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ABSTRACT

Background: Breast cancer is now the most prevalent malignant among female population worldwide. Anoikis is a 
key progress during genesis and metastasis of malignant cells. Pyroptosis is a newly defined type of programmed cell 
death reported to have a dual effect on the development of carcinomas and had been reported to have the potential 
to affect anti-tumor immunity. However, few studies investigated the connections between anoikis, pyroptosis and 
prognosis in breast cancer.

Methods: Anoikis and Pyroptosis related Genes (APGs) were achieved from GeneCards and Harmonizome portals 
database. Based on expression profiles of APGs of patients from TCGA-BRCA cohort, differentiated expressed 
APGs between normal and tumoral tissues are identified. Next, by univariate Cox regression analysis of combined 
data of TCGA and GSE cohorts, prognostic APGs was defined. Then patients from both TCGA and GEO cohort 
were classified into three clusters by consensus clustering algorithm. Overlapped APGs between three clusters were 
identified as intersecting genes, based on expression of which, individuals are again assigned to two different gene 
clusters. Eventually, we successfully developed a PCA scoring signature and a nomogram system to accurately predict 
the prognosis and immunotherapy efficacy of breast cancer patients.

Results: Patients were classified into three clusters based on APGs’ expression. Cluster A was featured by longest OS. 
According to the expression profile of 300 intersecting genes, patients were again divided into two different gene 
clusters. Subtype B is characterized with poorer diagnosis. Meanwhile, by means of principal component analysis, 
we successfully predicted clinical outcomes and treatment response to immunotherapy. Finally, we constructed an 
APG score-associated nomogram model to predict prognosis.

Conclusion: We successfully established a scoring system based on anoikis and pyroptosis-related genes, as well 
as combined with clinicopathological features, to serve as a biomarker for prediction of clinical outcomes and 
immunotherapy efficacy in breast cancer.
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INTRODUCTION

Breast cancer has been now the most common malignancy amongst 
females, resulting in a mortality second only to lung and bronchus 
cancer [1-3]. Although new strategies have greatly improved 
life expectancy and quality of life in patients with Advanced 
Breast Cancer (ABC), the prognosis of such population is still 
unsatisfactory, with a median overall survival less than five years 
[4]. Metastatic tumors resistant to current therapy has comprised 
the major cause of death for cancer. Therefore, a novel diagnostic 
biomarker is urgently needed to predict clinical outcomes and 
optimize clinical management of ABC patients.

Metastasis is a sequential and interrelated multi-steps progress 
involving Epithelial-Mesenchymal Transition (EMT), intravasation, 
survival in the circulatory system, extravasation, response to 
microenvironment and finally colonization in distant positions, 
contributing to a poor clinical outcome for ABC patients [5]. 
Anoikis is a distinguished form of apoptosis triggered in cells 
lost in contact with native Extracellular Matrix (ECM) and plays 
a vital role in prevention of malignancy metastasis [6]. Anoikis 
prevents epithelial cells from shedding from their original location 
and colonizing elsewhere. Tumor cells resistant to anoikis reject 
apoptosis, sustain proliferative signals, activate invasion and 
metastasis, separate from each other and finally migrate and 
proliferate in remote areas [7]. Naturally, malignant cells develop 
into several mechanisms to counteract anoikis. It is reported 
that several risk factors, for example, pH, ROS, growth proteins, 
transcriptional signaling pathways were capable of promoting anoikis 
resistance, facilitating tumor invasion and metastasis [8]. This truth 
enlightened us that a thorough understanding of mechanisms 
behind anoikis was of great value in the systemic management of 
breast cancer patients. Former research investigated that lncRNA 
APOC1P1-3 suppressed early apoptosis of breast cancer cell lines 
(MCF-7 and MDA-MB-231) and promoted anoikis resistance via 
reducing activated-Caspase 3, 8, 9 and PARP [9]. In addition, Bone 
Morphogenetic Proteins (BMPs) were reported to regulate cell fate 
during development and mediate cancer progression. Inhibition 
of BMP receptors has an inhibitory effect on anoikis resistance in 
triple-negative breast cancer cells [10]. MicroRNA-6744-5p was also 
proven to have therapeutic value in enhancing anoikis sensitivity 
[11]. Former clues all indicated that the process of anoikis would 
be a promising target.

Pyroptosis was also a newly defined form of PCD, distinguished by 
the consequence of the formation of cell membrane perforations, 
the loss of ion homeostasis, the release of inflammatory mediators 
and finally the emergence of huge bubbles from the plasma 
membrane [12]. As an inflammatory form of PCD, pyroptosis 
was speculated to play an important role in modulation of 
tumor formation, progression including tumor growth, invasion, 
metastasis and treatment response to Immune Checkpoint 
Inhibitors (ICIs) across a variety category of solid carcinoma [13]. 
However, cross talk between anoikis and pyroptosis was scarcely 
studies so far.

In this study, we developed and validated a score signature based on 
Anoikis and Pyroptosis related Genes (APGs) to estimate survival, 
TME, treatment response among breast cancer populations. 
Our research revealed the value of anoikis and pyroptosis in the 
progress of breast cancer development and we hope corresponding 
intervention could provide a novel insight into breast cancer 
management.

MATERIALS AND METHODS

Data collection and processing

Based on The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/), we retrieved the mRNA expression profiles, Copy 
Number Variation (CNV) files, Tumor Mutation Burden (TMB) 
and clinical information of 1085 female breast cancer patients from 
project TCGA-BRCA. Clinical information, for instance, age, TNM 
stage and overall survival information were extracted and compiled 
by Perl scripts. Gene expression files and clinical information of 
327 individuals from GSE20685 from Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) database were also 
used for signature construction. Samples lack of complete clinical 
survival information were excluded from further investigation.

Identification of anoikis and pyroptosis-related genes

A number of 640 anoikis-related genes and 1515 pyroptosis-related 
genes were downloaded from the GeneCard database (https://
www.genecards.org/, accessed on 3 July 2023) and Harmonizome 
portals (https://maayanlab.cloud/Harmonizome/, accessed on 
3 July 2023) [14,15]. Differential expression analysis was then 
performed and 467 APGs were identified to have expressed 
with difference among normal and tumor samples. The analysis 
was performed by R software limma package and FDR<0.05 was 
considered significant.

Prognostic analysis based on APGs

According to univariate Cox regression analysis, we found 48 genes 
were significantly related to individual’s clinical outcomes (Cox p 
value<0.01 was considered significant). The analysis was performed 
by R software survival package.

Consensus clustering based on APG expression

R package ConsensusClusterPlus was applied to classify patients 
into different subtypes according to the expression profile of 369 
significantly differentially expressed APGs identified by univariate 
Cox regression model [16]. Thereafter, we utilized R "survival" 
package to analyze clinical survival between subtypes and visualize by 
method of Kaplan-Meier survival curvem [17]. Principal Component 
Analysis (PCA), Uniform Manifold Approximation and Projection 
(UMAP) and t-distributed Stochastic Neighbor Embedding (t-SNE) 
were used to examine the accuracy and reliability of clustering [18-
20]. R packages limma and VennDiagram were then applied to 
determine and visualize 300 intersecting genes across three APG 
clusters.

Gene Set Enrichment Analysis (GSEA) and Gene Set 
Variation Analysis (GSVA)

We retrieved “c2.cp.kegg.v2023.1.Hs.symbols.gmt” and “c5.
go.v2023.1.Hs.symbols.gmt” profiles from the MSigDB database. 
Next, we used “org.Hs.eg.db” and “GSVA” packages to perform 
GSEA and GSVA between three APG clusters [21]. Abundance 
and proportions of immune cell infiltration was also estimated by 
R “GSEABase” and “GSVA” packages.

Gene Ontology (GO) analysis of intersecting genes

R software package “org.Hs.eg.db” was adopted to carry out GO 
analysis to investigate Molecular Function (MF), Biological Process 
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coefficients were examined using spearman correlation analysis. 
Statistical p value<0.05 is considered significant unless specially 
declared.

RESULTS

Identification of prognostic Anoikis-Related Genes (ARG)

Firstly, we retrieved 640 anoikis-related genes and 1515 pyroptosis-
related genes from the GeneCard database and Harmonizome 
portals database. By means of Wilcox test, we identified 467 genes 
expressed varied with significance between normal and tumor 
tissues. Top 50 significantly differentially expressed genes was shown 
in Figure 1A. The volcano graph depicted genes upregulated and 
downregulated with significance in tumor tissues than in normal 
tissues (Figure 1B). Then we merged the survival information 
of individuals from TCGA and GEO cohorts. According to 
univariate Cox regression analysis, 48 genes were significantly 
related to individual’s clinical outcomes. Top 10 genes whose 
expression patterns significantly relating to clinical survival were 
thus visualized (Figure 1C). Based on the 48 genes, hub genes were 
identified by “String” online database and software “cytoscape” 
(Figures 1D-1F). The correlation network of anoikis- and pyroptosis-
related genes and their regulatory relationships in breast patients 
are shown in Figure 2A. According to an examination of Copy 
Number Variations (CNV), a total of 44 genes exhibited marked 
CNV alterations (Figure 2B). Furthermore, we located CNVs of 
ARGs in 23 chromosomes (Figure 2C). 14.75% of 976 samples 
carried mutations of APG regulators from TCGA-BRCA cohort 
(Figure 2D).

Subtypes classified by differentially expressed APGs

Based on the expression condition of 369 APGs identified by 
univariate Cox regression algorithm to be significantly related to 
overall survival, 1409 individuals with definite survival information 
were effectively classified into "A", "B" and "C" clusters at a ratio 
of 508:293:608 by R software “consensus” clustering algorithm 
(Figure 3A). Then we use "survival" package to analyze subgroup 
survival by Kaplan-Meier survival curve. The curve showed that 
cluster A had a significant advantage over B over C in terms of 
Overall Survival (OS) (Figure 3B). The accuracy of clustering was 
examined by methods of Principal Component Analysis (PCA) 
[20], Uniform Manifold Approximation and Projection (UMAP) 
[19] and t-Distributed Stochastic Neighbor Embedding (Figures 
3C-3E) [18]. Heatmap was used to depict the correlation between 
subtypes and clinical characteristics of individuals from TCGA-
BRCA cohort and GSE20685 (Supplementary Figure 1).

Immune cells infiltration and functional enrichment 
analysis across APG subtypes

Single sample Gene Set Enrichment Analysis (ssGSEA) was 
performed to reveal immune cell infiltration variation of three 
APG subtypes. We found that in the microenvironment of subtype 
A, percentages of most activated immune cells were significantly 
higher than that in subtype A, for instance activated B cells, 
CD8+ T cells, dendritic cells and CD56 bright natural killer 
cells (Figure 4A). This may indicate that the microenvironment 
of cluster A acted more inclined to be a “hot” tumor, resulting 
better prognosis than cluster C and implying a better response 
towards immunotherapy [30]. To further investigate the biological 

(BP) and Cellular Component (CC) with regards to intersecting 
genes.

Construction of PCA score prognostic signature

Univariate Cox regression model was utilized and 121 
Differentially Expressed Intersecting Genes (DEGs) were 
identified. “ConsensusClusterPlus” algorithm was used to divide 
the individuals into two different intersecting gene clusters (gene 
clusters). According to the expression profiles of DEGs, we next 
performed PCA to calculate the APG score for each sample. The 
APG score could be calculated by a sum of values of two principal 
components and followed the formulation: APG score=value of 
principal component one (PC1)+value of principal component two 
(PC2). Next, we used R function “surv_cutpoint” from package 
“survminer” to estimate optimal cutoff value of APG score. Patients 
with a APG score higher than cutoff value was assigned to “High-
risk” group while the others would be labelled “Low- risk”.

Independent analysis of prognostic signature

R package “survival” and “survminer” were utilized to evaluate 
the independence of APG score signature. ROC curves further 
evaluated signature's value in prediction of prognosis in the future 
1,3,5 years by “timeROC” package [22]. In addition, Nomogram 
was developed to associate clinicopathological characteristics 
with risk score [23]. Cumulative curve and Calibration diagram 
validated its efficiency in reflecting clinical outcomes. Additionally, 
Decision Curve Analysis (DCA) was applied to evaluate accuracy of 
the Nomogram [24].

Analysis of Tumor Microenvironment (TME) and 
prediction of immunotherapy treatment response across 
gene clusters

R algorithm “CIBERSORT” was used to estimate immune cell 
infiltration of every sample [25]. Package “tidyverse” was further 
used to systematically investigate the relationship between every 
subtype of immune cells and APG score. TME score was assessed 
by R algorithm “estimate” [26]. Tumor Immune Dysfunction and 
Exclusion (TIDE) (http://tide.dfci.harvard.edu/) and Cancer 
Immunome Atlas (ICTA) databases (https://tcia.at/home) 
were used to assess the relationship between APG score and 
immunotherapy treatment response.

Identification of protein interactions and hub genes

Interactions between proteins were performed by string database 
(version 11.5) [27]. Hub genes were identified by cytoscape software 
(version 3.8.2, app “cytohubba”) [28].

Drug sensitivity prediction

Therapeutic sensitivity prediction was performed via R package 
“pRRophetic” [29]. Drugs with significant treatment response were 
illustrated in boxplots by “ggplot2” and “ggpubr” packages.

Statistical analysis

In this study, all statistical analysis were performed using Perl 
scripts, R software (version 4.3.1) and its support packages. 
Univariate Cox analysis was performed to identify prognostic APGs 
with significance. Kaplan–Meier survival analysis and the log-rank 
test was used to compare survival between two groups. Correlation 
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signal pathways concerning cytokine activity, lymphocyte mediated 
immunity, adaptive immune response and leukocyte chemotaxis in 
APG cluster C. Meantime, we discovered downregulated pathways 
relating to chromosome separation in subtype A. Our findings 
suggested that APG cluster C were highly probably to possess much 
more anti-tumor microenvironment than its counterpart. This 
may also partially explain a better OS in cluster A than that in C. 
The correlation between APGs and TME remained to be further 
explored.

behaviors APGs take part in breast cancer pathological process, 
next we performed a Gene Set Variation Analysis (GSVA). As is 
shown in Figures 4B and 4C, cluster C is majorly enriched in signal 
pathways concerning chromosome separation, mitotic spindle 
organization, DNA replication and DNA damage repair, indicating 
more activity in mitosis and cell cycle. Additionally, Gene Set 
Enrichment Analysis (GSEA) revealed the top 5 significant 
signal pathways as was shown in Figures 4D and 4E. Consistent 
with former GSVA results, GSEA results revealed downregulated 

Figure 1: Expression variation of Anoikis and Pyroptosis-releated Genes (APGs) in breast cancer. (A) Top 50 differentially expressed APGs in normal 
and tumor tissues from TCGA-BRCA cohort; (B) Volcano graph of upregulated and downregulated genes in tumor tissues; Red dots represent genes 
upregulated while green dots represent those downregulated compared with normal tissues. (C) Forest plot depicts the most remarkable prognostic 
APGs; (D) PPI network acquired from the STRING database based on prognostic APG; (E) Adjacent node numbers of APGs; (F) Hub genes identified 
according to prognostic APGs. (*p<0.05; **p<0.01; ***p<0.001). Note: (A) ( ) Normal; ( ) Tumor. (B) ( ) Down; ( ) Not; ( ) Up.

Figure 2: Landscape of genetic and expression variation of APGs in breast cancer. (A) Correlation network reveals interactions between APGs. (B) 
Copy Number Variation (CNV) frequency of 48 prognostic genes. (C) ARGs location in chromosomes. (D) Mutation frequency of prognostic genes 
for patients from TCGA-BRCA cohort. Note: (A) ( ) Anoikis; ( ) Pyroptosis; ( ) Risk factors; ( ) Favorable factors; ( ) Postive correlation with 
P<0.0001; ( ) Negative correlation with P<0.0001. (B) ( ) Gain; ( ) Loss. (D) ( ) C>T; ( ) T>A; ( ) C>G; ( ) T>C; ( ) C>A; ( ) T>G; ( ) 
Missense_Mutation; ( ) In_Frame_Del; ( ) Nonsense_Mutation; ( ) Frame_Shift_Ins; ( ) Splice_Site; ( ) Multi_Hit.
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Figure 3: APG subtypes defined by consensus clustering technique. (A) Consensus matrix heatmap and the corresponding area defining the three 
subtypes. (B) Kaplan-Meier curve reveals prognosis varying with significance between APG subtypes (p<0.001). (C) Principle component analysis of 
APG subtypes. (D) UMAP examination of APG subtypes. (E) t-SNE test of APG subtypes. Note: (A) ( ) 1; ( ) 2; ( ) 3. (B) ( ) A; ( ) B; (
) C. (C-E) ( ) A; ( ) B; ( )C.

Figure 4: Correlations between APG clusters with immune features. (A) Immune cell infiltration portrait of APG clusters. (B) GO analysis of APG 
cluster A and C. (C) KEGG analysis of APG cluster A and C. (D,E) G-SEA reveals functions enriched in two clusters (D) Cluster A, (E) Cluster C. 
Note: (A) ( ) A; ( ) B; ( ) C. (B,C) ( ) A; ( ) C.
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cell infiltration across all samples [25]. Generally, we ranked the 
samples in the order of APG score from low to high to show 
immune cell proportion (Figure 8A). Next, we explored interactions 
between different types of immune cells (Figure 8B). Most types 
of immune cells were enriched in the high-risk subgroup when 
compared to the low-risk group (Figure 8C). Moreover, APG score 
was observed to be positively related to most types of immune cells 
but in a negative correlation with CD56 dim natural killer cells 
and neutrophils (Figure 8D). It came to our sight that with APG 
score went higher, abundance of majority of immune cells went 
richer. To further investigated the relationship between APG score 
and immunotherapy efficacy, we analyzed the expression pattern 
of eight immune checkpoint molecules in different risk groups 
and found seven of the eight molecules expressed much higher 
in the high-risk group (Figure 8E). We speculate this may indicate 
a better response to ICIs treatment. To validate our suspect, we 
turned to “Tumor Immune Dysfunction and Exclusion (TIDE)” 
online database for further validation. Accordingly, patients in low-
risk group exhibited more chance to immune escape events and 
respond poorer to immunotherapy (Figure 8F). Finally, we utilized 
the TCIA database to verify whether expressions of PD-1 or CTLA-
4 could affect treatment between the high- and low- risk groups of 
patients with breast cancer. Consistent with our former findings, 
patients classified as high-risk group would respond much better 
than their low-risk counterparts in case the tumor cells expressing 
CTLA-4 or/and PD-1 (Figure 8G-8J).

Development of nomogram based on APG risk score

To precisely and individually assess risk and predict survival in breast 
cancer patients, we developed a nomogram constitutive of TNM stage, 
age and APG risk score by R program [23]. As is shown in Figure 9A, 
the higher the sum of scores was, the poorer the patient’s prognosis 
would be. Then we utilized calibration plots to validate the accuracy 
and efficiency of the nomogram (Figure 9B) [31]. Time-dependent 
Receiver Operating Characteristic (ROC) curves were utilized to 
examine sensitivity and specificity of nomogram predictive model 
(Figure 9C). What’s more, the AUC value of the nomogram was far 
beyond the other prognostic biomarkers, suggesting great potential in 
prognosis prediction (Figure 9D).

Drug sensitivity prediction

Susceptibility of several drugs that were applied to treat breast 
cancer clinically was estimated by R package "pRRophetic" [29]. 
Sensitivity of a total of 198 drugs were analyzed (Supplementary 
Table 3). Our analysis showed patients from APG high-risk subtype 
were resistant to most drugs and could only benefit more from 
five drugs. (Supplementary Figure 3). This indicated that few 
chemotherapy and targeted drugs may achieve better response 
among patients with a high score. Sensitivity for several commonly 
used drugs in clinic were shown in Figures 10A-10H. o precisely 
and individually assess risk and predict survival in

Validation by the Human Protein Atlas (HPA) database

We exploited the HPA database to evaluate the protein expression 
level of the most remarkable hub genes. As speculated, expression 
level of the top two hub genes, BRCA1 and CD24 was much higher 
in tumoral tissues. Accompanied with higher level of protein 
expression level was a higher APG score, indicating a poorer OS 
(Figures 11A-11F).

Identification and Gene Ontology (GO) analysis of 
intersecting genes between APG clusters

We used R “limma” package to have successfully identified 300 
intersecting genes between three APG clusters, as is shown in 
Figure 5A. Overlapped genes between three APG subtypes were 
mainly enriched in biological processes concerned with mitosis, 
chromosome segregation and cell cycle (Figures 5B-5D).

Classification of gene clusters based on DEGs

121 DEGs significantly related to overall survival were identified 
by univariate Cox regression algorithm (Supplementary Table 
2). According to expression profiles of DEGs, we again used R 
software “consensus” algorithm to classify patients into gene 
cluster “A” and “B” (Figure 6A). As was shown in Figure 6B, 
individuals in gene cluster A exhibited much better overall survival 
than their counterparts in gene cluster B. The relationship between 
clinicopathological portraits and gene clusters was displayed 
in a heatmap (Supplementary Figure 2). Notably, 38 of the 48 
prognostic APGs expressed variedly across different gene clusters 
(Figure 6C).

Establishment of the APG score signature

Based on expression pattern of 121 DEGs, the approach of PCA 
was applied to calculate the APG score for every sample. The 
APG score was calculated as the following formulation; APG 
score=value of Principal Component One (PC1)+value of Principal 
Component Two (PC2) (Supplementary PCAscore.csv). Next, we 
used R function “surv_cutpoint” from package “survminer” to 
estimate optimal cutoff value of APG score. As a result, according 
to the calculated cutoff of APG score, patients with a higher 
score were categorized as “High risk” group (N=905) while those 
harboring a lower score were labelled as “Low risk” (N=503). There 
were remarkable differences between two score groups with regards 
to OS as was shown in Kaplan-Meier survival curve (Figure 7A). 
Patients in subgroup with lower APG score had a much better 
probability to survive than those with higher scores (Figure 7B). 
Clearly, patients who were dead also showed a tendency to score 
higher than those who were alive (Figure 7C). The alluvial diagram 
illustrated the distribution between APG clusters, gene clusters, 
APG score and clinical outcomes (Figure 7D).

Independence validation of the prognostic APG score

A total of 1235 samples from both TCGA-BRCA and GSE20685 
cohorts with complete OS, age and TNM information was included 
in the independence validation. Multivariate Cox analysis was 
next used to explore the correlations between clinicopathological 
characteristics and clinical outcomes (Figure 7E). In accordance 
with our former results, patients from APG cluster A, whose OS 
is longest between three clusters, were featured with lowest APG 
scores. We also found that age, lymph node status, metastasis 
together with APG score exhibited significant potential in 
predicting survival (Figures 7F-7J). This further supported that 
APG score system is reliable and of prognostic value. We believe it 
will serve as a novel prognostic biomarker for breast cancer.

Correlation between APG score signature and 
immunotherapy

First, we applied “CIBERSORT” algorithm to estimate immune 
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Figure 5: Identification of intersecting genes. (A) The venn diagram reveals intersecting genes between three APG clusters. (B-D) GO analysis of 
intersecting genes in three APG clusters. Note: ( ) Biological Process; ( ) Cellular component; ( ) Molecular function.

Figure 6: Gene clusters defined by consensus clustering algorithm. (A) Consensus matrix heatmap and the corresponding area defining two gene 
subtypes. (B) KM curve of two gene clusters (p=0.006). (C) 38 of the 48 prognostic APGs expressed varingly across two clusters. Note: (A) ( )1; ( )2. 
(B) ( ) A; ( ) B. (C) ( ) A; ( ) B.
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Figure 7: Construction and prognostic value of the APG score signature. (A) K-M curve of patients between different risk group (p<0.01). (B) Proportion 
of survival and death in the high and low risk groups. (C) Comparison of APG score regarding clinical outcomes. (D) Alluvial diagram showed the 
distribution of patients in APG clusters, gene clusters and APG score. (E) Multivariate Cox analysis of APG score and clinical characteristics. (F) APG 
score and APG clusters. (G-J) K-M curve for age and TNM stage. (G) Age (<65ys vs. ≥ 65ys). (H) T1-2 vs. T3-4. (I) N0 vs. N1-3. (J) M0 vs. M1. Note: (A) 
( ) Low; ( ) High. (B) ( ) Alive; ( ) Dead. (C) ( ) Alive; ( ) Dead. (F) ( ) A; ( ) B; ( ) C. (G-J) ( ) Low; ( ) High.

Figure 8: Tumor microenvironment of breast cancer tissues with varying APG scores. (A) Correlation between immune cell abundance and APG risk 
group. (B) Heatmap reveals correlation between immune cells in breast cancer tissues. (C) Component of immune cells infiltration between different 
risk groups. (D) Immune cells correlation with APG score. (E) Expression pattern of eight immune checkpoints across risk subgroups. (F) Boxplot 
displaying immune escape probability. (G-J) IPS score evaluating ICIs treatment response. (G) CTLA4-, PD1-. (H) CTLA4-, PD1+. (I) CTLA4+, PD1-. (J) 
CTLA4+, PD1+. Note: (C) ( ) Low risk; ( ) High risk. (E) ( ) Alive; ( ) Dead. (F) ( ) Low-risk; ( ) High-risk. (G-J) ( ) Low; ( ) High.
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Figure 9: Construction of nomogram for priognosis prediction. (A) The nomogram integrated clinical properties of TNM stage, age and risk score 
to predict probability of 1-year, 3-years, 5-years survival. (B) Calibration curve for nomogram. (C) AUC curves for nomogram in 1-year, 3-years and 
5-years. (D) AUC curves for nomogram, APG score and other clunicopathlogical characteristics. (**p<0.01, ***p<0.001). Note: (B) ( ) 1-year; (

) 3-years; ( ) 5-years. (C) ( ) AUC at 1 year: 0.765; ( ) AUC at 3 years: 0.782; ( ) AUC at 5 years: 0.736. (D) ( ) Nomogram, 
AUC=0.736; ( ) APGscore, AUC=0.604; ( ) Age, AUC=0.583; ( ) T, AUC=0.632; ( ) N, AUC=0.677; ( ) M, AUC=0.531.

Figure 10: Estimate of sensitivity of several drugs for patients with different risk subtypes (A) Cisplatin (B) Erlotinib (C) Gefitinib (D) Irinotecan (E) 
Lapatinib (F) Olaparib (G) Paclitaxel (H) Tamoxifen. Note: (A-H) ( ) Low; ( ) High.
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Figure 11: Protein expression of BRCA1 and CD24. (A,B) Expression of BRCA1 in normal and tumoral tissues respectively. (C) BRCA1 expression 
and APG score. (D,E) Expression of CD24 in normal and tumoral tissues respectively. (F) BRCA1 expression and APG score. Note: (C,F) ( ) Low; (

) High.

pyroptosis is a promising approach to treat breast cancer [42,43]. 
Evidence are accumulating that by triggering biological process in 
breast cancer, the tumor microenvironment could be reorganized 
and thus anti-tumor immunity could be enhanced [44].

Despite the important roles anoikis and pyroptosis have taken part 
in tumoral genesis, metastasis, microenvironment organization, 
even clinical outcomes of breast patients, prognostic biomarkers 
and crosstalk behind are scarcely discussed.

In this research, we investigated 467 APGs whose expression patterns 
varied with significance between tumor and normal tissues. Next, 
based on univariate Cox regression model, expression of 48 APGs 
were believed to be of prognostic value. Among them, 32 of them 
were identified as risk factors against prognosis while 16 of them 
as favorable factors. Based on the prognostic APGs, CCL5, IL18, 
SERPINE1, BRCA1 and MMP13 were identified as hub genes. 
Previous studies have demonstrated therapeutic value in regulating 
anoikis and pyroptosis. By interacting with Chemokine Receptor 
Type 5 (CCR5), CCL5 could promote breast cancer progression and 
metastasis via Treg cells [45]. Release of IL-18 is reported to initiate 
pyroptosis in breast cancer, facilitating tumor metastasis [46-48]. 
Serine Protease Inhibitor, Clade E Member 1 (SERPINE1) is a well-
known oncogene that takes an important part in several human 
malignancies. Inhibition of SERPINE1 significantly inhibited 
cell survival, induced cell apoptosis, downregulated expression 
of angiogenetic Vascular Endothelial Growth Factor A (VEGFA) 
[49]. Knockdown of SERPINE1 could partially restore sensitivity to 
paclitaxel in TNBC. Variants in BRCA1 are responsible for a bulk of 
breast cancer cases, as is universally investigated and acknowledged. 
Patients carrying mutations of BRCA1 are extremely vulnerable to 
breast cancer as is reported [50,51]. MMP13 was observed to be 
upregulated in invasive breast cancer while silencing of MMP13 
could reduce proliferation of breast cancer cells [52]. There is 
abundant evidence that APGs play an important role in phases of 
genesis and development in breast cancer, affecting chemotherapy, 

DISCUSSION

Breast cancer is one of the most common malignant worldwide and 
has posed a great threat to the female population [1,2]. Despite the 
rapid advance in detection techniques and treatment strategies of 
breast cancer, it is vital to identify early-stage breast cancer patients 
sensitively and specifically to improve clinical outcomes in such 
population [4,32]. Due to high heterogeneity of TME in Advanced 
Breast Cancer (ABC), patients developing into advanced stage 
are destined to embrace a poor prognosis [33]. In view of lack of 
innovative and individualized tactics to identify and treat breast 
cancer patients, novel biomarkers with sensitivity and specificity 
are urgently needed [34,35].

Normally, cells in incorrect context within a tissue or loss in 
contact with appropriate extracellular matrix will be eliminated 
by mechanism of apoptosis, a progress we called “anoikis” [36,37]. 
Hence, anoikis is a physiologically procedure taking an active 
role in the genesis, development and homeostasis of organisms. 
Corresponding studies indicated that malfunction of anoikis 
mechanism could give rise to a series of diseases, including 
progression of tumors [38]. It is universally observed that metastatic 
tumor cells exhibited property of highly resistance to anoikis. 
Anoikis disorder featured a hallmark of tumor cells by promoting 
the Epithelial-to-Mesenchymal Transition (EMT) through both 
the intrinsic and extrinsic pathways [7,39]. Nevertheless, there are 
few studies concentrating on the effects of expression of anoikis-
related signal pathways and genes on breast cancer invasiveness and 
prognosis.

Pyroptosis is a distinguished form of PCD in response to a wide 
range of stimulations. As a typical kind of inflammatory cell death 
usually triggered by the cytosolic sensing of danger signals and 
pathogen infection, pyroptosis is reported to be able to enhance 
immune activity depending on tumor type, host inflammatory 
status and immunity [40,41]. Recent studies have revealed targeting 
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prognostic Anoikis- and Pyroptosis Related Genes (APGs). We 
analyzed and assessed the model from multiple dimensions, for 
example, the correlation with prognosis, TME, immunotherapy 
and chemotherapy treatment response. Our findings confirmed 
the clinical value of anoikis and pyroptosis, providing new visions 
in optimizing breast cancer management.
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targeted therapy and immunotherapy efficacy. Nevertheless, few 
studies were undergone to explore the association between anoikis 
and pyroptosis, let alone the crosstalk behind in breast cancer 
progression. The mechanisms behind remain to be more explicitly 
elucidated.

Based on prognostic APGs, in this study, we successfully classified 
individuals into three molecular subtypes. Prognostic information 
visualized by Kaplan-Meier survival curve had revealed significant 
differences in terms of survival between subtypes. By means of 
ssGSEA, we compared abundance of infiltrated immune cells 
between the three APG subtypes. Consistent with our expectation, 
those whose TME were infiltrated with more activated immune cells 
showed better OS. Next, we applied GSEA and GSVA to highlight 
signal pathways accounting for the differences. Consequently, we 
found individuals displaying higher activity in pathways regarding 
adaptive immunity and cytokine activity tended to share longer OS. 
On the contrary, subtypes mainly enriched in pathways regarding 
cell cycle, chromosome segregation and DNA replication inclined 
to have poor prognosis. We next focused on the 300 overlapped 
genes between three APG clusters. GO and KEGG analysis were 
used to determine biological functions the intersecting genes works. 
According to expression of 121 DEGs identified by univariate 
Cox regression model from 300 intersecting genes, patients were 
classified into two gene clusters. Individuals in gene cluster A 
were featured with better OS and higher abundance in activated 
immune cells in TME, inflecting an inflammatory environment 
that favors anti-tumor immunity [53]. We constructed an APG 
score system to predict prognosis based on PCA. Accordingly, 
patients were classified into different risk groups on the basis of an 
ideal cutoff of APG score. Our successive analysis verified the APG 
score signature was not only able to predict prognosis, but also 
beneficial to estimate immunotherapy response. Patients in the 
high-risk showed remarkable advantage in receiving ICIs treatment 
while resistant to majority of chemotherapy and targeted therapy. 
Furthermore, we constructed a nomogram model and consequent 
examination exhibited superior efficiency in predicting clinical 
outcomes over APG scores.

More and more evidence is pointing out that resistance to anoikis 
could facilitate chemotherapy tolerance. It is also reported that by 
reversing such resistance, prostate cancer patients could benefit 
much more from chemotherapy [54]. While pyroptosis serves as 
a double-edged sword in breast cancer treatment. How to make 
advantage of mechanisms of pyroptosis to promote anti-tumor 
immunity and improve immunotherapy efficacy is a challenge to 
deal with [55].

Above all, our research developed a novel biomarker based on 
analysis of anoikis combined with pyroptosis, corresponding 
regulation and intervention of which could profit the health being 
of patients suffering from breast cancer. Despite the discoveries, we 
must admit our study still share some deficiencies. Firstly, our data 
is majorly from open access to TCGA and GEO database. Secondly, 
only bioinformatic approaches are not convincing enough, we 
require following laboratory and clinical validation. Thirdly, breast 
cancer is a collection of a series of highly heterogeneous disease, in 
our study we failed to distinguish breast cancer patients according 
to their histopathological molecular portraits.

CONCLUSION

In this research, we constructed a risk score signature based on 

that may be evaluated in this article or claim that may be made by 
its manufacturer, is not guaranteed or endorsed by the publisher.
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