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Abstract

Recent studies have shown that many pathological conditions, including neurodegenerative disorders, are always
the result of innate immune dysregulations. In multiple sclerosis (MS), innate immunity has shown induce
proinflammatory responses, mainly mediated by specific innate immune receptors, as well as Toll-like receptors
(TLRs). Interestingly, whereas activation of TLR-MyD88 dependent signaling pathway induces inflammation and MS
progression, TLR3 activation MyD88 independent seems to play a beneficial effect, probably due to its ability to
enhance endogenous IFN-β production, that in turn down regulates proinflammatory responses. Consequently, new
therapeutic approaches based on TLR up and/or down regulation could offer promising results. In addition to several
classes of TLR antagonists represented by different types of antibodies, nanobodies, mimetic molecules and RNA-
selective interference compounds, TLR3 agonists appear particularly interesting due to their capability of inducing
IFN-β production. Among these, Ampligen® shows early promise, since it has shown positive results in several
phase III trials for the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME), an illness that
shows remarkable levels of similarity with MS.

Introduction
The recent advances in understanding the important role played in

the central nervous system (CNS) by innate immune cells, such as
resident microglia and newly recruited bone-marrow derived cells, that
allow active interactions between the immune and nervous systems
[1], suggested invaluable mechanisms for several pathological
conditions, including the neurodegenerative disorders, most of them
have shown to be mainly caused by immune dysregulations. In
multiple sclerosis (MS), innate immunity has recently shown to play a
major role both in the initiation and progression of the disease, by
influencing the effector functions of T and B cells [2-4]. In particular,
numerous and recent studies have shown that inappropriate responses
of specific receptors expressed by innate immune cells, as well as Toll-
like receptors (TLRs), contribute to modulate MS course. Whereas the
activation of most TLRs, including TLR2, TLR4, TLR7, and TLR9
through MyD88-dependent signaling pathway, mediates MS
progression, TLR3 activation, through MyD88-independent and TRIF-
dependent pathway, has shown to protect from the murine model of
MS, represented by experimental autoimmune encephalomyelitis
(EAE) [5-6]. The positive role played by TLR3 activation is probably
due to its capability of inducing, through a MyD88-independent
pathway, endogenous IFN-β production, that appears to directly
increase expression and concentration of anti-inflammatory agents
while down regulating the expression of proinflammatory cytokines.
Altogether, the recent advances obtained by the researchers about the
role of TLR biology in MS have led to potential new therapeutic
approaches to counteract the disease, manly based on TLR up and/or
down regulation with specific agonists and/or antagonists and by
inhibiting intracellular proteins involved in the cascade signaling
pathways [7]. Novel therapeutics able to modulate immune responses
through TLRs has been developed by several international companies.
The most known class of TLR antagonists is represented by different

types of murine, humanized and recombinant antibodies already
approved for clinical use in other diseases. Among these, the class of
nanobodies (VHH-based single variable domains) with very long
complementary determining regions 3 (CDR3), are capable of
inhibiting efficiently different protein antigens. Due their small size
(12-15 kDa), nanobodies have several additional advantages compared
to conventional antibodies (150-160 kDa), such as their extreme
stability towards changes in temperature and chemical environments,
and resistance to extreme pH levels. Because of their reduced size,
nanobodies can penetrate tissues and cells faster than the conventional
antibodies, being also capable of breaking through the brain's blood
barrier, abilities that make them suitable for CNS therapies.

Other receptor antagonists are represented by mimetic molecules of
short amino acid sequences, able to prevent the interaction of
prototype proteins with their partners. Among these, specific “decoy
peptides” have shown to block selectively TLR signaling pathways, by
inhibition of TIR-TIR interactions via structural mimicry, due to
three-dimensional fold similarities with TIR structures of specific
TLRs [8]. Mimetic TLR inhibitors have been also developed to prevent
homo- or hetero-dimerization of TLRs. Antagonistic molecules
directed against intracellular TLRs, including TLR3, TLR7 and TLR9,
are mainly represented by single stranded DNA or RNA molecules.
Among these, the aptamers, obtained by “in vitro” selection processes
from combinatorial libraries, have been widely used in various
biomedical applications. In particular, the aptamers obtained using
immunoprecipitation strategy together to exponential enrichment
(SELEX), appear to selectively inhibit endosomal TLR-mediated
pathways responsible for inappropriate or excessive inflammation in
multiple diseases [9-10]. More recently, small RNA-selective
interference compounds have been obtained by using predictive
modeling methods [11]. These novel techniques will allow to also
obtaining efficient interference RNA-based TLR modulators [12].
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Altogether, the modulation of TLR expression with small molecules
acting as TLR-agonists/antagonists represents an innovative and
attractive approach in MS therapy. The use of TLR-targeting drugs is
also promoted by their fewer side effects and lower or no toxicity,
compared with other drugs commonly used in MS treatment. This
represents an important feature, since MS is a chronic disease that
requires long-term treatments.

Among the most promising immunotherapeutics TLR-targeting
suitable to be used in MS therapy, TLR3 agonists play a leading role,
mainly due to their capability of inducing endogenous IFN-β
production [13-16]. TLR3 is triggered by dsRNA with a minimum size
of at least 50 base pairs and by specific endogenous ligands, as well as
the endosomial microtubule regulator stathmin [17]. Much recent
evidence supports the positive role showed by TLR3/TRIF mediated
pathway. In EAE mice, TLR3 stimulation induces the inhibition, IL27-
mediated, of Th17 cells, that are known to play a critical role in the
disease [18-20]. In addition, high levels of IFN, that significantly
reduced disease severity, were detected in EAE mice inoculated
intraperitoneally with the synthetic TLR3 agonist poly (I): poly (C)
acid [21].

Among the investigational compounds TLR3-targeting, the
mismatched double-stranded RNA molecule Ampligen® [22] could
offer promise in MS therapy. Ampligen® is a mismatched dsRNA with a
high specificity of binding to TLR3, with a subsequent selective
activation of genes for IFNs, 2-5 adenylate synthetase, and protein
kinase (p68) [23,24]. In contrast to the original molecule, developed in
the 1960s by Merck and Co. to reduce tumor formation, and that
resulted extremely toxic, the new compound was modified by Johns
Hopkins University researchers and made less toxic by adding uridylic
acid molecules at specific intervals along the dsRNA chain, so
obtaining a particular dsRNA, denoted poly (I): poly (C12U), wherein
one of the two polyribonucleotides is polyriboinosinic acid and the
other is polyribocytidyl C12, uridylic acid. This new compound, called
Ampligen® (for AMPLIfied GENetic activity), capable of stimulating
IFN production like poly (I): poly (C), had smaller and rugged
molecular structure, and appeared more resistant to molecular
unfolding, including denaturation and branching, and this led to an
increase in bioactivity, due to higher ability to bind TLR3.

Ampligen® is currently in phase III clinical trial in the treatment of
chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME), an
illness that shows remarkable levels of similarity with MS. Indeed, both
disorders, show remarkable phenomenological and neuroimmune
overlaps [25]. The neuroimmune similarities between MS and CFS/ME
are mainly based on shared immunoinflammatory oxidative and
nitrosative stress, autoimmune and mitochondrial pathways. Other
remarkable levels of similarity concern “the findings produced by
neuroimaging techniques, that appear quite similar in both illnesses
and show decreased cerebral blood flow, atrophy, gray matter
reduction, whit matter hyperintensities, increased cerebral lactate and
choline signaling, and lowered acetyl-aspartate levels” [26]. However,
the main evidence base supporting the use of Ampligen® in MS therapy
is because TLR3 stimulation leads to endogenous induction of IFNβ
that has shown to prevent inflammation and demyelination and to also
possess neuroprotective activity [27]. In addition, unlike the exogenous
IFN used in MS therapy, it does not induce neutralizing antibodies that
reduce effectiveness [28,29].

Conclusions and Future Directions
Despite the several therapies proposed to treat MS, none of them

has shown to be completely effective. In every case, a strong
inflammatory response, TLR-mediated, appears to contribute to this
autoimmune disease. Then, a selective inhibition of specific TLRs can
provide a proposing device to prevent initiation and progression of
MS. In contrast, TLR3 stimulation can improve the MS course, due its
ability to enhance IFNβ production. We can conclude that TLR
modulation with small molecules acting as TLR-agonists/antagonists
might represent an alternative and attractive approach in MS therapy.
Another winning point of TLR-targeting drug is that they not show
important side effects and toxicity compared with drugs commonly
used in MS treatment. This represents an important feature in the
therapy of this chronic autoimmune disease that always involves young
people who will be compelled to continue the therapy for the rest of
their lives.
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