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ABSTRACT
One of the decisive factors for victory in military operations is the performance of the weapons system. This 
is reflected in the Required Operational Capabilities (ROC). ROC is determined in the acquisition planning 
phase when the quantitative goals of the weapon system are clarified. Inaccurate ROCs can generate serious 
consequences, such as failures in testing and evaluation, increases in lifecycle costs, delays in the acquisition, 
and, in the worst case, suspension of the acquisition project. In this research, we propose a novel framework for 
determining ROC by the combination of optimization and simulation techniques. First of all, an optimization 
model is formulated to maximize the mission success rate, taking into account the performance and effectiveness 
of the acquiring weapon system. For the optimization modeling, we generated a set of equations while figuring 
out the relation between the Measure of Performance (MOP) and the Measure of Effectiveness (MOE) by 
inspecting observed data from the simulation run. We describe relevant techniques and experiments that were 
performed to demonstrate our methodology has real world applicability to the Defense Acquisition Process.

Keywords: Required operational capabilities; Measure of performance; Measure of effectiveness; Defense acquisition 
process; OneSAF wargame model 

INTRODUCTION
One of the most important decisions to be made in securing 
required combat capability is determining the Required 
Operational Capabilities (ROC). The ROC, a standard step in the 
defense acquisition process, is a list of requirements of the weapon 
system. Settling on an ROC involves two essential tasks-identifying 
a desired outcome and quantifying the conceptual demands. If 
the weapon system of interest is an assault rifle, for example, one 
desired outcome could be rifle can hit a target from a distance 
and be quickly reloaded. To quantify the corresponding conceptual 
demands, one could propose the rifle range is greater than 450 
meters, and reloading time is less than 10 seconds. It is important 
that each decision be determined by different groups. Military 
personnel, for instance, should be in charge of the first task and 
engineers in charge of the second. Thus, the correct understanding 
of military needs and the transformation of those into quantifiable 
items are equally important parts of the process. A Ministry of 
National Defense (MND), also known as a Department of Defense, 
defines ROC across all phases of the acquisition process followed 
by the System Engineering (SE) philosophy. In spite of the SE aid, 
it is still hard to find an efficient and effective way of defining 

ROC. For example, Table 1 shows some ROC items, along with 
its numerical criteria, and an explanation of why those criteria are 
defined. Suppose we want to develop or purchase a counter-artillery 
missile system with the goal of a target interception rate of higher 
than 95%. How can we establish a numerical criterion for other 
elements of ROC? What is the exact number for this? How do we 
know the relation between the maximum speed of the missile and 
the interception rate? Indeed, the interception rate might be the 
function of other ROC items. Moreover, a set of combinations 
that accomplishes the goal may not be unique. For instance, one 
combination of ROC capable of attaining a 95% interception 
rate could include an effective range (4 km), a maximum speed 
(Mach 1.0), and a launch interval (1 per minute). In such a case, 
the criteria described in Table 1 are unnecessarily over defined. 
In the real-world, this is very common. After all, the perspective 
of an engineer is quite different from that of military personnel. 
In the view of an engineer, as long as the system can intercept the 
enemy missile with 95% interception rate, they think the other 
ROCs can be determined on their own. However, the military 
wants to define the criteria of all sub-systems from the perspectives 
of users and owners. The challenges mentioned above force the 
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MND, when determining the numerical criteria of ROC, to refer 
to the criteria of a benchmarking system (e.g., system successfully 
deployed on the market). Such decision making, however, forces 
the MND to spend time and money, unnecessarily, developing a 
system. Otherwise, the MND decides, based on sensitivity analysis, 
the criterion of each ROC item separately. However, the induced 
solution may be optimal for each component, but it may not be a 
universally optimized solution. In this work, we study a framework 
for determining ROC with a mathematical optimization model 
supported by a simulation model. In section 2, we review previous 
works and describe the contribution of our work. In section 3, we 
propose the framework for determining ROC, including a detailed 
description of the mathematical model. In section 4, we introduce 
a detailed study example to help the reader understand how the 
proposed framework is applied in the real world. Lastly, we explain 
the limitation of the research as well as suggestions for further 
study.

PREVIOUS WORKS 

In national security, a critical process in generating military 
capacity is defense acquisition. Decision makers can decide 
on defense acquisition generally by using the following three 
techniques: cost-effectiveness analysis, cost-benefit analysis, and 
simulation-based acquisition [1]. The traditional approach most 
commonly used in defense acquisition is Cost-Effectiveness 
Analysis (CEA). CEA is used to secure the maximum effect at 
the minimum cost. Because “effects” are evaluated in terms of 
ratios rather than monetary values, it is possible to make relative 
comparisons between alternatives. However, the measures and 
judgments of the alternatives themselves are limited. CEA is 
primarily used for the analysis of strategic effectiveness in terms 
of System of Systems (SoS) but does not provide individual logic 
for each system [2,3]. Another popular method of analysis is Cost-
Benefit Analysis (CBA). CBA and CEA have many similarities. The 
main difference is that CBA must value every outcome in terms 
of economics while CEA prioritizes alternative spending without 
having to evaluate the dollar value of the system. CEA is used 
in strategic decision-making of defense acquisition because it is 
difficult to estimate the number of benefits from weapon systems 
if the benefits of the system acquisition are measured in monetary 
units rather than ratios. In addition, the benefit estimates of 
weapon systems between peacetime and war-time concepts are not 
rational. So, when quantifying benefits, decision makers prefer to 
use CEA to CBA [4,5].The third large decision supporting tool 
to determine ROC is Simulation-Based Acquisition (SBA). The 
U.S. Department of Defense (DoD) defined SBA as an acquisition 
process that enables DoD and industry to use powerful and 
collaborative simulation technology integrated into acqui- sition 
stages and programs. This means that the SBA can substantially 
reduce the time, resources and risks of weapon system acquisition. 
It does so by using, throughout the entire process, Modeling 
and Simulation (MS), including analysis and determination of 
weapon system requirements, analysis/design, production, testing/
evaluation, training, operation, and logistics support [6-8].To derive 
optimal capabilities, decision makers should systematically analyze 
the various alter- natives presented at the strategic level of defense 
acquisition. As a result, the specifications and required capabilities 
of weapon systems and equipment to be used must be developed as 
ROC. Bulgaria, as a member of NATO, developed a prioritization 
methodology using the Analytical Hierarchy Process (AHP) for the 
development of ROC [9]. In capability development processes, 

South Africa proposed a five-step capability decomposition 
approach to integrating operational needs and system requirements 
[10]. To manned and unmanned aerial vehicles, Canada introduced 
the Hierarchical Prioritization Capabilities (HPC) method. This 
method provided the link between mission requirements and 
capability delivery options. This approach eliminates the need 
to com- pare all possible role and task pairs of UAVs required 
for AHP [11]. A review of the literature reveals that researchers 
have conducted studies on defense acquisition decisions at the 
strategic level, on operational capability prioritization through 
multi-criteria decision making, and on coming up with capability 
development processes. Researchers have not, however, come up 
with a mathematical framework to determine the optimal ROCs 
that take into account system performance and effectiveness. To 
the best of our knowledge, there is a lack of research focusing on 
the use of simulation and optimization together to determine 
ROCs; nonetheless, there many studies to use simulation models 
to analyze combat effectiveness in this article then, we study a novel 
framework to support such a determination. Contributions of this 
paper are highlighted as follows-

• A novel ROC determination concept and framework has been 
suggested by the combination of optimization and simulation 
techniques. The research investigates a detailed process for 
determining required operational capabilities from beginning to 
end. The process draws a clear distinction between the military 
personnel’s and the engineers’ responsibilities.

• This work develops a mathematical optimization model that takes 
into account the performance and effectiveness of the acquiring 
weapon system while maximizing the mission success rate.

• This work derives a series of constraints of the proposed 
optimization model by inducing, with the support of a simulation 
model, the relation between the MOP and the MOE. This is the 
first use of a simulation model, especially a war-game model, to 
define equations used to construct the mathematical model. We 
describe specific techniques as well as relevant issues derived from 
this non-trivial process.

SUGGESTED FRAMEWORK

In this section, we first describe the general framework for 
determining ROC elements and investigate the mathematical 
optimization model for implementing the idea. The whole process 
of the framework is described in Figure 1. In the sections that 
follow, we detail each step.

Overall process

Mission statement and MOE: The first step is to define a mission 
that must be accomplished by acquiring a system of interest. As 
the definition affects the entire ROC decision-making process, it 
should be precise. One could define, for example, the following-

• The number of casualties in the course of reconnaissance 
operations is decreased by 10%.

• The enemy detection capability should be significantly enhanced.

In the first example; the military explicitly defines the goal of 
the system using the exact number. However, as stated in the 
second example, the goal can be defined ambiguously as well. As 
the mathematical model consists of the explicit form of a set of 
variables, we draw out quantifiable elements from the statement 
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above, called MOE. In this research, we assume MOE and combat 
effectiveness [12] to be the same. Possible MOEs induced by the 
second statement above may include the number of detection, 
range of sensor, the probability of successive detection, and so 
on. The first step could necessarily involve the abstraction and 
simplification of the real-world.

Definition of MOP: MOEs are a simplified and quantified 
representation of the goal of the mission. However, most ROC 
items and MOEs are not identical because the specification of 
a weapon system mostly consists of a set of components defined 
from an engineering perspective. In Table 1, for instance, Effective 
Range or Maximum Speed explains the performance of the weapon 
system, not exactly the effectiveness of the system, also known as 
MOP. As explained in Figure 1, ROC is usually a subset of MOPs. 
As we already define the mission success by using some MOEs in 
the first step of the framework, and we note that MOPs define the 
ROC, we now need to define the relationship between MOPs and 
MOEs

Table 1: ROC example: Counter-artillery missile system.

ROC item Numerical criteria Reason

Effective range 5 km refer to benchmarking system

Maximum speed Mach 1.0 refer to benchmarking system

Launch interval 2 per min refer to benchmarking system

Interception rate 95% objective of MND

Definition of the relation between MOPs and MOEs: In our 
framework, we assume that there exists an oracle function in which 
it takes MOPs as its input value and returns MOEs as the out- 
put of the function. Such an oracle function can be defined in an 
empirical way by conducting numerous experiments. One could 
estimate, for example, the probability of successive detection (i.e. 
MOE) by performing real-world experiments with different settings 
of Range of Sensors (i.e. MOP). In most cases, though, such 
experiments are limited for the following reasons. First, we do not 
have confidence in which MOPs would account for the result of 
MOEs. This complicates the design of experiments. Second, real-
world experiment (called field experiment) involves a risk when it 
comes to a real battlefield situation. Third, even though we figure 
out valid MOPs that affect the result of MOEs and find a way to 
conduct experiments, it could be quite costly. Lastly, determination 
and confirmation of ROC ought to be concluded before the 

weapon system is actually developed. It is not reasonable to propose 
the goal of the system after it is already built. For these reasons, we 
suggest using the simulation model as our oracle function. We take 
advantage of simulation models such as low cost, repetitiveness, 
and low risk. Most importantly, the simulation model can provide 
us a logical basis for the relation between MOPs and MOEs.

Formulation of optimization model: Our aim with this framework 
is to find the proper number of ROCs, a subset of MOPs, with 
which we want to contribute to mission success. To quantitatively 
express the qualitative factors of mission success, one should 
express them in the explicit form of MOEs. The problem we 
are looking for is to maximize or minimize MOE. If MOE has a 
positive impact on mission success, it should be maximized; if it 
has a negative impact, it should be minimized. As shown in Figure 
1, there are other real-world considerations environmental aspects. 
The most representative consideration is the cost of the weapon 
system. Another consideration could be the technical readiness 
regarding the proposed system. Such factors are applied to the 
model as constraints. In later sections, we detail the mathematical 
expressions of our model.

Optimization model

Let X is a set of MOPs. For example, possible X can be X={velocity, 
weight, range of rifle}. Let Y be a set of MOEs. For example, 
Y={number of death, probability of success on task}. We define 
real-valued vector x and y where x

i
 takes the value of MOP i∈X 

and y
i
 takes value of MOE i∈Y. Let z(y) ∈ R be a function that 

can be used as the surrogate of mission success. If z(y) is properly 
defined, then we want z(y) to be maximized. Given the difficulty of 
quantifying the mission success, z(y) may not be formally defined. 
In order to define z(y) we first categorize the vector y using the 
following criterion. The mission is likely to succeed as:

• y
i
 increases (decrease)

• y
i
 has no effect

• l
i
 ≤ y

i
 ≤ u

i

• y
i
 relation is not known

The criterion above is exhaustive and mutually exclusive of real-
world considerations. Moreover, classification is intuitively easy 
for military personnel who are responsible for the job. We define 
subset Y

j
 ⊆ Y to be a set of MOE that falls into the jth category 

above. We assume Y
1
 ∪ Y

2
 ∪ Y

3
 ∪ Y

4
=Y where each set are 

mutually exclusive. In this case, our optimization problem can be 
defined as-

1 \ 1
( ) 0x i i i

i Y i Y Y
Max z y w y y

∈ ∈

 
= +  

 
∑ ∑

                   (1)

        (2)

        (3)

        (4)

3s.t   l  y  u                      j  Y             
       f(x) = y                                                     
      h(x) ~ a                                                     
      c(x

≤ ≤ ∀ ∈j j j

, y) ~ b       
 (5)

Since our objective is to find a vector x that maximizes mission 
success, y

j∈Y1 
is composing the objective function with a 

corresponding weight vector w
j
. Other y

j∈Y \Y1

 either does not affect 
mission success or relation is not defined, hence, such terms are 
multiplied by 0. The objective function z(y) is linear on y but not 

Figure 1: General framework overview for determining ROC elements 
by mathematical optimization.
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possible on x. Because we assume that there exists an oracle function 
f(x) → y, we define the relation between x and y (i.e. equation 
3). A set of inequalities (4) defines the relation between MOPs. 
Inequalities (5) refer to constraints representing the environmental 
aspects of the system. For example, typical constraints for these 
inequalities should be a system’s cost limitation.

One of the common challenges is predicting cost [13]. If we have 
sufficient data for estimating the Cost Estimating Relationship 
(CER), we can use it in relation to inequalities (5). Or we can obtain 
cost information on the specific performance value and estimate an 
unknown cost by the interpolation. For example, Figure 2 shows us 
the situation where we do not have perfect information on the cost 
of x

j
, certain MOP, but have three reference points. Each reference 

point has a cost (i.e. c
i
) and corresponding value of MOP (i.e. 

e
i
). One may acquire reference information by conducting some 

statistical analysis or simply referring to the benchmarking weapon 
system. The cost of x

j
 can then be estimated by interpolation as 

described in equation (6) and mathematical expressions for 
implementing this logic are equations (7-11) where MOP j has R

j
 

reference points. 

1
1

1

,

(x ) : ( )(x ) ,

,

+
+

+


< −= + − ≤ ≤ − >

j

j
j ij j

j j j ji i
j i j i i j ij j

i i j
j R
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x e

c cc c e e x e
e e

x c
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1

1
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−

+
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∑
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j i i j ij j
i i i
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e e

λ       (7)

1

1
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−

=
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jR

j
i

i
λ

                  (8)

1                              1,..., 1( ) },{+ − ≤ ∀ ∈ − ∀ ∈j j j
i i i j j je l x i R j Xλ λ   (9)

( )  1  1            1,  ...,  1 ,  { }+ + − ≥ ∀ ∈ − ∀ ∈j j j
j j ji i ie u x i R j Xλ λ             (10)

{ }0,  1                       1,  ...,  1 ,  { }∈ ∀ ∈ − ∀ ∈j
ji i R j Xλ

                (11)

Where l
j
 and u

j
 represents the lower and upper bound of MOP x

j
. 

The binary variable j
iλ  defined to have 1 if we choose reference 

interval starting from point i. A weapon system is composed of 
many sub-systems that interact with each other. The proper analysis 
of it may require elaborate mathematical expression. For instance, 
Figure 3 describes two MOPs (i.e. x

A
, x

B
) being used to define the 

relation to MOE y
C
. In the upper part of the figure, the relation 

between two MOPs and MOE is defined as h(x)=y
C
. However, in 

typical oracle function, any simulation model in our research, may 
miss out on embedding a property of the system. Let’s assume that 
the system, as shown in the lower part of Figure 3, has a serial 
structure for which any one of the system components fail. The 
entire system should be defined with a different expression, 
g(x)=y

C
. In the real world, such a case occurs commonly. For 

instance, x
A
 could be the MOP indicating the performance for the 

fire control radar system and x
B
 could be the MOP representing 

the performance of the engagement system. Since engagement is 
only initiated after the radar detects the target, the weapon system 
clearly has the serial structure. One of the possible mathematical 
expressions for the detailed study is given below. First, we define 
binary variables indicating the break event of system j.

1if inequality ( )= is true (i.e.,system fails)
0                                                  otherwise

j j
j

h x β
µ


= 
         (12)

We define an additional indicator variable γ ∈ {0, 1} that takes 1 
if all subsystems work and 0 if any one of the subsystems fails. And 
a set of inequalities that follows defines the aforementioned logic.

( )( ) ( ) ( )( )  1  − = − − Cch x y g x yγ γ          (13)

( ) ( ) { } 1   1,  2  ≤ + − ∀ ∈j j j j jh x µM µ jβ                   (14)

( )1 1                                                        15≤ − µγ    (15)

        (16)( )
( )

2

1 2

1                                                                                               16
1                                                                                        17

≤ −
≥ − −

µ
µ µ

γ
γ      (17)

{ } { } ( )
{ } ( )

0,  1 1,  2                                                                             18
0,  1                                                                                               19

∈ ∀ ∈
∈
jµ j

γ

    (18)

                (19)

Inequalities (13-19) may be neither unique mathematical 
expressions for the case nor the most efficient way for describing 
the logic. Still, the critical point we want to highlight here is that 
we have easy access to represent a real-world complex with the 
mathematical model we are using.

CASE STUDY

To demonstrate how the proposed framework operates, we 
conducted an experiment on an Unmanned Ground Vehicle (UGV) 
system. UGV systems conduct operations without an onboard 
combatant presence. As the system has complex components 
such as sensors, control systems, and guidance interface, we can 
induce many corresponding MOPs. For experimental purposes, 
we selected 5 MOPs and 3 MOEs, as described in Table 2. In the 
last column, we describe the level of each MOP, different factor 
values for designing experiments. For example, Range of Detection 
(RD) has 3 levels 100 meters, 500 meters, and 1,000 meters. Issues 
regarding the design of experiments are not of interest in this 
work, so discussions on the selection of MOP and levels are not 

Figure 2: Example on approximation of cost as a piece-wise linear 
functions.

Figure 3: Example on necessity of if-then constraints.
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relevant. For the description of an optimization model, we define a 
mathematical ingredient first. 

Table 2: List of MOPs and MOEs for UGV.

Code Description Level

MOP

VE height of vertical extender (meter) {1,20}

RD range of detection (meter) {100, 500, 1000}

TP transmission power (dBm) {10, 40}

AR accuracy rate of RCWS∗ {0.5, 1.0, 1.5}

RR range of RCWS (meter) {400, 850, 1300} 

MOE

TD number of targets detected ∈ Z

DF damage of BLUE force (%) ∈ R
DH damage of RED force (%) ∈ R

Note:  *Remote Controlled Weapon Station (RCWS)

Let X = {VE,RD,TP,AR,RR} be a set of MOPs. Let Y = {TD,DF,DH} 
be a set of MOEs. Let x

i
 ∀i ∈ X be the value of MOP and y

i
 ∀i 

∈ Y be the value of MOE. Assume that all MOEs fall into the 
first category described in previous section where y

TD
 and y

DH
 are 

positively correlated with mission success and y
DF

 is negatively 
correlated. This process should be done by military personnel. The 
next step is to find the explicit form of the relations between MOPs 
and MOEs. We require, as discussed earlier, the oracle function. 
For the analysis, we chose One Semi-Automated Forces (One 
SAF) war-game model (version 6.01, international edition). One 
SAF is a composable simulation architecture that supports both 
Computer Generated Forces (CGF) and Semi-Automated Forces 
(SAF) operations and has been used in multiple Army Modeling 
and Simulation domain applications worldwide [14]. The following 
assumptions (scenario) were made for the experiments. Figure 4 
shows an image capture of the experiments.

• A BLUE force (reconnaissance team) consists of 4 UGVs, 3 
infantry combatants, and 1 command and control vehicle.

• A RED force consists of 4 anti-tank teams. Each team is armed 
with an anti-tank rocket.

• Area of operations is 25 km × 25 km

We performed 108 experiments (i.e. 108=22 × 33). Each experiment 
included 20 replications and data on the explanatory variables were 
collected. Given in Table 3 are the ANOVA test results showing 
whether there was a significant difference between response (i.e. 

MOE) and explanatory variables (i.e. MOP). It turned out that 
MOP RD explains well all the MOEs, while AR and RR failed to 
account for MOEs. Based on the belief that a statistical relationship 
can establish a deterministic expression, we conduct the multiple 
regression analysis by using MOP data as the explanatory variable 
and MOE as the response variable. Regression analysis results of 
MOE TD, DF, and DH are given in Tables 4-6 respectively. In Table 
4, two explanatory variables (i.e. RD, TP) were selected as the result

Table 3: T-test and ANOVA results for explanatory variables.

Response VE RD TP AR RR

TD 0.847 <0.001 0.283 0.9 0.925

DF 0.707 <0.001 <0.001 0.614 0.559

DH 0.196 <0.001 <0.004 0.915 0.938

Table 4: Regression result for response variable TD.

Explanatory 
variable

Estimate
Standard 

error
t value p value

Intercept 2.445 0.648 3.771 0.000∗∗∗

RD 0.013 0.0007 17.362 0.000∗∗∗

TP -0.038 0.018 -2.112 0.037∗

Note:  F(2,105)=152.9, p-value: 0.000***, adjusted R2: 0.7396, 
∗∗∗p<0.001, ∗p<0.05

of stepwise regressions where adjusted R2 value was 74%. We 
interpret the regression model to be statistically significant based 
on the F-test result. Now, the 2 variable linear multiple regression 
models can be written as

TD=2.445+0.013 × RD− 0.038 × TP      (20)

Similarly, we obtain the regression model for MOE DF and DH 
based on the result in Tables 5 and 6. As discussed in previous 
section, cost information plays a role in the model as a constraint. In 
this detailed study example, all cost information was manipulated. 
We assume that MOP j ∈ X has B

j
 numbers of reference points 

where break point i ∈ B
j
 defines cost and corresponding MOP 

value j
ie . For instance, if transmission power in Table 2 costs 50 

units (where its level is 10) and 200 units (where the level is 40) 
then 1 150, 10= =TP TPc e and 2 2200, 40= =TP TPc e . The values of parameters 
that we assumed are described in Table 7. We additionally define 
binary variable { }0,1∈j

iλ  as we discussed in previous section. Then, 
the resulting optimization model is as follows-

Table 5: Regression result for response variable DF.

Explanatory 
variable

Estimate
Standard 

error
t-value p-value

Intercept 3.591 0.183 19.602 0.000∗∗∗

RD -0.0009 0.0001 -5.765 0.000∗∗∗

TP -0.0265 0.0036 -7.283 0.000∗∗∗

RR -0.0002 0.0001 -1.452 0.15

Note: F(3,104)=29.46, p-value: 0.000∗∗∗, adjusted R2: 0.4438, ∗∗∗p< 
0.001

Figure 4: One SAF simulation environments: UGV reconnaissance.
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Table 6: Regression result for response variable DH.

Explanatory 
variable

Estimate
Standard 

error
t-value p-value

intercept 2.937 0.4883 6.016 0.000∗∗∗

VE -0.0302 0.0192 -1.566 0.12

RD 0.0028 0.0005 5.662 0.000∗∗∗

TP -0.0512 0.0122 -4.193 0.000∗∗∗

Note: F(3,104)=17.37, p-value: 0.000∗∗∗, adjusted R2: 0.3145, ∗∗∗p< 
0.001

Table 7: List of parameter used for cost definition.

MOP Cost MOP value 

VE 1 250, 200= =VE VEc c 1 21, 20= =VE VEe e

RD 1 2 350, 100, 200= = =RD RD RDc c c 1 2 3100, 500, 1000= = =RD RD RDe e e

TP 1 250, 200= =TP TPc c 1 210, 40= =TP TPe e

AR 1 2 350, 100, 200= = =AR AR ARc c c 1 2 30.5, 1.0, 1.5= = =AR AR ARe e e

RR 1 2 350, 100, 200= = =RR RR RRc c c 1 2 3400, 850, 1300= = =RR RR RRe e e

      (21)

      (22)

      (23)

TD DF DH

TD RD TP

DF RD TP RR

DH VE RD TP

TD DF DHmax    (y ) - (y ) + (y ) 
s.t.     y  = 2.445 + 0.013x  - 0.038x
y  = 3.591 - 0.0009x  - 0.0265x  - 0.0002x
y  = 2.937 - 0.0302x + 0.0028x  - 0.0512x

ω ω ω

 (24)

j
1

\|Bj| 1

(c ( )(x e ))+

∈ ∈ +

−
+ − ≤

−∑ ∑
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j j ji i
i i ij j

j X i Bj i i

c c C
e e

λ
   (25)

\|B |
1 ,            

∈

= ∀ ∈∑
j j

j
i

i B
j Xλ

    (26)

       (27)

      (28)

      (29)
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≤
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RR RD
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j j j
i i i

j j j
i i i

j
i

e l x j X i B B

e u x j X i B B

x x
j X i B B

λ λ

λ λ

λ  (30)

where C in (25) is the budget constant of the system and w
i
 is the 

weight value of MOE i. The weight vector could be defined in 
multiple ways. It could be importance of MOE if decision maker 
want to place a difference between MOE. Or the decision maker 
could make the weight vector credibility of the equation. In our 
model, the weight value we use in Tables 4-6 is adjusted R2 value 
of MOE variable. Inequality (29) represents the relation between 
MOPs, explaining the fact that RCWS can engage the enemy only 
if it is only the radar that detects the enemy. In the general model, 
this falls into category (4). An optimization model is implemented 
and solved using GAMS 30.3.0 with BARON 19.12.7 Solver. As 
we have an arbitrary cost in the detailed study, an exact solution 
and its optimal objective value to the model may be unimportant. 
However, we have some interesting observations. Figure 5 shows 
the dynamics of optimal MOE value, called y*, with a different 
choice of the whole budget (i.e. a constant C in the model). The 
horizontal axis represents the proportion of the parametrized 
budget to the maximal budget, where the maximal value is defined 

to cover the cost where every MOP has its upper bound level. 
On the rightmost of the graph, for instance, we consider having 
sufficient budget. The cost value of 0.5 means that we have 50% 
of the budget to the maximal number. The vertical axis represents 
the value of MOE. Given the condition that we have sufficient 
budget, the optimal solution is y*=(y*

TD
, y*

DF
, y*

DH
)=(15.06, 2.22, 

5.19). If the budget decreases, then y*
TD

, y*
DH

 decreases but y*
DF

 
increases. For example, when a budget is 35% of the maximal, 
we have y*=(11.81, 2.57, 4.49). This is a reasonable result in the 
sense, on a small budget, the weapon system is poor. Therefore, 
the number of targets detected (i.e. y

TD
) and damage of RED force 

(i.e. y
DH

) decreases but damage of BLUE force (i.e. y
DH

) increases. 
We notice, though, a strange observation in Figure 5 in which the 
optimal solution is unchanged for some intervals (i.e. 0.5− 1.0 in 
horizontal axis). This is unreasonable as a fairly small budget could 
yield a similar performance of the weapon system. This issue is 
caused by unused explanatory variables. In our model, xAR was 
never used in the regression equation. As a budget decreases, the 
model naturally decreases the value of xAR so as to reduce the cost 
but not affect the objective function. In this case, we can fix such a 
variable to a desirable number by adding a bound constraint to the 
optimization model. In the research, we induce the relation between 
MOP and MOE by inspecting observed data from the simulation 
run. As interpreting the data statistically may not be unique, we 
may have several explicit forms of the relation. For instance, in our 
optimization model, equations (22-24) are all linear on x and could 
return a corner point solution that is trivial. For example, a solution 
where we have enough budget in Figure 5 is x*=(x

VE
, x

RD
, x

TP
, x

AR
, 

x
RR

)=(1, 1000, 10, 1.0, 1000) in which most of optimal values are at 
their lower or upper bound. However, such linear relation cannot 
explain some important features of the real-world such as the 
diminishing returns property of effectiveness [13]. Figure 6 shows 
the relationship between MOP x

RD 
and MOE y

TD
. Based on the 

observed data, the relationship exhibits a diminishing property. 
In the figure, the solid line shows a second-order polynomial fit 
and two dotted lines show evaluated values of equation (22) where 
we fix another explanatory variable to its lower and upper bound. 
Because our approach is based on multivariate regression, it is not 
directly applicable to use the polynomial equation rather than the 
linear equation. Moreover, it is beyond the scope of this research 
to discuss the statistical approach to dealing with diminishing 
effects. We would emphasize, though, that when we construct the 
relation between MOP and MOE we should consider not only the 
regression error of the estimate but also the validity of the model.

Figure 5: Dynamics of optimal MOE value with different choice of 
budget. Note: ( ) Y

TD
, ( ) Y

DF
, ( ) Y

DH
.
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There are two areas where the stochastic elements affect the 
proposed framework. The first one is in the simulation model as 
an oracle function. To control the randomness imposed in the 
simulation model, each experimental value is set as a representative 
value for 20 replicates as described in the detailed study. The 
second is in the composition of scenarios. It is recommended to 
test the performance of a weapon system by assuming a sufficiently 
large number of scenarios. As the primary focus of this research 
is on proposing a novel framework for ROC determinations 
establishing the relationship between MOE and MOP, we analyzed 
the case with a single scenario. However in our extended study, we 
may consider creating a scenario pool by varying blue/red teams’ 
compositions and terrain conditions. In this section, we have 
investigated the practical application process for our framework. 
Previous studies such as CEA and CBA focus on analyzing the 
effectiveness of weapon systems by simulation approaches. As 
these simulation approaches are kinds of sensitivity analysis, the 
detailed performance of MOPs must input as parameter values. 
Assuming that the UGV ROC analyzed in this study is determined 
by simulation, the MOE value would have been observed while 
changing VE, RD, TP, AR, and RR of UGVs. After then, the 
MOP value that presents the highest MOE value is selected as the 
best alternative regardless of the number of experiments. While 
a simulation approach only points to the best possible solution 
from a number of pre-determined scenarios, on the other hand, 
optimization approach identifies a global optimal solution from an 
infinite feasible space that MOP can have. From this perspective, 
our proposed framework can obtain the truly best ROC value by 
incorporating the insight provided by simulation together with 
optimization approach. The optimization model we discussed in 
this section is an example of our methodologies made real. Taking 
into account the complexities of real-world problems, the model 
can have a large number of inequalities with dozens of MOPs and 
MOEs.

CONCLUSION

In this research, we have described a new framework for determining 
ROC, which are quantified criteria of the performance of the 
weapon system. The framework may be summarized as follows. 
First, the users of the system, generally the military personnel, 
define a mission and extract critical elements that may influence to 
mission success named as MOE. Second, we categorize MOE into 
four mutually exclusive criteria and construct the objective function 

of a proposed optimization model regarding the relationship of 
each MOE and mission success. Third, we define connections 
between MOE and MOP, which are the numeric descriptions of 
the weapon system’s components. To find the explicit form of the 
relation, we run the simulation model. Various experiments and 
statistical analysis are required for the process. Finally, we express, 
as a set of constraints, the necessary environmental considerations 
in the real world. We discuss the limitations of the research and the 
corresponding direction of further research areas.

• The optimal solution solely depends on the explicit form of 
the relation between MOPs and MOEs. Therefore, the validity 
and the applicability of the model are in control of the validity 
and credibility of the simulation model. We cannot overstate the 
importance of choosing the right simulation model.

• It is essential to establish an experiment environment to conduct 
massive simulation runs. The deatiled study example described in 
section 4 deals with only one combat scenario. For a robust solution, 
decision makers must consider numerous scenarios. The obstacle 
to conducting massive experiments is the complex interface of the 
simulation model. For instance, in order for the MOP xRD to have 
level 100, we must set 5 engineering level parameters, such as sensor 
resolution data, contrast ratio per spatial frequency, and so on. All 
this is done manually. It is thus necessary to have a wrapping tool 
that controls the simulation model from the outside.

Regardless of the aforementioned limitations, we believe that the 
proposed framework is promising as we expect to have a more 
sophisticated war-game model in the future that leads to a trend of 
applying simulation-based acquisition more frequently. Moreover, 
our methodology provides an exact solution that meets both 
performance requirements and environmental considerations based 
on an optimization approach. The flexibility of a mathematical 
model will fulfill the need for changes in environments and 
reflection of realistic features.
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