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ABSTRACT

The accurate detection of leukocytes is the basis for the diagnosis of blood system diseases. However, current methods and 
instruments either fail to fully automate the identification process or have low performance. To improve the current status, we 
do need to develop more intelligent methods. In this paper, we investigate fulfilling high-performance automatic detection for 
leukocytes using a deep learning-based method. A complete working pipeline for building a leukocyte detector is presented, 
which includes data collection, model training, inference, and evaluation. We established a new leukocyte dataset that contains 
6273 images (8595 leukocytes), considering nine common clinical interference factors. Based on the dataset, the performance 
evaluation of six mainstream detection models is carried out, and a more robust ensemble scheme is proposed. The mAP@
IoU=0.50:0.95 and mAR@IoU=0.50:0.95 of the ensemble scheme on the test set are 0.853 and 0.922, respectively. The 
detection performance of poor-quality images is robust. For the first time, it is found that the ensemble scheme yields an 
accuracy of 98.84% for detecting incomplete leukocytes. In addition, we also compared the test results of different models and 
found multiple identical false detections of the models, then provided correct suggestions for the clinic. 
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INTRODUCTION

It is of great significance for clinicians to recognize peripheral 
blood leukocytes through blood smears for the diagnosis of blood 
cancer, and the automation of this process can be a great help 
in the clinic. The blood smear suggests a possible diagnosis in 
diagnosis of leukemia, especially important for clinical detection 
of Burkitt lymphoma and acute promyelocytic leukemia because 
it facilitates rapid diagnosis and timely treatment [1]. However, 
this is a complicated, time-consuming, laborious, and subjectively 
influenced work by the doctor. At the same time, the observer 
is required to have sufficient experience [2]. Therefore, it is very 
necessary to study a computer-aided system for automatic detection 
of peripheral blood leukocytes with high accuracy.

In the past, the research community and medical industry have 
attempted to automate the detection of leukocytes, and this 
automation has become a developmental trend in medical 
examination for blood cells [3]. In the medical industry, there are 

several Automated Cell Morphology (ACM) systems. For example, 
Cella-Vision [4] fulfills some automation with digital imaging 
technologies, and MED-ICA EasyCell® Assistant [5] uses image 
processing and pattern recognition technologies. However, these 
instruments are based on traditional machine learning methods [6]. 
Compared with clinical experts, although these methods provide 
useful assistance and can accelerate the process of recognizing 
blood cells, their performance is still far behind the human experts’ 
level, and cannot reliably work independently [6,7].

Since AlexNet excelled in the 2012 ImageNet competition, deep 
learning technology showed a promising solution in medical image 
application [8]. Since then, a large number of publications [9-13] 
have reported that the Convolutional Neural Networks (CNN) 
model, i.e., deep learning, is competent for image recognition 
tasks in different areas. Thanks to the unified homogenous model 
of CNN, making use of it avoids the disadvantages of multi-step 
traditional machine learning methods. Recently, different studies 
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the predicted results, which are compared with the ground truth 
labels. The training process can be stopped when the training loss 
curve becomes smooth and the loss value is no longer decreasing 
in training. Finally, the internal parameters of the trained models 
are fixed and can be used in detecting leukocytes in new image 
samples from clinical practice. Inference: In the inference stage, 
the detectors are used in judging the new image samples it has 
never sees before. New image samples collected from the clinical 
practice are rescaled to the input size for the trained detectors. The 
output of inference from the detectors includes three data items, 
the recognized types of leukocytes, the confidence values, and the 
locations of the leukocytes in the image.

Evaluation: In the evaluation stage, the inferred results are 
evaluated with multiple metrics, and the performance of the 
model is also analyzed with different criteria. Evaluating metrics 
include mAP and mAR under the different values of IoU. Besides, 
we record executive performance, i.e., the size of the model, the 
inference speed in Frame Per Second (FPS), which helps to evaluate 
if the detectors are suitable or feasible to put into practice. As for 
accuracy, we emphasize the mAP because it is a popular and proven 
performance indicator in object detection. To further analyze the 
classification capability, we measure the average precision for each 
type of leukocyte.

Ensemble of predictions of deep learning-based models

In the domain machine learning, ensemble is a voting scheme that 
takes account of predictions from different models. The way which 
ensemble works is similar to the collective judgment by a medical 
expert panel in diagnosing a complicated case. The advantage 
of ensemble is that the final results are more stable for difficult 
samples and potentially more accurate in quantitative evaluation. 
On the other hand, however, it may cost more computational time 
in inference. In this work, we integrate the ensemble scheme from 
[30] into the post process stage and evaluate its results using the
leukocyte predictions from other deep learning-based models. The
ensemble [30] linearly combines the bounding boxes of leukocytes
with the corresponding confidences as the weights. Given a list
of overlapping predicted bounding boxes 1 1 2 2{L [x , , x , ]}

i i i i iy y=


 for
leukocytes and the corresponding confidence values { }iC  from
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The former formula computes the averaged location by considering 
the confidences of predictions from different models: if a model is 
not so confident about its prediction, its vote is less powerful in 
influencing the final result. The latter formula suggests that the 
updated confidence values { '}C  are averaged over the number 
of models rather than the number of predictions. In this way, if 
some models deem that the area has no leukocyte, which is like 
abstention, the updated confidence values { '}C  will be lowered.

Implementation

The experiments are implemented on a regular workstation 
computer with Intel Core i5-8600 CPU, 16 GB RAM, and a 
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have improved algorithms from different aspects, which have 
indeed improved the accuracy of identifying leukocytes, but these 
deep learning methods [2,14,15] focus on leukocyte classification 
rather than leukocyte detection. Some restrictive assumptions 
are imposed on the classification task and the dataset. Leukocyte 
classification requires that the segmentation must have been done, 
the existence of target cells in the image must be guaranteed, and 
the images mostly contain only one leukocyte. This segmentation 
breaks the automatic process and causes inconvenience in practical 
clinical application. Furthermore, to our best knowledge, the 13 
public datasets retrieved are all for leukocytes classification research 
[16-25], which all contain many images with only one leukocyte.

Some recent research efforts have focused on leukocyte recognition 
as multi-object detection. The multi-object detection method can 
automatically locate the objects and determine their types as well, 
dropping the restrictive assumptions of the classification task. 
Compared with leukocyte classification, the degree of automation 
is higher in terms of process: the quantity, locations, and types of 
leukocytes can be obtained simultaneously, and the high accuracy 
rate of deep learning for identifying leukocytes is maintained. 
However, the current research on the detection of leukocytes uses 
a relatively single type of leukocyte in the dataset, and it is difficult 
to evaluate the level of recognition of the five types of leukocytes 
[26]. Moreover, the multi-center problem of the dataset is not 
considered [27,28], and the generalization of the solution is not 
adequately discussed. In other words, the detection performance 
on new data collected from other hospitals needs further study. 
Furthermore, the public leukocyte dataset found so far not enough 
to support the detection of leukocytes [16-25].

Therefore, we collected data from multiple hospitals and 
established a dataset suitable for the detection of leukocytes for 
the first time, which considered the nine interference factors that 
are likely to affect the performance of the detectors in detecting 
leukocytes [29] in an attempt to fundamentally solve the multi-
center heterogeneity problem. Based on the dataset, we tested the 
performance of six mainstream detection models and then tried to 
propose a new and more robust model using an ensemble scheme.

MATERIALS AND METHODS 
Working pipeline of building up an AI-based detector

To apply AI-based detection method onto automatic identification 
of leukocytes, the working pipeline of constructing a deep learning-
based detector consists of 4 stages: 1) data preprocessing; 2) model 
training; 3) inference; and 4) evaluation.

Data preprocessing: The proposed leukocyte dataset is preprocessed 
in two different data formats using dataset conversion toolbox 
developed by the authors. The processed the dataset includes 
ground truth labels and split subsets in both VOC style format 
and COCO style format. The dataset in two formats allows us to 
be easily input into and trained with popular machine learning 
methods. The dataset also provides two sizes for all leukocyte 
images: 1) original size of 3264 × 3264, and 2) reduced size of 600 
× 600 (mini size). The data in the former larger size can be used for 
error analysis, visual inspection or confirmation, and even further 
investigation. The data in the latter size can be used for model 
training, which helps to save a lot of CPU overhead time.

Model training: We build up a deep learning-based detector 
with leukocyte recognition capability using the training set. 
Training samples with ground truth labels are iteratively input 
into the training algorithm in mini-batches. The models output 
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Nvidia Titan Xp GPU with 12 GB graphic memory. The software 
environments are based on Ubuntu 18.04 OS, and training 
is carried out on PyTorch 1.7.0 (https://pytorch.org/) and 
mmdetection 2.6.0 codebases (https://github.com/open-mmlab/
mmdetection). The training epoch is set to 16, which is high 
enough for training convergence for the detectors. Setting this 
relatively excessive number of epochs is to ensure the models can 
approach its optimal state and avoid underfitting. The recorded 
training time for the models is around two hours.

That the models can be efficiently trained in such a short time 
is because of the use of pre-trained backbone networks and 
finetune technique. The finetune technique allows the model to 
shift its intelligence from recognizing generic objects to detecting 
leukocytes. The pre-trained weights are trained parameters from a 
deep learning-based model (Resnet-50 [31]) in classifying objects in 
ImageNet dataset or detecting objects in MS-COCO dataset. To 
finetune a model, we freeze the parameters in the low-level filters, 
which computes basic features of the image texture. On the other, 
high-level parameters, which reason the structural information, 
are gradually updated by backpropagation approach. In this way, 
it adjusts the high-level parameters in pre-trained weights to our 
leukocyte detection task.

When training the models as the key leukocyte detectors, we used 
Stochastic Gradient Descent (SGD) as the optimizer for the model 
parameter update. The key hype-parameters, i.e., the learning 
rate, momentum, and weight decay coefficient of SGD, are set to 
0.01, 0.9 and 0.0001, respectively. Except for these settings, other 
detailed configurations for the architecture of detector are set 
defaults.

Data augmentation technique is employed in model training. 
Data augmentation is an online process that dynamically generates 
variants of training samples before feeding it into the model, 
following the sampling of the mini-batch of training data from the 

training set. Supplementary Table 1 shows a transformation list of 
data augmentation used in our implementation. The transforms 
are used as a composition with an occurrence probability for each 
transform.

RESULTS

Establishment of a dataset with interference factors

The 111 wright-stained blood cell smears were collected from Tianjin 
Medical University Affiliated Medical Center (Tianjin Cancer 
Hospital and Tianjin Children's Hospital) and Rehabilitation 
Hospital of Hexi District, Tianjin. Five types of leukocytes from 
each smear were photographed by a Nikon DS-Ri2 Color Camera 
at 1000x original magnification for analysis. The five types of 
leukocytes include Neutrophil (NG), Basophil (BG), Eosinophil 
(EG), Lymphocyte (L), and Monocyte (M). Subsequentially, 6273 
images in total were obtained, with nearly 2000 images containing 
multiple leukocytes, which is the first dataset suitable for leukocyte 
detection. These leukocytes images were divided into the training 
set and the test set with a ratio of 4:1.

Each sample in the dataset contains two items: A visual signal 
map in the form of the color image that may contain more than 
one type of leukocytes, and a manually labelled ground truth 
indicating the location(s) and type(s) of existing leukocyte(s). The 
ground truths are separately annotated by three experts with 18-
year clinical experience using Labellmg toolkit software. During 
expert review and confirmation on the data samples, any cells with 
inconsistent type labels from different experts will be taken out. 
To avoid the problem of data imbalance, we have narrowed the 
statistical distribution gap among the five types of leukocytes as 
much as possible. Table 1 shows the composition of the five types 
of leukocytes in the training set and the test set. The processes of 
dataset formulation are also depicted in the corresponding part of 
the flowchart presented in Figure 1.

Figure 1: The flowchart of model training and evaluation.

Table 1: The number of images and leukocytes in the created dataset.

Sources

Types and Sample numbers

Neutrophil 
images(cells)

Basophil 
images(cells)

Eosinophil 
images(cells)

Lymphocyte 
images(cells)

Monocyte 
images(cells)

Total images(cells)

Training Set 1214(2812) 282(286) 1006(1018) 1232(1440) 965(1031) 4699(6587)

Test Set 1015(1323) 12(14) 71(82) 355(439) 121(150) 1574(2008)

Total 2229(4135) 294(300) 1077(1100) 1587(1879) 1086(1181) 6273(8595)
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Some “worse cases”, which are likely to appear in practical clinical 
scenarios, should be included in the prior knowledge (training set) 
for the AI model for assisting detection of leukocytes. The dataset 
we created contains nine factors that interfere with leukocytes 
detection, making the trained model generalize well. Some typical 
cases are shown in Figure 2. The statistics of the interference factors 
are manually collected and summarized. The specific numbers of 
these situations in the training set are shown in Supplementary 
Table 2. Meanwhile, these images contain multiple leukocytes, 
making the dataset more suitable for detection research. The 
statistical summaries of our dataset are presented in Supplementary 
Table 3.

Performance comparison of the six models and ensemble 
result on test sets

We use the test set to evaluate the six well-trained detection 
algorithm models and draw the Precision-Recall (PR) curve of each 
model under different IOU thresholds, as shown in Figure 3. In 
Figure 3, it is not difficult to find that when the IOU threshold 
is lower than 0.8, all detectors/models output good results, and 
the AUCs are quite large. Among them, cascade RCNN and 
ensemble scheme are the TOP two among their competitors, 
FSAF is on par with other counterparts, and other models have 
average performance. When the IOU threshold is increased to 
0.9, this means that the criteria for successful detection are more 

stringent. We can see that the divergence of the curves from 
each other increases. Now we can more easily distinguish the 
difference in performance. The advantages of cascade RCNN and 
ensemble scheme are more prominent. The corresponding specific 
quantitative results are shown in Table 2. For the test set, mAP@
IoU=0.50:0.95 of cascade RCNN is higher than the ensemble 
scheme (0.856>0.853), but its mAR@IoU=0.50:0.95 is 0.909, 
which is lower than that of the ensemble scheme (0.909<0.922). In 
addition, the Top 2 models have the best recognition performance 
on NG, and AP@IoU=0.50:0.95 is 0.916 and 0.925, respectively. 
The performance of BG recognition is low, AP@IoU=0.50:0.95 is 
0.781 and 0.752, respectively. Table 2 also shows the corresponding 
detection performance indicators of other detection models.

In this work, we also try to improve the performance by integrating 
an ensemble scheme as a post-process for the results. Although its 
mAP@IoU=0.50:0.95 is slightly lower than the Cascade RCNN 
among the tested models (0.853<0.856), its mAR@IoU=0.50:0.95 
is the highest (0.922>0.909), which means that the ensemble 
scheme has the lowest rate of missed detection of leukocytes 
(Figure 3). That helps count leukocytes and prompts experts to 
verify the model to detect the wrong leukocytes. In addition, for 
the detection of leukocyte subtypes such as NG, M, and L, the 
ensemble scheme performs best, surpassing the cascade RCNN in 
the current evaluation models, which are shown in Table 2.

Figure 2: Some exemplar samples are affected by the interference factors. a: Colour casts on blood cell smear images; b: Low illuminative intensity of 
blood cell smear images; c: Giant platelets; d: Incorrect imaging focal length of cell images; e: Images containing dyes or other impurities; f: Overlapping 
leukocytes; g: Degenerated leukocytes; h: Excessively high phosphate buffer solution (pH >6.8); i: Excessively low phosphate buffer solution (pH <6.4).

Figure 3: The PR curve of each model at different IoU. Performance comparison of the six models and ensemble scheme on test sets. The x-axis 
represents the recall values, and the y-axis represents the precision.
Note: (  ): FSAF; (  ): Faster R-CNN; (  ): Grid R-CNN; (  ): DH Faster R-CNN; (  ): Cascade R-CNN; (  ): FCOS; 
(  ): Ensemble
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leukocytes is 8.23% and 3.53%, respectively. Figure 4C shows the 
result of the model's detection of leukocytes containing impurities. 
In addition, the more surprising point is that the two models 
can accurately determine the type and location of incomplete 
leukocytes. The detection accuracy of incomplete leukocytes is 
97.67% and 98.84%, respectively. Figure 4D shows the detection 
results of the model on incomplete leukocytes. Supplementary 
Table 4 shows the specific number of correct detections.

To further investigate the capabilities of the model, we analyze the 
classification performance of Cascade R-CNN and the ensemble 
scheme in a comparative way. The confusion matrix of Cascade 
R-CNN and the ensemble scheme is shown in Figure 5. In Figure
5A, we found that it was a bit difficult to identify eosinophils
with Cascade R-CNN, and some neutrophils are mistaken for
monocytes. Meanwhile, the accuracy of eosinophils or basophils
was relatively lower than other types because that quite a part of
eosinophils were misclassified into basophils. It is difficult for
the ensemble scheme to identify basophils and eosinophils, and a
small part of neutrophils are incorrectly identified as other types of
leukocytes (Figure 5B).

The performance comparison of detecting leukocytes with 
Cascade R-CNN and ensemble scheme

Detection of images is always challenging due to possible variance 
in staining, overlapping leukocytes, impurities, or even incomplete 
leukocytes. We deliberately considered these factors that easily 
affect the performance of the detection model on the dataset. In 
the test set, we focused on the detection effects of the Cascade 
R-CNN with the highest mAP values and the ensemble scheme.
The accuracy of detecting leukocytes is 92.17% and 95.30% on
the overly stained 447 images, respectively. Figure 4A shows the
detection results of some images stained heavily. In addition, for
the detection of overlapping leukocytes, the detection accuracy of
Cascade R-CNN and the ensemble scheme are 65.79% and 94.74%, 
respectively. Figure 4B shows the detection performance of the
model on leukocyte-dense scenes. From the results, the detection
performance of Cascade R-CNN for dense scenes needs to be
further improved. In the test set, there are 170 pictures containing
impurities such as dye residues, cell debris, etc. The Cascade
R-CNN and the ensemble scheme can better eliminate impurities
when detecting leukocytes. The ratio of the impurities mistaken for

Figure 4: Some real examples of detecting leukocytes in different scenarios with Cascade R-CNN and the ensemble scheme. a: An 
example of excessively high phosphate buffer solution (pH >6.8) and small neutrophils. b: An example of overlapping leukocytes. c: An 
example of incomplete leukocytes. d: An example of impurities in the picture.

Figure 5: The heat map of the confusion matrix for the Cascade R-CNN and the ensemble scheme’s performance in detecting five types of leukocytes 
on the test set.
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DISCUSSION

In this study, we established a dataset with multi-leukocyte images, 
which took into account nine common interference factors in 
clinical application. Based on the research foundation and search 
results of the machine vision algorithm for detecting blood cells, 
we selected six detection models including Cascade R-CNN, dh 
Faster R-CNN, grid R-CNN, Faster R-CNN, FCOS, and FSAS 
for leukocyte detection. Cascade R-CNN has the best detection 
performance, mAP@IoU=0.50:0.95 is 0.856, and mAR@
IoU=0.50:0.95 is 0.909. Then we provide a powerful ensemble 
scheme. Without major modifications, the ensemble scheme 
can obtain high-performance indicators for leukocyte detection. 
mAP@IoU=0.50:0.95 is 0.853 and mAR@IoU=0.50:0.95 is 0.922. 
Through further in-depth analysis of the detection performance 
of Cascade R-CNN and the ensemble scheme, it is found that the 
ensemble scheme may be a better choice for the automated blood 
cell morphology system.

Datasets are the basis for solutions using data-driven artificial 
intelligence. The existing public leukocyte datasets [16-25] are 
either a small amount of data, or the images only contain a single 
leukocyte. These datasets are considered simple and cannot 
support the building up of an intelligent model for the complicated 
scenario in the clinic. To the best of our knowledge, this study 
created the first dataset with multi-leukocyte images that is close 
to the practical environment of clinical testing of peripheral blood 
smears. The dataset, as shown in Figure 2, takes account of nine 
interference factors that frequently happen in the clinical blood 
cell recognition process. The image is not limited to one leukocyte 
but includes multiple leukocytes, which is more suitable for the 
clinical environment. By considering these interference factors in 
the dataset and using the online data augmentation technique, the 
Cascade R-CNN and other models were trained on much wider 
data distributions, which increases generalization and alleviates the 
multi-center heterogeneity problem.

In the literature, research on using artificial intelligence to detect 
leukocytes is still limited. A report showed that mAP@IoU=0.5 
used to detect normal leukocytes was 0.931 [27]. However, 
when we evaluate the performance of the detection model, we 
consider common clinical interference factors, which increase the 
difficulty of detection and are closer to the actual clinical detection 
environment. The mAP@IoU=0.5 of the Cascade R-CNN and 
ensemble schemes are 0.948 and 0.940 on the test set, which is 
both higher than 0.931 (Table 2). In addition, although the mAP@

IoU=0.50:0.95 of the ensemble scheme is slightly lower than that 
of Cascade RCNN (0.853<0.856), its mAR@IoU=0.50:0.95 is the 
highest (0.922>0.909), which means the integrated model has the 
lowest rate of missed detection of leukocytes (Figure 3). It helps 
to calculate leukocytes and prompts experts to verify the model to 
detect wrong leukocytes. In addition, for the detection of leukocyte 
subtypes such as NG, M, and L, the ensemble scheme performs 
best, surpassing the Cascade R-CNN model, as shown in Table 2.

The performance of the two models is further analyzed from the 
results of the challenging cases. Both Cascade R-CNN and the 
ensemble scheme are robust to significant pH changes, beyond 
the normal pH range (6.4, 6.8), and the models can accurately 
locate and identify poorly stained leukocytes, and the ensemble 
scheme performs better (95.30%>92.17%) (Figure 4A). Moreover, 
the detection ability of the ensemble scheme in the dense scenes 
is also higher than that of Cascade R-CNN, with a detection 
accuracy rate of 94.74%>65.79%, which makes the model has 
potential advantages in the detection of some leukemias (Figure 
4B). In addition, in the clinical detection of leukocytes, common 
impurities including dye residue, broken red blood cells, dust, 
etc. frequently take place. These common impurities will affect 
the performance of the detection model. Both Cascade R-CNN 
and the ensemble scheme are robust to the interference of 
impurities. The latter performs better and has a low probability of 
misjudgment of impurities as leukocytes (3.53%<8.23%) (Figure 
4C). It is worth noting that for the first time, this article found 
that both Cascade R-CNN and the ensemble scheme can detect 
the types of incomplete leukocytes with high accuracy [26,27,32]. 
The ensemble scheme is slightly better than Cascade R-CNN 
(98.84%>97.67%,), even for only covering 25–50% of the cells in 
a limited visible area, which means that the algorithm is superior to 
traditional image recognition algorithms (Figure 4D).

Regarding Cascade R-CNN and the ensemble scheme for the lowest 
detection results of basophils (Table 2 and Figure 5), research shows 
that in computer vision task more training examples can improve 
performance indicators, and the success of image classification 
tasks largely depends on the availability of labelled data [26]. A 
total of 8595 leukocytes were collected in our study. However, 
due to the different proportions of leukocyte types in the blood, 
the distribution of labels is not uniform. There are a total of 300 
basophils in the training set and test set, while the numbers of other 
types of leukocytes are all >1000. Therefore, basophils showed 
the lowest mAP values in several models, ranging from 0.618 to 
0.781. It is expected that with the expansion of the training set 
in the future and the increase of basophils, the performance of its 

Model mAP
mAP @
IoU0.50

mAP @
IoU0.75

mAR AP-BG AP-EG AP-NG AP-M AP-L

FSAF 0.742 0.874 0.860 0.866 0.618 0.684 0.870 0.756 0.785
FCOS 0.795 0.896 0.880 0.913 0.642 0.826 0.894 0.795 0.819
Faster 
R-CNN

0.815 0.940 0.919 0.879 0.738 0.847 0.893 0.785 0.814

Grid 
R-CNN

0.822 0.926 0.920 0.903 0.709 0.836 0.847 0.890 0.832

DH Faster 
R-CNN

0.848 0.951 0.939 0.910 0.753 0.892 0.908 0.842 0.843

Ensemble 0.853 0.940 0.933 0.922 0.752 0.898 0.925 0.843 0.848
Cascade 
R-CNN

0.856 0.948 0.938 0.909 0.781 0.905 0.916 0.838 0.841

Table 2: Performance in key evaluation criteria of six methods and ensemble scheme on test set.
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robustness to different interference factors. We believe that the 
developed ensemble model can count leukocytes more accurately 
and prompt experts to detect wrong detections, and it is more 
robust. In addition, we found that the model's error detection 
result can provide clinical with some correct suggestions, which 
can help experts perform clinical testing.
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detection will be significantly improved.
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CONCLUSION
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Figure 6: Qualitative true positive results yielded by different models. For 
the same leukocyte, Cascade R-CNN, Ensemble, and DH Faster R-CNN 
all detect it as lymphocyte, and experts labeled it as monocyte.
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