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ABSTRACT

Hepatitis is a global disease that is on the rise and is currently the cause of more deaths than the human 
immunodeficiency virus each year. As a result, there is an increasing need for antivirals. Previously, effective 
antivirals have been found in the form of substrate-mimetic antiviral protease inhibitors. The application of machine 
learning has been used to predict cleavage patterns of viral proteases to provide information for future drug design. 
This study has successfully applied and compared several machine learning algorithms to hepatitis C viral NS3 
serine protease cleavage data. Results have found that differences in sequence-extraction methods can outweigh 
differences in algorithm choice. Models produced from pseudo-coded data sets all performed with high accuracy 
and outperformed models created with orthogonal-coded data sets. However, no single pseudo-model performed 
significantly better than any other. Evaluation of performance measures also show that the correct choice of model 
scoring system is essential for unbiased model assessment.
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INTRODUCTION

Hepatitis C virus (HCV) is a member of the Flaviviridae family, 
alongside yellow fever virus and west nile virus [1]. Hepatitis is 
a global disease that caused 1.34 million deaths in 2015, higher 
than the number of deaths caused by HIV. It is estimated that each 
year 1.75 million people newly acquire HCV infection. Chronic 
infection of HCV is the main reason for liver transplantation 
worldwide. Infection can lead to severe liver disease and primary 
liver cancer [2]. Since 2014, several direct acting antivirals 
(DAA’s) have been approved that target specific HCV proteins 
or RNA elements [3]. Prior to this, treatment consisted of general 
use antivirals, such as ribavirin and pegylated interferon-α. 
These treatments were often lengthy and caused many adverse 
side effects [4]. Detailed information about HCV replication 
components enabled the development of DAA’s. The HCV RNA 
genome encodes a long polyprotein precursor which is processed 
proteolytically. The release of non-structural (NS) proteins is vital 
for the virus’s maturation. Cleavage of NS proteins is catalysed by 
the viral encoded NS3 serine protease (NS3P) [1]. Because of the 
protease’s importance in the life-cycle of the virus it has become 
an attractive antiviral target. Inhibition of the protease is effective 
and can lead to the production of non-infectious viral particles 

[5]. Therefore, the design of NS3P inhibitors has received much 
attention and several of these DAA’s have now been discovered, 
many of which incorporate substrate mimetic properties [6-9]. To 
design effective protease inhibitors, it is important to understand 
and predict HCV cleavage sites in proteins, as inhibitor molecules 
mimic cleavable substrates. Prediction and characterisation of viral 
protease cleavage sites have been determined by a number of in 
silico studies. The main tools used for these studies incorporate 
machine learning algorithms to analyse viral data sets. Supervised 
learning is a class of machine learning algorithms which builds 
predictive models based on data sets with known classifications. 
These models can then be used to classify new unknown data sets 
[10]. There have been many successful studies in which machine 
learning algorithms have been used to identify substrate specificity 
of the human immunodeficiency virus (HIV-1) protease. A wide 
range of supervised algorithms exist and several of them have 
been applied to predict the substrate specificity of proteases. The 
most recent studies tackling the HIV-1 protease cleavage problem 
commonly use four types of classifiers: artificial neural networks 
(ANN’s), support vector machines (SVM’s), decision trees and 
linear models. Within these studies ANN’s have outperformed 
many other models, with most studies able to obtain an accuracy 
of ∼92% [11-13]. Although the predictive accuracies of ANN’s are 
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high, they have come under criticism for their longer run times 
and limited interpretability when compared to other models [14]. 
A number of studies have compared a handful of classifiers  against  
one  another  to  see  which  performs best using HIV-1 data 
[11,12,14]. In return this information has helped development of 
HIV-1 protease inhibitors. Currently, almost half of all anti-HIV 
compounds are protease inhibitors [15]. As mentioned, there is 
a large number of machine learning algorithms available in the 
bioinformatics toolbox to predict cleavage sites of viral proteases. 
Choosing the correct method is essential for accurate predictions. 
Previously, this information has been useful for the design of 
antivirals. This study aims to apply and compare several machine 
learning algorithms to an HCV NS3P data set and to see whether 
differences in sequence-data transformation and model selection 
improves prediction accuracies based on three performance 
metrics.

METHODS

Data sets

The data set obtained by Narayanan et al. [13] was removed of 
all peptides containing non-normal amino acids and the resulting 
modified data set was used for this study. The data set contained a 
collection of decapeptides and their cleavage ability, either cleaved 
or non-cleaved, denoted by 1 or 0 respectively. Out of the 891 
peptides collected, 145 are classified as cleaved and 746 as non-
cleaved. The amino acids of each peptide were arranged following 
standard Schechter and Berger nomenclature: P6-P5-P4-P3-P2-P1-
P’1-P’2-P’3-P’4, where cleavage occurs between the scissile bond at 
P1-P’1 [16].

Sequence-based feature extraction

Two sequence-based feature extraction methods were implemented 
to convert each peptide into a numerical feature vector which 
accurately stores the composition of amino acids. The selected 
methods were orthogonal (ortho) coding and pseudo coding. 
Ortho coding created a vector which represents each amino acid 
by a 20-bit long binary sequence. Pseudo coding created a vector 
by calculating the frequency of each amino acid at each position. 
Ortho and pseudo coding were applied to the modified data set to 
produce two new data sets. Both the ortho and pseudo coded data 
sets were used in the study for all machine learning algorithms.

Machine learning algorithms

Several machine learning algorithms were applied to predict 
HCV protease specificity, including three ANN’s [17], Random 
Forest (RF) [18], a Generalized Linear Model (GLM) [19], Linear 
Discriminant Analysis (LDA) [20] and an SVM [21]. ANN’s are 
non- parametric models that can detect non-linear interactions 
between independent and dependent variables. ANN pass variables 
through a set of interconnected nodes, arranged in hidden 
layers, with specific weights to determine their output variable 
(classification) [22]. Three ANN model packages were used in this 
study, “darch”, “h2o” and “elmNN”. The first two packages can 
produce models with multiple hidden layers whereas the later uses 
a fixed single-hidden layer. There are now a number of open-source 
multilayer ANN models to choose from. The two used in this study 
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were chosen due to their ease of use and high performance seen in 
other studies [23]. RF was used as it is not influenced by linearity, 
it assesses the outcome of a set of decision trees to classify data 
[24]. The RF model used was created from the “RandomForest” 
package. GLM, from the “stats” package, is a logistic regression 
model that transforms data into independent linear variables [25]. 
LDA attempts to project raw data from a high-dimensional space 
to a univariate space, it is modelled from principles of Fischer’s 
discriminant analysis. An LDA model was produced from the 
“MASS” package. The last model, SVM, creates a kernel function 
to map data into a high- dimensional space and finds the optimal 
hyperplane to classify data [26]. The package “e1071” was used 
to create an SVM model. As shown, each model used classifies 
data variables using different mathematical properties. This range 
of algorithms has been used extensively in biological research 
and provides rationale for the side-by-side comparison of all 
seven machine learning models. Machine learning packages were 
installed from the CRAN repository and ran in RStudio. Default 
parameters were used for all models except darch, h2o, elmNN 
and RF. ANN models required an optimised number of nodes 
and layers. Epochs were kept constant (100). Optimised number 
of nodes and layers were determined using general rule-of-thumb 
measures, in which the number of hidden nodes is no greater 
than double of the input nodes [27] and due to lack of computer 
processing power the number of hidden layers was restricted to 
two. Both darch and h2o algorithms performed at their best using 
two layers. The number of nodes found in each layer is summarised 
in Table 1. Optimised node parameters for ortho-elmNN were 19 
and 17 for pseudo-elmNN. The number of decision trees for RF 
to use was optimised from 1-500. The optimal number of trees for 
ortho-RF and pseudo-RF were found to be 107 and 99 respectively.

Evaluation measures

Prior to modelling, data was split by 5-fold cross-validation to 
produce training and testing data sets. The percentage of non-cleaved 
peptides in each fold was standardised at 16%, representative of 
the whole data set. Cross-validation of this style overcomes the bias 
of training the model predominantly on either negative or positive 
data [28]. Correct assessment of model performance is critical for 
determining an algorithms predictive power. Therefore, this study 
proposes the use of three different evaluators: receiving-operator 
characteristic (ROC) curves [29], precision- recall (PR) curves 
[30] and Matthews-correlation coefficient (MCC) [31]. Evaluative
measures focus on confusion matrix results that produce true-
positive (TP), false- positive (FP), true-negative (TN) and false-
negative (FN) values. ROC curves use FP rates as their x-axis and
TP rates as their y-axis, whereas PR curves use recall (x-axis) and
precision (y-axis). Values for these curves and MCC were calculated
as below:

Table 1: ANN optimised nodes.

Model
Optimal Hidden Layer Nodes

Layer 1 Layer 2

Ortho-darch 18 11

Ortho-h2o 19 13

Pseudo-darch 1 20

Pseudo-h2o 17 16
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TNFalse positive rate 100
TN FP

− = −
+

TPTrue positive rate 100
TP FN

− = −
+

Recall True Positive Rate= −

TPPrecision
TP FP

=
+

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

The area under curve (AUC) value was used as a descriptive value 
for ROC and PR curves. MCC values were used for the fine-tuning 
of parameters in ANN and RF models. Many studies using protease 
data often assess the quality of their models based on ROC-AUC 
values and accuracy. ROC is a useful tool for determining the 
robustness of a model by varying the discrimination threshold 
for prediction values. This provides more information than 
accuracy alone. However, most protease data sets are imbalanced. 
It is common to find a larger number of negative, non-cleaved, 
peptides than positive, cleaved, peptides. The downfalls of ROC 
come from this as ROC curves neglect the negative variables, 
enhancing positive predictions. As a result, ROC-AUC values can 
produce overly hopeful values. PR curves tackle this imbalance by 
maximising the correctly classified positive values and does not 
directly consider the negative values, which are not of importance 
to this study or to previous studies. For this reason, PR curves are 
more informative as the data sets have few positive instances but 
many negative instances. PR curves work in similar fashion to ROC 
in that they vary their discriminant threshold. Due to imbalanced 

data sets it is possible to build a model mainly on negative 
instances. As a result, these models can predict TN’s at a greater 
rate than TP’s, in turn this can obtain high accuracy scores. MCC 
values consider the ratio of the confusion matrix size, which is not 
taken into consideration by accuracy alone. As a result, the MCC 
score is only high when the classifier is able to correctly predict 
both positive and negative elements at a high level [32]. Due to its 
unbiased nature it is a common metric used by a US FDA initiative 
for predictive model consensus [33]. For these reasons the MCC 
values were used for optimisation and further significance testing. 
The Shapiro-Wilk test, Kurtosis test, median and mean were used 
to determine normal distribution of data obtained across five-folds 
of cross-validation before using parametric t-tests and ANOVA [34-
37]. To determine whether the judgement of model performance 
differs between evaluators, Spearman’s rank was applied to the 
order of performance denoted by ROC-AUC, PR-AUC and MCC 
values [38].

RESULTS

Sequence-coding methods

The analysis of performance metrics shows that the application of 
either pseudo- coded or ortho-coded data sets to a classifier greatly 
affects a model’s performance. Figure 1 shows the performance of 
models under pseudo and ortho-coding. The pseudo-coded data 
set produced models with substantially higher accuracies than their 
ortho-coded counterparts. Ortho-coded models also showed varied 
performance between models, whereas pseudo-coding produced 
models with similar predictive powers, this can be seen clearly in 
Figure 1. Furthermore, a larger disparity in model performance 

Figure 1: Average ROC and PR curves across five-folds of cross-validation for both orthogonal-coded (A/C) and pseudo-coded models (B/D).
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was observed across five-folds of cross-validation in pseudo-models 
compared to their orthogonal counterpart, seen in Figure 2.

Model performance

Several machine learning algorithms were applied to the two 
data sets; AUC and MCC scores were used to quantify model 
performance, which is summarised in Figure 2. Experiment results 
show that the ortho-coded RF model (average results: ROC-
AUC 0.924, PR-AUC 0.819 and MCC 0.842) outperformed all 
other ortho-coded models. The ortho-RF model also had a better 
prediction rate than its pseudo-coded counterpart. This was the 
only ortho-model to achieve higher performance scores than its 
pseudo-coded version (average results: ROC-AUC 0.914, PR-AUC 
0.828 and MCC 0.892). MCC ANOVA analysis concluded that 
the ortho-RF model performed significantly better than any other 
ortho-model (p-value = 7.70x10-13). This was further validated 
by MCC t-test analysis between ortho-RF and the second-best 
performing ortho-model SVM (average results: ROC-AUC 0.868, 
PR-AUC 0.662 and MCC 0.640) (p-value = 0.003). The lowest 
scoring ortho-models were both LDA (average results: ROC-AUC 
0.638, PR-AUC 0.235 and MCC 0.294) and GLM (average results: 
ROC-AUC 0.635, PR- AUC 0.233 and MCC 0.300) models. All 
pseudo-coded models predicted peptide classification with a high 
degree of accuracy. The highest performance was found in SVM 
(average results: ROC-AUC 0.972, PR-AUC 0.900 and MCC 
0.860) and elmNN (average results: ROC-AUC 0.960, PR-AUC 
0.883 and MCC 0.852) models. In contrast to the ortho-coded 
models, RF performed the worst using a pseudo-coded data set 
(average results: ROC-AUC 0.914, PR-AUC 0.809 and MCC 
0.828). Due to the high performance of all models there was no 
significant difference across the predictions by pseudo-models. 
This was proven by MCC ANOVA testing (p-value=0.981).

Evaluation measures

Three evaluation measures were applied to all models: ROC-AUC, 
PR-AUC and MCC. Ranking of the models using these metrics 
were assessed to see which evaluative measures are consistent with 
each other. Consistency between metrics shows that regardless 
of which measure is being used it will rank model performance 
similarly to other measures. ROC-AUC ranked model performance 
analogously to PR-AUC, evidence for this was determined using 
Spearman’s rank correlation (ortho-model Rho= 0.964, pseudo-
model Rho = 1). Although the scores are not directly comparable, 
as they measure different predictive qualities, in general ROC-
AUC values were higher than PR-AUC and MCC values. This 
was exemplified by the ortho-darch model which obtained a ROC-
AUC value of 0.820 but scored a dramatically lower PR-AUC 
(0.454) and MCC (0.494) value.

DISCUSSION

The aims of this study were to determine which machine learning 
algorithms can successfully predict HCV NS3P substrate cleavage 
sites, using two sequenced-based feature extractions methods, 
with high accuracies. Alongside this, the study investigated model 
evaluation to determine if the choice of prediction metric effects 
the accuracy of model performance representation.

Model Performance

Results from this study has shown that the method of sequence 
data transformation is a limiting-factor for high-level model 
performance. Experimental data has shown that pseudo coding 
data transformation techniques enables machine learning models 
to accurately classify data at a higher accuracy than orthogonal 
coding techniques. The rationale for the large difference between 
model performance is due to the dependency of the training and 
testing data and dimension reduction found in the pattern-based 
pseudo coding technique. When splitting pseudo-code data into 
training and testing sets, the amino acids are still encoded as an 
observation frequency in the whole data set, this makes the split 
data sets dependent on each other. Reducing dimensions within 
a data set is extremely useful for machine learning algorithms as it 
enables variables of similarity to be replaced by a singular instance, 
in turn this can lead to improved model performance, as long as 
no important features are lost [39]. Therefore, it should have been 
no surprise that pseudo-coded models greatly outperformed their 
orthogonal counterparts. However, the large difference between 
coding techniques have not been seen in other comparative studies 
on viral data sets [12]. These results show that the application of 
feature extraction methods is imperative for enhanced predictive 
power. Pseudo-coded models also showed a greater variance in 
performance than ortho- models, as seen in Figure 2. Although 
pseudo-coding reduces dimensionality, which in turn should 
help to reduce model variance, there was still disparity between 
model performances across testing sets in cross-validation. As 
mentioned, the dependency between training and testing sets in 
pseudo-coding enhances pseudo-model performance. However, 
this dependency could also be the reason for the higher variance 
in pseudo-models. Individual testing folds may have a higher or 
lower rate of dependency on their constitutive training folds. As a 
result, a decreased relation between the training and testing data 

Figure 2: Model performance across five-folds of cross-validation 
using three performance metrics (ROC-AUC,PR-AUC and MCC) 
for both orthogonal-coded (A) and pseudo-coded (B) models.

J Proteomics Bioinform, Vol 12(5) 089-095
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will reduce the model’s performance. With a large repertoire of 
machine learning algorithms available for biologists it is important 
to use the optimal one for the classification task. Ortho-models 
experimentally exhibited a large variance in accuracies, showing the 
significance of correct model choice. Of these, the RF algorithm 
outperformed all models under ortho- coding. In contrast, previous 
studies have shown that decision trees and RF perform with lower 
accuracies than other algorithms [11,40]. Results show that RF 
should not be disregarded as a potential candidate for other similar 
pattern recognition tasks. Overall pseudo-models showed similar 
predictive capabilities with moderately high variation across five-
folds of cross-validation making it difficult to compare the pseudo- 
models. However, Figure 2 shows that some models have parallel 
prediction power to others. The two ANN models darch and 
elmNN had uniform performances across both ortho- and pseudo-
models. Whereas, the ANN h2o showed greater performance 
whilst using ortho-code and was non-distinguishable when using 
pseudo-code due to the high variance between folds. This shows 
that the choice of specific ANN algorithm can affect the results of 
a machine learning task. GLM and LDA also displayed uniform 
performance in Figure 2. These showed the greatest difference 
when applying pseudo- or ortho-coding techniques. Ortho-GLM 
and ortho-LDA were the worst performing orthogonally encoded 
models whereas their pseudo counterparts performed to the same 
capabilities of other models. This provides evidence in favour 
of linear models for machine learning tasks but only if the data 
has been pre-processed to a high standard. The importance of 
model selection has been greatly questioned by pseudo-model 
performance. No pseudo-model significantly outperformed 
their orthogonal/pseudo counterparts, and all obtained high 
scores across all three-performance metrics used. As a result, the 
efficiencies of models come into question and reinvigorates the 
ideas put forward by Rögnvaldsson and You that if all algorithms 
work at a high accuracy rates the simplest algorithm with faster 
run times should be used [14]. With these ideas in mind the use 
of ANN models is unnecessary due to their slower run times, need 
for parameter optimisation and overall comparatively insignificant 
model performance.

Performance Measures

When measuring model performance, a variety of metrics can be 
considered. This study proposed the use of three measures to give 
full details on a model’s prediction capabilities. Figure 2 shows 
the application of three performance metrics to evaluate each of 
the models. These three metrics showed little disparity between 
ranking the models. This proved the relationship between ROC 
and PR even though the curves and AUC values can be different 
[41]. Although ROC-AUC, PR-AUC and MCC are not directly 
comparable measurements, it was observed that ROC-AUC scores 
are traditionally higher than the other metrics (Figure 2). This 
means that evaluation of model performance based on ROC-AUC 
scores alone can be misleading to the wider audience of researchers 
without sound knowledge on the workings of ROC curves. The 
overly optimistic ROC-AUC values seen in Figure 2 disregard the 
important principles of imbalanced data sets. Studies that work 
on viral peptide data sets need to focus more on the identification 
of cleavable peptides. It is this information which is of biological 
importance for the development of new peptide inhibitors. Using 
scoring systems such as PR and MCC, alongside ROC, can help 
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correctly assess the predictive biases found in the models. Figure 2 
also shows there was little disparity between the ranking of models 
based on three different performance measurements. However, 
ROC-AUC scores were always higher than PR-AUC and MCC 
scores. The low performance of ortho-models was expressed more 
obviously in PR-AUC and MCC scores, these were over half the 
ROC-AUC scores in some cases. This shows that ROC-AUC 
evaluation alone can be misleading and unimportant when dealing 
with imbalanced data sets as it maximises the model’s capabilities 
of predicting TN’s. As mentioned previously, studies that work on 
viral peptide cleavage need to focus more on the identification of 
cleavable peptides, TP’s. It is this information which is of biological 
importance for the development of new peptide inhibitors. Using 
scoring systems such as PR-AUC and MCC help correctly assess 
whether a model is favoring the prediction of non-cleaved peptides 
when compared to ROC-AUC scores.

Reference Peptides

To understand the biological significance of this study it is 
important to analyse the substrate predicted by the models. As a 
result, a set of reference peptides have been chosen for comparison 
against data obtained from in vitro experiments on HCV NS3P 
substrate specificity. True-positive predictions taken from the top 
performing ortho- and pseudo-models (ortho-RF and pseudo-SVM) 
were taken, with a discriminant threshold of 0.5, to produce a set 
of nine reference peptides. The results from both models can be 
seen in Table 2. The amino acid composition of the reference 
peptides have been visualised as a WebLogo in Figure 3 [42]. 
Experimental data has shown that the most important amino 
acids in substrate peptides are found to be at positions P1 and P’1, 
either side of the scissile bond. Enzymatic assays and consensus 
substrate sequence alignments have previously revealed that the 
following amino acids are found at each position: Asp or Glu 
at P6, Cys or Thr at P1 and Ser or Ala at P’1. Out of these key 
three positions, substrate mutations at P1 resulted in a significant 
decrease of substrate cleavage [4]. The reference peptides produced 
from this investigation support experimental evidence. Figure 
3 show that the Asp at P6, Cys at P1 and Ser or Ala at P’1 are 

Table 2: Set of reference peptides.

Reference Peptides

ADVVCC-SMSY

DAEVVT-STWY

DDIVPC-SMKR

DDIVPC-SMSK

DEAEEC-ASHL

DEMEEC-AQHL

DEMEEC-ASAL

DEMEEC-RQHL

DEMEER-ASHL

Figure 3: WebLogo of reference peptides with amino acid compositions 
from P6 to P’4.
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commonly found in substrate peptides, corroborating with in vitro 
results. Furthermore, computational models also suggest that Glu 
or Asp at P5 and Glu or Val at P3 could also be an important factor 
for substrate cleavage, see Figure 3. Other studies have shown 
that acidic residues at P5 and P6 enables the substrate to form 
electrostatic interactions with the NS3 protease, with the potential 
to enhance binding [4]. These in silico results support this. With this 
knowledge, it is possible that peptides with similar physiochemical 
properties to the average substrate model in Figure 3 could form 
the basis of inhibitor molecules.

CONCLUSION 

In silico studies that can predict the substrate cleavage sites of HCV 
NS3P can speed the anti-hepatitis drug development pipeline 
and reduce experimental costs. The need for new anti-hepatitis 
drugs is increasingly important as the rate of hepatitis has been 
rising [2]. This study has successfully shown that several machine 
learning algorithms can be applied to determine substrate cleavage 
of HCV NS3P. It has been shown that the method of feature-
extraction greatly outweighs the choice of algorithm. This has 
shown that more emphasis should be placed on pre-modelling 
techniques than the models themselves. Furthermore, it has also 
been shown that the use of ROC-AUC scoring as a main indicator 
of model performance can hide model biases towards the correct 
prediction of non-cleaved peptides. This information can help aid 
future studies on viral proteases by providing information on the 
importance of data transformations, model selection and model 
assessment. In future research work, physical and chemical features 
should be combined with sequence information and improved 
data coding techniques should be applied, as these have been 
found to be limiting factors over model selection. It is also hoped 
that multiple scoring measures will also be applied to provide 
transparency of model’s predictive capabilities.
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