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Abstract
A two-parameter model describes the microbial growth trend of planktonic cultures. Based on the assumption 

that cell duplication underlies the growth, the model defines an average generation time that depends on time and 
complies with the phenomenological evidence that the growth rate is naught at the start and at the end of the process. 
This is tantamount as to replace the real growth process with a virtual one, where all the generation lines stemming 
from the inoculum are synchronous and imply a duplication tree with no truncated branches. A simple function that 
complies with these constraints is τ=(a/t+bt), where a and b are parameters defined through a best fit treatment of 
the experimental plate count data. Surprisingly simple relationships come out for specific items of the growth trend, 
like maximum specific growth rate, eventual cell number, Nmax, duration of lag phase, etc., as well as some intriguing 
correlations between them. Published plate count data allowed testing the reliability of the model. The agreement is 
satisfactory being in line with the accuracy of the data (R2 ≥ 0.98).
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Introduction
The phenomenology of microbial effects in food and animal 

or vegetal tissues is mainly related to the number of cells per unit 
volume or unit mass of the system. It is therefore crucial to garner a 
reliable estimate of their increasing (or decreasing) number in a given 
volume of a given medium, and at a given temperature. The current 
investigation practice often concerns planktonic cultures. Microbial 
growth in planktonic conditions does not reflect the real microbial 
contamination underlying food spoilage and/or tissue deterioration, 
but nonetheless provides a reliable experimental evidence for assessing 
the role of some physical and chemical variables on the evolution of a 
microbial inoculum and compare the behaviors of different microbial 
strains.

The standard approach implies the dilution of a starting aqueous cell 
suspension before inoculation on a petridish, where the implanted cells 
tend to form colonies. The observer actually has to count the colonies 
and deduce the number of the inoculated cells on the assumption that 
each viable cell has formed one discrete colony. Some replicas are indeed 
necessary to achieve a reliably average result, which however remains an 
estimate rather than a direct measure. Plate count data (number of CFU 
per unit volume, or unit mass) therefore reflect the empirical resultant 
of the actual behavior of many thousands of cells. Once the inoculum 
environment is well defined, these data indicate that the microbial 
population grows with a sigmoid trend from a starting density toward 
an eventual steady level, where the growth rate vanishes. The best 
treatments of such data are those that strictly reflect their empirical 
nature. This attitude is indeed at the fundament of models [1-3] that 
made use of damped exponential functions to describe the sigmoid 
increase (or decrease) of the population density. Other models instead 
relate the plate count trend with the expected behavior of the single 
cells, describing the microbial growth with a kinetic (deterministic 
models), or a logistic mechanism, or a “combination” of them [4-9]. The 
availability of suitable software allows the use of these models for best-
fit treatments. The relevant expressions for the maximum growth rate, 
the maximum CFU density, the lag-time and the effect of temperature 
changes contain a number of parameters, many of which actually 
become adjustable quantities in the fitting treatment. Consequently, the 
size of the data set directly affects the reliability of the results.

The present paper suggests a model that does not take into account 
any specific growth mechanism, aiming to predict just the resultant of 

the cell duplication applied to a vast microbial population. Data sets 
reported in the literature for several microbial species allow a reliability 
test of the model: the accuracy of the fits obtained is in line (R2 ≥ 0.98) 
with the best ones so far achieved. Although the model accounts for the 
contribution of the single generation lines to the growth of the entire 
culture, it remains substantially phenomenological and the related 
parameters have a merely statistical meaning, as the bio-physiological 
peculiarities of the growth process do not appear in the model. 
Nonetheless, the good agreement between model and experiments 
supports the hypothesis that the microbial growth in planktonic 
conditions may obey some self-regulatory constraints, which do not 
depend on the kind of microbes. Furthermore, since the two parameters 
of the model reflect the potential growth extent and the sharpness of the 
growth trend, the model can be of help for defining protocols to tune 
the microbial growth on changing the environmental conditions.

The Model
Once the inoculum enters a new medium, the cells have to 

adapt themselves to the new environment by activating a number of 
biochemical processes [1]: the larger the differences between old and 
new environment, the longer the adaptation time span, commonly 
referred to as the “lag-phase”. The “true” growth process, namely the 
increase of the population density, begins at the end of the lag phase. 
Focusing the attention just on the growth process, if N0 is the number 
of cells in the starting inoculum, then the growth process will imply N0 
generation lines.

Along any generation line, the generation time will not be the same 
for each generation step, since the duplication process is not exactly 
symmetric, one of the two daughter cell being weaker in promoting the 
generation process. For each generation line, a duplication tree like the 
one reported below is expected (Figure 1).
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The duplication process may not proceed indefinitely because of 
many reasons, like genetically programmed cell death, reduced amount 
of substrate, available surrounding volume, quorum sensing, etc. [10-
14]. This is why, along a given cell line, the generation time is not the 
same for every duplication step and the progress of the N0 generation 
lines is not synchronous [10], even at the onset of the growth. In spite 
of the identical genome, the starting cells can indeed differ from one 
another for the promptness to undertake the duplication. The whole 
system would nonetheless keep its ergodicity in most cases [15]. This 
means that replicas of a given plate count trend would reproduce the 
same overall CFU number at a given time after the inoculum. A final 
consideration concerns the experimental evidence: the plate count 
data actually reflect the convolution of the behaviors of individual cells 
producing the empirical evidence of a smooth continuous growth of 
the whole population. In order to achieve a treatable description, one 
may replace the above picture with a virtual one that yields the same 
number of cell at any point of the growth span. First, one defines τi,k 
as the mean generation time of the cells of the (k-1)th step (where “k” 
refers to the kth generation step and τi,1 refers to the starting cell of the ith 
generation line). Along the generation line stemming from the ith single 
cell of the inoculum, Nj,k ≤ 2k, where the inequality sign accounts for 
truncated branches corresponding to the formation of non-generating 
cells. Because of the overlap of the generation steps (Figure 1), the 
progress of each generation line actually is a quasi-continuous process 
[6] described with a function of time, 

(t) 2 i

t

iN τ=
                                                                                                                       (1)

where 𝜏𝑖  is a mean generation time for the ith generation line. In 
spite of its implicit format, Ni (t) is not a simple exponential function, 
as the generation time changes at each generation step, some branch of 
the duplication tree is soon truncated, and the eventual number of cell 
is attained “smoothly”. Such a trend can be reproduced assuming τi to 
be a function of time, τi(t), that tends to infinite for, t → ∞, so mimicking 
the attainment of the final step (Figure 2).
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where the sum is equal to N0 for t=0 as it includes all the generation 
lines stemming from the single cells of the starting inoculum. The 
generation steps of different generation lines partially overlap to one 
another and do not have the same onset time (Figure 3).

Once again, one may describe the growth process with a continuous 
function of time,

(t) (t)
02 2i

t t

i
N Nτ τ= =∑                                                                                                         (3)

where τ(t) is a mean generation time for the whole population.

This is tantamount as to replace the real growth process with a 
virtual one where every generation line stemming from the starting 
inoculum has the same number of duplication steps (therefore 
contributing to the same extent to Nmax) and attains the same eventual 
steady state. Provided that τ is a suitable function of time, the idealized 
growth process yields the same number of cells as the real process, at 
any time during the growth span.

The expression for τ (t) has to comply with some constraints 
suggested by reasonable assumptions and empirical evidence:

•Phenomenological evidence imposes that growth rate, N , is 
naught for t = 0 and t → ∞, then 

Figure 1: Sketched picture of the non-synchronous progress of a given 
generation line; the duplication tree shows truncated branches. Numbers 
correspond to generation steps (heavy segments). The eventual population is 
formed by cells (open circles) belonging to different generation steps.

Figure 2: The progress of the ith generation line occurs with a step-by-step 
mechanism that may be “averaged” with a continuous function, corresponding 
to a continuous variation of the generation time τi. For the whole population 
stemming from the starting inoculum of N0 cells, the resultant picture is an 
array of duplication trees, each with its own τI(t).

Figure 3: Array of N0 generation lines with overlap of generation times. Each 
k-step stair corresponds to the averaged (Figure 2) duplication tree of a 
generation line (Figure 1). At any time, the system hosts cells belonging to 
different generation steps.
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A simple function (Appendix) that obeys the above conditions is:
a bt
t

τ = +                            			                        (4)

Equation (4) implies that τ decreases in the early phase of the 
growth, goes through a minimum and tends to a straight-line increasing 
trend (Appendix). The two parameters in the expression, namely, a and 
b, actually have a meaning that comes out a posteriori. According to 
equations (3) and (4),

1/b
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= ×=
t

N NN                                                                            (5)

Since in the real system many duplication trees have truncated 
branches, the parameter b would reflect the stochastic balance between 
progressing and non-progressing generation lines, 1/b being the 
measure of the potential growth extent.

The specific growth rate, N /N, is,
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which goes through a maximum at t*=a3b (Appendix). The tangent 
to the growth curve at t=t* intercepts the vertical axis at -log(2)/8b 
(Figure 4) and crosses the level log (2)/b and the abscissa at t=tend and 
t=t(0), respectively.

With a straightforward algebra (Appendix) one can verify some 
worth noting relationships (Table 1) that are rather simple and imply 
a predictable growth trend (Figure 4) easy to verify looking at several 
plate count trends reported in the literature. The (0, max

0

log N
N ) growth 

extent, which is equal to log (2)/b, may be split in four equal steps 
(Figure 4), namely, log (2)/4b, log(2)/2b, 3log (2)/4b and log (2)/b, 
which are attained at t=t*, t=t*√3 , t=tend=3t*and t=∞, respectively. The 
tangent to the growth curve at t=tend intercepts the vertical axis at 3 log 
(2)/8b and crosses the level log (2)/b at t=5 t*(Appendix).

Were these levels expressed as base-2 logarithms, that are the most 
obvious choice when dealing with a duplication mechanism, they 
would appear as:

log2(N/N0) = ξ(t)/b      with ( )
2

2
0 1   tt
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b
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                                     (7)

the value of (1/b) reflecting the overall potential growth extent of the 
microbial population and (t) being the attained fraction of it: for example, 

ξ =¼, ½, ¾ at t*, 't  and tend, respectively. The ratio (a/b) would affect the 
steepness of the growth process: the smaller (a/b), the steeper the growth 
trend. Using the reduced quantity tR=t/t* for the elapsed time, the ξ -vs-tR 
may be referred to as the master plot for any growth implying a duplication 
mechanism (Figure 5), since (remind that t*=(a/3b)1/2) 

2
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t R

t R
ξ =

+
                                                                                                                                                    (8)

does not depend on the parameters a and b. For the tangent at tR=3 
(that corresponds to ttend) (see above and the Appendix).

This description does not take into account the lag phase, namely, 
the time span before the onset of the growth. This no-growth behavior 
may sometimes be rather short and negligible, but literature reports 
also growth curves with lag-phases of some hours. Throughout the lag 
phase the growth rate is naught (namely, 1/τ=0; 𝜏 ̇=0). This evidence 
does not comply with equation (4) that describes the progress of the 
growth after the lag phase. However, a rigid shift of the growth onset 
allows the model to match the experimental plate counts (Figure 6). The 
extent of such time shift, t0, is the duration of the lag-phase (Appendix) 
and substantially differs from t (0)

0
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Figure 4: Predicted growth trend according to the present two-parameter (“a” 
and “b”) model. The logarithms may be in any base.

Figure 5: Master plot for the microbial growth. ξ is the fraction of the potential 
growth actually attained, while tR is the reduced time, t/t*. The figure includes 
the tangents at tR=1 and 3 (namely, t* and tend, respectively) and relevant 
intercepts.

Parameter Expression Parameter Expression

t' a
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Table 1: Synthetic presentation of the main growth parameters expressed 
according to the present model. “*” stands for “at t=t*”; t’ is the time for the minimum
of τ; t(0) and tend correspond to the intercepts between the tangent to the growth 
curve at t* and the horizontal straight lines at No and Nmax, respectively (Figure 5).
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Case Studies

Literature reports a variety of experimental plate count data 
relevant to duplicating microbes. In every case, the two-parameter 
model permits a satisfactory (R2 ≥ 0.98) fit. Figures 7 and 8 show the 
fits of a couple of data sets [16,17], among many others considered 
to test the model.

The plate count data, reported in the literature and related to 
a variety of microbial strains, can be gathered in a single master 
plot (Figure 9), once the growth curves are expressed in reduced 
quantities, namely, tR and ξ (t), according to the equation (8) of the 
present model.

The cases considered in Figure 9 concern microbial strains 
that differ from one another for metabolism, composition and 
temperature of growth medium, starting population density (i.e., 

N0), etc.; nonetheless, the relevant plate counts gather in the same 
master plot. Many other data sets available in the literature (not 
reported in Figure 9 for the sake of clarity) show the same behavior. 
This suggests that growth in planktonic conditions would occur 
complying with relationships of the present model, no matter the 
differences between strains and culture mediums. The plate counts 
reported by Tyrer et al. [17] allow estimation of the effect of the 
temperature on the microbial growth. In the adopted model, the 
relevant quantities are the (a/b) ratio, that governs the steepness of 
the growth curve and (1/b), that is the potential growth extent. Figure 
10 shows that the former exponentially decreases with increasing 
T, which implies an increase of the steepness of the growth curve, 
while the latter moderately increases.

Figure 6: Rigid shift, t0, to account for the lag phase preceding the growth 
process.

Figure 7: Fit of the experimental plate counts of Streptococcus thermophilus 
at 25°C [16] according to the present model.

Figure 8: Experimental plate count data of Pseudomonas fluorescens at 5°C. 
The data are those in [17], while the curve is the relevant fit according to the 
present model. Figure 9 accounts for growth trends at different temperatures 
by the same authors.

Figure 9: The master plot that allows the representation of any growth 
curve with an underlying duplication mechanism. The full line corresponds 
to equation (8), while the data corresponds to the experimental plate counts 
reported in the literature: empty squares, Lactobacillus delbrueckii subsp. 
bulgaricus and open circles, Streptococcus thermophilus [16]; full squares, 
Salmonellae [18]; full circles, C. jejuni [1], crosses, Pseudomonas fluorescens 
and stars, Candida sake [17].
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Conclusion
A two-parameter model describes the microbial growth trend for 

planktonic cultures. Based on the commonly accepted assumption that 
growth takes place via cell duplication, the model assumes a continuous 
function for the generation time along each generation line and an average 
Generation time, τ(t) for the whole array of generation lines stemming 
from a given inoculum. A simple function, τ=(a/t+bt), satisfies the overall 
constraints for the observed growth trend and allows a very satisfactory fit 
of the plate count data relevant to any duplicating microbial strain.

A master plot, based on reduced quantities, allows representation 
of any growth trend related to a duplication mechanism. As for the 
physical meaning of the proposed model, (1/b) is the potential growth 
extent, log2 (Nmax/N0), while the ratio (a/b) governs the steepness of 
the growth process. The starting no-growth time span, t0, namely, the 
duration of the lag phase, corresponds to the rigid shift of the time scale 
that allows the matching between expected and experimental growth 
trend. The effect of the temperature is translated to the corresponding 
changes of the parameters a and b. In spite of the very satisfactory 
description of the experimental growth trend of various microbial 
strains, the model remains substantially phenomenological, as long as 
it does not relate to the biochemical processes that sustain the growth. 
Nonetheless, the agreement between predicted and experimental trends 
suggests that the microbial growth in planktonic conditions may obey 
some self-regulatory constraints that do not depend on the peculiarities 
of the microbial species considered. Such constraints would prevail on 
the effects of bio-physiological differences and become effective when 
dealing with a large number of cells per unit volume, namely, when a 
statistical view, like the one underlying the present model (equations 
1-3), becomes significant and reliable. In other words, the model 
would not apply to low density microbial populations. Accordingly, 
the meaning of the parameters a and b is merely statistic, as long as 
they reflect the convolution of many coexisting generation lines. The 
parameters a and b are expected to change on modifying the starting 
environmental conditions of the culture, namely, pH, temperature, 
available substrate, etc. By checking whether a or b is more affected by 
such changes, one may envisage some tuning protocols to govern the 
microbial growth, including addition of bacteriostatic or bactericidal 
drugs. For microbial growth processes not implying a duplication 
mechanism, the model should still hold. One has simply to replace 
equation (3) with ( )

0
/ N t tN n τ= , where n becomes an adjustable parameter 

that may be also given a non-integer value. This could be the case of 
yeasts and fungi: the relevant verification is in progress.
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