established. 

The potential of AFS cells in contributing to kidney development 
has been recently explored. Using a mesenchymal/epithelial 
differentiation protocol previously applied to demonstrate the renal 
differentiation potential of kidney stem cells, Siegel demonstrated 
that AFS cells and clonal-derived cell lines can differentiate towards 
the renal lineage; AFS cells sequentially grown in a mesenchymal 
differentiation medium containing EGF and PDGF-BB, and in an 

epithelial differentiation medium containing HGF and FGF4, reduce 
the expression of pluripotency markers (i.e. Oct4 and c-Kit) and switch 
on the expression of epithelial (i.e. CD51, ZO-1) and podocyte markers 
(i.e. CD2AP, NPHS2). AFS cells have also been shown to contribute 
to the development of primordial kidney structures during in vitro 
organogenesis; undifferentiated human AFS cells injected into a mouse 
embryonic kidney cultured ex vivo are able to integrate in the renal 
tissue, participate in all steps of nephrogenesis, and express molecular 
markers of early kidney differentiation such as ZO-1, claudin, and 
GDNF. Finally, very recent in vivo experiments show that AFS cells 
directly injected into damaged kidneys are able to survive, integrate 
into tubular structures, express mature kidney markers, and restore 
renal function. These studies demonstrate the nephrogenic potential of 
AFS cells and warrant further investigation of their potential use for 
cell-based kidney therapies. 

Lung: Chronic lung diseases are common and debilitating; medical 
therapies have restricted efficacy and lung transplantation is often 
the only effective treatment. The use of stem cells for lung repair and 
regeneration after injury holds promise as a potential therapeutic 
approach for many lung diseases; however, current studies are still in 
their infancy. 

AFS cell ability to integrate into the lung and to differentiate 
into pulmonary lineages has been elegantly investigated in different 
experimental models of lung damage and development. In vitro, human 
AFS cells injected into mouse embryonic lung explants engraft into the 
epithelium and into the mesenchyme and express the early pulmonary 
differentiation marker TFF1, in vivo, in the absence of lung damage, 
systemically administered AFS cells show the capacity to home to the 
lung but not to differentiate into specialized cells; while, in the presence 
of lung injury, AFS cells not only exhibit a strong tissue engraftment but 
also express specific alveolar and bronchiolar epithelial markers (e.g. 
TFF1, SPC, CC10). Remark- ably, cell fusion fenomena were elegantly 
excluded and long-term experiments confirmed the absence of tumor 
formation in the treated animals up to 7 months after AFS cell injection 
[100-145]. 

Intestine: To date, very few studies have considered the employment 
of stem cells in gastroenterological diseases. Although still at initial 
stages and associated with numerous problems, ever- increasing 
experimental evidence supports the intriguing hypothesis that stem 
cells may be possible candidates to treat and/or prevent intestinal 
diseases. 

In a study evaluating AFS cell transplantation into healthy newborn 
rats, Ghionzoli demon- strated that, after intraperitoneal injection, 
AFS cells (1) diffuse systemically within a few hours from their 
administration in 90% of the animals, (2) engraft in several organs of 
the abdominal and thoracic compartment and (3) localize preferentially 
in the intestine colonizing the gut in 60% of the animals. Preliminary 
in vivo experiments investigating the role of AFS cells in a neonatal rat 
model of necrotizing enterocolitis show that intraperitoneal- injected 
AFS cells are able not only to integrate into all gut layers but also to 
reduce bowel damage, improve rat clinical status, and lengthen animal 
survival. 

Conclusion
Many stem cell populations (e.g. embryonic, adult, and fetal stem 

cells) as well as methods for generating pluripotent cells (e.g. nuclear 
reprogramming) have been described to date. All of them carry 
specific advantages and disadvantages and, at present, it has yet to be 
established which type of stem cell represents the best candidate for 



Citation: Cantani A (2016) A Paediatric Perspective on Stem Cells: Expression, Function and Clinical Relevance. Enz Eng 5: 154. doi:10.4172/2329-
6674.1000154

Page 6 of 9

Volume 5 • Issue 3 • 1000154
Enz Eng, an open access journal
ISSN: 2329-6674

cell therapy. However, although it is likely that one cell type may be 
better than another, depending on the clinical scenario, the recent 
discovery of easily accessible cells of fetal derivation, not burdened by 
ethical concerns, in the AF has the potential to open new horizons in 
regenerative medicine. Amniocentesis, in fact, is routinely performed 
for the antenatal diagnosis of genetic diseases and its safety has been 
established by several studies documenting an extremely low overall 
fetal loss rate (0.06% to 0.83%) related to this procedure. Moreover, 
stem cells can be obtained from AF samples without interfering with 
diagnostic procedures. 

Two stem cell populations have been isolated from the AF so 
far (i.e. AFMSCs and AFS cells) and both can be used as primary 
(not transformed or immortalized) cells without further technical 
manipulations. AFMSCs exhibit typical MSC characteristics: 
fibroblastic-like morphology, clonogenic capacity, multilineage 
differentiation potential, immunosuppressive properties, and expression 
of a mesenchymal gene expression profile and of a mesenchymal set of 
surface antigens. However, ahead of other MSC sources, AFMSCs are 
easier to isolate and show better proliferation capacities. The harvest of 
bone marrow remains, in fact, a highly invasive and painful procedure, 
and the number, the proliferation, and the differentiation potential of 
these cells decline with increasing age. Similarly, UCB-derived MSCs 
exist at a low percentage and expand slowly in culture. 

AFS cells, on the other hand, represent a novel class of pluripotent 
stem cells with intermediate characteristics between ES cells and AS cells. 
They express both embryonic and mesenchymal stem cell markers, are 
able to differentiate into lineages representative of all embryonic germ 
layers, and do not form tumors after implan- tation in vivo. However, 
AFS cells have only recently identified and many questions need to 
be answered concerning their origin, epigenetic state, immunological 
reactivity, and regeneration and differentiation potential in vivo. AFS 
cells, in fact, may not differentiate as promptly as ES cells and their lack 
of tumorigenesis can be argued against their pluripotency. 

Although further studies are needed to better understand their 
biologic properties and to define their therapeutic potential, stem cells 
present in the AF appear to be promising candidates for cell therapy and 
tissue engineering. In particular, they represent an attractive source for 
the treatment of perinatal disorders such as congenital malformations 
(e.g. congenital diaphragmatic hernia) and acquired neonatal diseases 
requiring tissue repair/ regeneration (e.g. necrotizing enterocolitis). In a 
future clinical scenario, AF cells collected during a routinely performed 
amniocentesis could be banked and, in case of need, subsequently 
expanded in culture or engineered in acellular grafts. In this way, 
affected children could benefit from having autologous expanded/
engineered cells ready for implantation either before birth or in the 
neonatal period. 
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