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Abstract
Transthyretin is a homotetrameric thyroid-hormone-transporting protein that binds to the retinol binding protein 

thus being involved in metabolism, growth, fertility, homeostasis of the cardiovascular and central nervous system, 
cell differentiation, reproduction, development and maintenance the cognitive processes during aging. Currently, there 
are several methodologies for natively purifying TTR from plasma, serum, tears, and amyloid fibrils; however, these 
procedures are laborious. Herein, a low-cost and simple protocol to purify TTR from human plasma is described. 
It involves the separation of plasma proteins by size exclusion and DEAE chromatography. The homogeneity was 
assessed by SDS-PAGE and by tandem mass spectrometry using an Orbitrap-XL (Thermo, San Jose-CA).
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Introduction
Transthyretin was discovered in 1942 and originally named as 

pre albumin [1]; it is a highly conserved protein found in plasma and 
cerebrospinal fluid [1,2]. It is mainly expressed by hepatocytes [3] and 
epithelial cells of the choroid plexus [4]; yet it can also be expressed by 
the cerebral meninges [5], epithelial cells of the retina [6], pancreatic 
islets of Langerhans [7], visceral yolk sac [8], placenta [9], intestine [10] 
and at low-scale by stomach, heart muscle, and spleen [11].

The two major physiological functions of TTR are the transport of 
T4 hormone produced by thyroid and the transport of retinol (vitamin 
A) through interaction with retinol-binding protein RBP [12], thus 
being involved in metabolism, growth, fertility, and homeostasis of the 
cardiovascular and central nervous system [13], cell differentiation, 
reproduction, development and maintaining the cognitive processes 
during aging [14]. 

Previous reports describe evidences of TTR involvement in 
response to stress [15], in immunological pathways [16], metabolism 
of lipoproteins [17], and in neuroprotection against Alzheimer's 
disease by modulating the formation of β-amyloid plaques [18-20]. 
Paradoxically to this latter function, it is known that when some 
individuals inherit a mutated TTR gene, the mutated protein loses its 
functional structure and aggregates. This structural modification leads 
to formation of amyloid fibers and results in degenerative diseases that 
affect the nervous system, heart muscle, and other organs. Currently, 
the molecular mechanisms involved in the conversion of the TTR 
tetramer into aggregates of amyloid precursor fibers remains elusive. 
Although it is known that upon dissociation the TTR tetramer produces 
monomeric species with structural characteristics different from native 
monomer [21,22], the events associated with this non-native monomer 
in the initial process of TTR aggregation remain elusive.

The first reports for purifying TTR are from decades ago. Fex 
andrt Lindgren [23] purified a bovine counterpart to TTR from 
bovine serum by thiol-disulfide exchange chromatography on thiol-
Sepharose 4B and affinity chromatography on human retinol-binding 
protein linked to Sepharose 4B. Berni et al. [24] purified TTR by 
using ammonium sulfate fractionation, followed by a hydrophobic 
interaction chromatography on phenyl-Sepharose and gel filtration 
on Sephadex G-50. Bashor et al. [25] developed a methodology for 

TTR purification that involves precipitation of contaminating proteins 
with dilute aqueous phenol, ion-exchange chromatography on DEAE-
Sephacel, and gel permeation chromatography on Sephadex G-100. 
Furuya et al. [26] were the first to recombinantly produce TTR fused 
with the E. coli outer membrane protein A (ompA) signal peptide. TTR 
has also been produced in the eukaryotic Pichia Pastoris system [27]. 
Lin et al. [28] created a method consisting of serum precipitation, anion 
exchange, thyroxine affinity chromatography and gel filtration. The 
latest methodologies for TTR purification include: 1) salting out, anion 
and cation exchange chromatographies, preparative electrophoresis, 
and size chromatography [29]; 2) ammonium sulfate fractionation 
followed by urea/Sephadex G-100 chromatography and a combination 
of two dye-affinity chromatographic steps on reactive yellow and 
cibacron blue coupled to agarose columns [30] and 3) extraction of 
TTR fibrils followed by sequential gel filtration after solubilization in 
a solution of guanidine hydrochloride and covalent chromatography 
[31]. This last method aims separating full-length TTR from C-terminal 
fragments found in TTR amyloid fibrils. 

Aiming to establish a simple, fast and efficient method for 
purification of TTR, this work describes a purification strategy for TTR 
from blood plasma by employing two chromatographic methods in 
tandem. In our view, our method is one of the simplest yet for purifying 
TTR from a natural source; thus, ultimately aiding in studies that 
focus on the stabilization of the native tetramer for inhibition of their 
disassembly, prevention of amyloidogenic intermediates formation, 
inhibition of amyloidogenic intermediates aggregation or promotion 
of rupture of amyloid fibers [32-34]. A better understanding the TTR 
properties contribute to the development of more effective therapeutic 
strategies targeting pathologies related to this protein.
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Material and Methods
Obtaining human plasma

Blood was collected from volunteer donors in collection tubes 
containing sodium citrate 3.2%. Blood samples were centrifuged at 
15°C, 1500 rpm for 15 minutes. The supernatant (plasma) was collected 
and the pellet discarded. 

Size exclusion chromatography

1 mL of human plasma obtained as described above was used 
as input for chromatography on Superdex 200 10/300 GL column. 
Sodium citrate 3.2% pH 8.0 was used as mobile phase for elution. The 
process was conducted on a FPLC system (Fast Performance Liquid 
Chromatography-GE-Healthcare). Eluted proteins were boiled in 
denaturant per 15 minutes and then loaded onto (15% acrylamide) as 
describe by [35]. 

Ion exchange chromatography 

The fractions from gel filtration containing TTR were pooled and 
fractionated by ion exchange chromatography on DEAE Sepharose Fast 
Flow column with Sodium citrate 3.2% pH 8.0 (buffer A) and Sodium 
citrate 3.2% pH 8.0, 1M NaCl (Buffer B). Elution was performed with a 
linear gradient of 0-100% B in 10 column volumes with manual hold at 
each peak. The protein purification was analyzed by SDS PAGE (15% 
acrylamide) and by tandem mass spectrometry.

LC-MS/MS acquisition

The peptides were subjected to LC-MS/MS analysis using a 
Thermo Scientific Easy-nLC 1000 ultra-high performance liquid 
chromatography (UPLC) system coupled online to a LTQ-Orbitrap 
XL ETD mass spectrometer (Mass Spectrometry Facility-RPT02H 
PDTIS/ Carlos Chagas Institute-Fiocruz Paraná), as follows. The 
peptide mixtures were loaded onto a column (75 mm i.d., 15 cm 
long) packed in house with a 3.2 μm ReproSil-Pur C18-AQ resin (Dr. 
Maisch) with a flow of 500 nL/min and subsequently eluted with a 
flow of 250 nL/min from 5% to 40% ACN in 0.5% formic acid and 
0.5% DMSO, in a 120 min gradient. The mass spectrometer was set in 
data-dependent mode to automatically switch between MS and MS/
MS (MS2) acquisition. Survey full scan MS spectra (from m/z 300-
2000) were acquired in the Orbitrap analyzer with resolution R=60,000 
at m/z 400 (after accumulation to a target value of 1,000,000 in the 
linear trap). The ten most intense ions were sequentially isolated and 
fragmented in the linear ion trap. Previous target ions selected for 
MS/MS were dynamically excluded for 90 seconds. Total cycle time 
was approximately three seconds. The general mass spectrometric 
conditions were: spray voltage, 2.4 kV; no sheath and auxiliary gas flow; 
ion transfer tube temperature 100°C; collision gas pressure, 1.3 mTorr; 
normalized energy collision energy using wide-band activation mode; 
35% for MS2. Ion selection thresholds were: 250 counts for MS2. An 
activation q=0.25 and activation time of 30 ms were applied in MS2 
acquisitions.

Raw MS data analysis

The reviewed proteome set of Homo sapiens, composed of 20,187 
sequences, was downloaded from the UniProt consortium on July 
4th, 2014. PatternLab was used for generating a target-decoy database 
by grouping subset sequences, adding the sequences of 127 common 
mass spectrometry contaminants, and, for each sequence, including 
a reversed version of it. The final database used for PSM contained 
105,551 sequences.

Peptide sequence matching

The Comet 2014 rev. 1 search engine [36], which is embedded into 
PatternLab for proteomics [37], was used to compare experimental 
tandem mass spectra against those theoretically generated from 
our sequence database and select the most likely peptide sequence 
candidate for each spectrum. Briefly, the search was limited to fully 
peptide candidates; we imposed carbamidomethylation of cysteine 
and oxidation of Methionine as fixed and variable modification, 
respectively. The search engine accepted peptide candidates within 
a 40-ppm tolerance from the measured precursor m/z and used the 
XCorr as the primary search engine score.

PSM validity was assessed using the search engine processor 
(SEPro) [38], which is embedded in PatternLab version 3.0.0.34. 
Briefly, identifications were grouped by charge state (+2 and > +3) 
resulting in two distinct subgroups. For each result, the Comet XCorr, 
DeltaCN, DeltaPPM, and Peaks Matched values were used to generate 
a Bayesian discriminator. The identifications were sorted in non-
decreasing order according to the discriminator score. A cutoff score 
was established to accept a false-discovery rate (FDR) of 1% at the 
peptide level based on the number of labeled decoys. This procedure 
was independently performed on each data subset, resulting in an 
FDR that was independent of charge state. Additionally, a minimum 
sequence length of six amino-acid residues was required. Results were 
post-processed to only accept peptide spectrum matches with less than 
6 ppm from the global identification average and proteins with two or 
more identified peptides.

Protein relative quantitation by extracted ion chromatograms

Relative quantitation by mass spectrometry describes strategies 
for comparing quantitative information of a same analyte between 
multiple samples. On the other hand, obtaining absolute quantitation 
values by mass spectrometry is challenging; some inherent difficulties 
are: a) different molecules ionize with different efficiencies in the 
mass spectrometer b) each protein will result in a different number 
of peptides after tryptic digestion. In a previous report, Zybailov et al 
described a strategy for normalizing spectral counting quantitation 
data that provides quantitation values closer to absolute values [39]. 
We recall that spectral counting is a label-free strategy that correlates 
the total number of MS/MS spectra assigned to a protein with its 
relative abundance. Briefly, Zybailov´s normalization, the so-called 
Normalized Spectral Abundance Factor (NSAF), considers the fact that 
longer proteins tend to have more peptide identifications that shorter 
ones. Formally, the NSAF for a protein k is given by “the number of 
spectral counts (SpC) identifying a protein, k, divided by the protein’s 
length (L), and divided by the sum of SpC / L for all N proteins in the 
experiment [39]. 

In this work, we employed a modified relative quantitation, having 
roots in NSAF, to assess the effectiveness of our purification approach. 
Briefly, instead of relying on spectral counts, or strategy, here termed 
Normalized Ion Abundance Factor (NIAF), replaces spectral count 
values by extracted ion chromatograms (XIC) values. Briefly, we recall 
that XICs are obtained by plotting the intensity of a particular peptide 
ion (m/z) over time and then integrating the area under the curve; 
for more on quantitative proteomic strategies we refer the reader to 
[http://dx.doi.org/10.1155/2013/674282]. XICs were obtained by 
using PatternLab´s SEProQ module [37]. Our motivation in doing so 
is that protein ratios obtained by XICs yield more accurate estimates 
ratios than those obtained by spectral counting and therefore yielding 
estimates closer to the absolute values.

http://dx.doi.org/10.1155/2013/674282
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Results 
Size exclusion chromatography (SEC), a chromatography that is 

widely used for purification and determination of the hydrodynamic 
radius of molecules [40], was the choice as first step for plasma 
fractionation. Human plasma, when chromatographed through 
Superdex 200 10/300 column is resolved into five distinct protein peaks 
(Figure 1). 

The SDS-PAGE electrophoresis profile suggested that each peak 
from superdex 200 10/300 contained different blood proteins. In 
the fractions corresponding to the shoulder of the third peak, it was 
possible to verify the presence of a protein with expected size for TTR 
(Figure 1). Fractions containing the TTR were pooled and submitted 
to ion exchange chromatography on a DEAE column. IEC resulted in 
four distinct peaks (Figure 2A). The proteins were well separated and, 
in the fourth peak, it is possible to indentify TTR by mass spectroscopy 
with two minor contaminants detected. The active TTR in the Uniprot 
has ~13.9 kDa and is composed of 127 amino acids. The sequence 
coverage was 88% and peptides comprising 112 aminoacids out of 127 
were detected. We obtained NSIAF from all proteins, as detailed in 
the methodology; our results showed that 92.5% of the total NSIAF 
from the sample was decurrently from TTR (Figure 2B). In that same 
fraction, 4.9% corresponded to the keratin, a common contamination 
that happens during sample preparation, and 2.4% refers to other 
proteins. 

All our raw mass spectrometric data is made available at http://
proteomics.fiocruz.br/tatiana/2015/. Moreover, TTR was not detected 

in any other fraction indicating that all TTR present in plasma is 
concentrated in this fraction. The yield of purification was ~0.09 mg 
of protein per ml of plasma. Our experimental procedure also could 
be helpfull to separate albumin, Serotransferrin and Antithrombin-III 
from other blood proteins (Figure 2). 

Discussion 
Several reports of plasma protein purification by size exclusion 

chromatography are available; but none were performed with the 
type of column and buffer system used in this work. By comparing 
the chromatographic profile of the gel filtration of human plasma 
presented in Figure 1 with other works, it is possible to observe that 
the chromatographic profile can vary widely for the same sample at the 
expense the column used [41,42]. 

Sepharose 4 FF is widely used for plasma fractionation [43], but 
due to its low resolution, it is most suitable in cases where the target 
protein and most contaminants have very distinct molecular masses. 
Other columns such as Superose 6, Sephadex G-200, Sephadex G-100 
also appear in the literature for plasma proteins fractionation [43-
46], but they all have lower resolution than Superdex 200 10/300. 
Sephadex G-200, the column closest to the required resolution, is 
capable of providing three distinct peaks when used in the first plasma 
fractionation step [44]. However, its use at the expense of Superdex 200 
10/300, would probably require additional purification steps to obtain 
pure TTR due to higher amounts of remnant contaminants.

Another important aspect to be noted is that the same column and 

Figure 1: Chromatogram of plasma fractionation by gel filtration on a Superdex 200 10/300 column and SDS PAGE of the eluted fractions during gel filtration. The 
fractions containing TTR are evidenced by the red box. First lane- Molecular weight marker (Bench marker protein ladder). The arrow (←) indicates the gel bands 
expected to be TTR.

http://proteomics.fiocruz.br/tatiana/2015/
http://proteomics.fiocruz.br/tatiana/2015/
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analogues [49,52,53] being indentified. However all screenings for such 
compounds were performed with recombinant molecules.
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