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Abstract
This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In 

section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes 
in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of 
cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental 
literature, no study has examined both implicit and explicit memory processes involving cocaine related visual 
information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for 
cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) 
none of the previous imaging studies has examined connectivity between the memory system and craving system in 
the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. 
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Introduction
According to the 2007 National Survey on Drug Use and Health, 

approximately 35.9 million Americans aged 12 and older had tried 
cocaine at least once in their lifetimes, representing 14.5% of this 
population. Among students surveyed as part of the 2008 Monitoring 
the Future study, 3.0% of eighth graders, 4.5% of tenth graders, and 7.2% 
of twelfth graders reported lifetime use of cocaine. Approximately 8.5% 
of college students and 14.7% of young adults (aged 19-28) reported 
lifetime use of cocaine (NIDA, 2007). Of an estimated 113 million 
emergency department (ED) visits in the U.S. during 2006, the Drug 
Abuse Warning Network (DAWN) estimates 548,608 were cocaine 
related. Despite this widespread and continuing use of cocaine in youth 
and young adults, much remains unknown about the neurocognitive 
mechanisms that support initiation and persistence of chronic cocaine 
use in humans. Better understanding of these mechanisms is essential 
both for identifying those at risk for cocaine use and for intervention 
development in persistent cocaine users. Motivated by this fact, I have 
included three sections in this review. First, I examine previous studies 
that have investigated cognitive processes, for example, implicit and 
explicit memory processes in cocaine abusers and cocaine-dependent 
individuals (section I). Next, I report brain imaging studies related 
to cocaine addiction (section II), and finally I draw conclusions 
from previous cognitive and imaging studies and recommend future 
directions (section III).  

Implicit and explicit memory processes and cocaine addiction

A long-standing cognitive research tradition has distinguished 
between automatic and non-automatic modes of information 
processing [1-8]. The automatic (i.e., implicit) mode involves faster, 
less effortful processing with less reliance on attention, intention, and 
strategy. It may occur without conscious awareness and may be difficult 
to control or inhibit once initiated. Implicit memory processes appear 
to play a crucial role in the control of attention and contingency-guided 
decision-making. On the other hand, the controlled and non-automatic 
(i.e., explicit) mode involves slower, more effortful processing such as 
rehearsal and elaboration and is dependent on strategy and attentional 
resources. Controlled information processes are initiated intentionally 
and are influenced by encoding strategies or depth of encoding [9]. 
Because explicit memory processes are supported by attentional 
and other cognitive resources that are limited in capacity, they are 

vulnerable to a variety of alterations in physiological, neurological, 
and psychological state [10,11]. Although prominent cognitive and 
neuroadaptive theories of addiction point to the heuristic value of 
the automatic/non-automatic information processing distinction for 
understanding the development of problem drug use behaviors [12-14], 
literature is however limited on systematic studies of specific types of 
automatic and effortful memory processes in chronic users of cocaine. 

Lambert et al. [15,16] demonstrated that implicitly learned 
contingencies between cue and target stimuli, of which participants 
were unaware, guided attention-orienting responses. Their results 
support the idea that attention orienting to drugs and drug-related 
stimuli can operate outside of voluntary control via implicit memory 
processes. Bargh’s model [17] suggests that the environment can directly 
activate a goal (for example, ‘want to feel high’) that guides cognitive 
and behavioral processes without the need for conscious decision 
making, and without the person’s conscious intent or awareness of 
the operation of the goal [18]. The role of associative learning and 
implicit memory systems in contributing to transitions from regular 
drug use to addiction [12] and to the function of craving [19] is well 
supported, yet little attention has been directed to the role of implicit 
memory as an explanatory mechanism for early transitions in use, such 
as experimental use to occasional use, and occasional use to regular 
and/or escalating use. Exceptions are the earlier work by Stacy et al. 
[20,21], Szalay et al. [22-24], and Hill and Paynter [25], who examined 
motivational processes using verbal methods of assessing memory 
activation. Stacy [20], for example, showed that memory associations 
to ambiguous cues (e.g., ‘pitcher’) were significantly related to college 
students’ use of alcohol and marijuana use. Furthermore, Szalay et al. 
[22-24] research showed that college cocaine users associate cocaine 
words with positive experiences and feelings, and are more familiar 
with cocaine names than college student nonusers. Hill and Paynter 
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[25] used an implicit semantic priming paradigm that included 
appetitive cues and suggested that this paradigm may have value as a 
clinical tool for the detection of psychoactive substance dependence 
and assessment of change. Semantic priming is defined as recognition 
facilitation of semantically related stimuli. Hill and Paynter [25] found 
that lexical decision (LD; the time to decide whether a string of letters 
was a word or a non-word) time was faster for the alcohol-related words 
[e.g., ‘alcohol’ (study word)–‘relaxation’ (test word)] than unrelated 
words [‘alcohol’ (study word)–‘navigation’ (test word)]. This suggests 
stronger memory association for alcohol-related concepts in semantic 
memory network than between concepts that are not alcohol related. 

In the opiate addiction literature, only one study has examined 
contextual priming in opiate-dependent individuals and their family 
members and found that dependent individuals responded faster 
to opiate-related words following withdrawal-related sentences, as 
compared to neutral words that followed neutral sentences [26]. In 
the cocaine addiction literature, there is one study that has examined 
implicit and explicit cocaine-related cognitions in cocaine-dependent 
poly-substance abusers and controls [27]; implicit associations were 
assessed using an implicit association test (IAT) and explicit cognitions 
were assessed with a questionnaire using the same words as the IAT. 
Results showed that cocaine patients, compared to controls, associated 
cocaine more strongly with arousal as measured in the IAT, and scored 
lower on sedation expectancies and higher on arousal expectancies as 
measured in the explicit test. In addition to the Wiers et al. and Szalay 
et al. [22-24,27] studies that have examined cocaine related memory 
association in cocaine users, there has been one previous study that has 
examined attentional bias for cocaine-related words in cocaine abusers 
[28] and another study that has examined visual neutral word priming 
in abstinent cocaine and cocaine/alcohol dependent volunteers [29]. 
In Franken et al. [28] study, cocaine abusers participated in a reaction 
time (RT) experiment that was intended to measure the ability of 
subjects to shift their attention away from the cocaine related words. 
Results showed attentional bias for cocaine cues in patients who scored 
higher on obsessive thoughts about cocaine use in the week before the 
experiment. According to Jasiukaitis and Fein [29] both semantically 
and perceptually mediated visual neutral word priming are based on 
implicit cognitive processes that are resilient to the sequelae of cocaine 
dependence. In contrast to enhanced cocaine-related implicit memory 
processing in cocaine users [22-24,27], explicit memory involving 
neutral stimuli is usually impaired in chronic heavy users of alcohol 
and other drugs [29-31]. Cocaine dependent individuals, as well as 
abstinent MDMA (‘Ecstasy’) users, show impaired explicit memory 
processes such as free recall that utilizes neutral stimuli [29,32]. From 
the above review, it is evident that none of the existing studies involving 
cocaine has examined both implicit and explicit memory processes for 
cocaine related visual information within the same cocaine abuser or 
cocaine dependent individual. 

Drug use behaviors in chronic users are frequently triggered by 
viewing drug related visual cues in the environment. Investigating 
the integrated operation of implicit and explicit memory processes 
involving drug related visual information within the same individual 
has important implications for developing prevention and intervention 
techniques tailored specifically for that individual. Many drug abuse 
prevention interventions involve techniques such as drug refusal skill 
training, learning the negative consequences of drug use, and other 
controlled and attention-demanding components that rely heavily on 
explicit memory [33].

Brain imaging studies related to cocaine addiction

The neural correlates of implicit and explicit memory processes 
have been well studied in healthy non-substance abusing individuals. 
Using implicit repetition priming and semantic priming paradigms and 
functional Magnetic Resonance Imaging (fMRI), the role of Left Dorsal 
Prefrontal Cortex (LDPC), Extrastriate Visual Cortex (EVC), and 
Posterior Temporal Cortex (PTC) has been demonstrated in implicit 
processing of neutral picture and word stimuli [34-42]. Priming is 
characterized by decreased brain activation (“response suppression”) in 
LDPC, EVC, and PTC for repeated compared to novel items (repetition 
priming) or for related compared to unrelated items (semantic priming). 
On the other hand, using explicit episodic and recognition memory 
tasks and fMRI, involvement of amygdala in explicit processing of 
emotional picture and word stimuli and involvement of hippocampus 
in explicit processing of neutral picture and word stimuli has been 
demonstrated [43-47]. Explicit episodic and recognition memory is 
characterized by increased activation in amygdala and hippocampus for 
correct recognition of the studied items compared to the novel items.  

Neural mechanisms underlying implicit and explicit memory 
processes for appetitive cues have not been directly investigated in 
cocaine dependent individuals in the fMRI and PET literature. Yet, 
independent lines of research suggest that it would be valuable to do 
so. For example, cocaine-related cues and active cocaine infusion cause 
activation in brain areas linked to craving. Typically in a cue exposure 
paradigm, individuals maintaining abstinence from drug/alcohol use 
are brain scanned during exposure to addiction-related word or picture 
stimuli or related thoughts. Using cocaine-related verbal and picture 
cues, activation of insula, Orbito Frontal Cortex (OFC), amygdala, 
hippocampus and Anterior Cingulate (AC) areas was found during 
cocaine-cue induced craving [48-58]. These same brain areas have 
shown activation in response to alcohol, heroin, and nicotine-related 
cues in individuals dependent on these substances [59-68]. Cocaine-
challenge studies showed that acute cocaine administration activated 
mesolimbic and mesocortical dopaminergic projection regions in 
addition to activation in anterior prefrontal cortex and orbitofrontal 
cortex [69-71]. These studies concluded that dopaminergic pathways 
and hierarchical brain networks may participate in mediating cocaine 
reward processes, associative learning, memory and motivation. 
Thus, drug and alcohol cue exposure is believed to trigger memories 
related to their use [28,49,51,65,72,73], apparently due to activation 
in hippocampus and amygdala during cue exposure. A separate line 
of research in healthy non-substance abusing individuals has linked 
activation in the hippocampus to explicit memory [44-47] and 
activation in the amygdala to both explicit emotional [43,44] and 
implicit emotional memory [74]. 

Taken together, the above imaging literature suggests a role of 
LDPC, EVC, and PTC in implicit processing of neutral stimuli, and 
involvement of amygdala and hippocampus in explicit processing 
of emotional and neutral stimuli, and also the role of insula, OFC, 
amygdala, hippocampus and AC areas in cue induced brain activation 
in cocaine and other substance use disordered individuals. In addition 
to examining localized brain Regions of Interest (ROIs), there has 
been an increasing focus of neuroscientists on understanding how one 
brain area influences another, that is, on the ‘effective connectivity’ 
[75] or ‘functional connectivity’ (according to this view, functional 
connectivity between two brain areas is the correlation or covariance 
between their time-dependent activity) [75] during a cognitive task 
or at rest in healthy normal and clinical and neurotypical individuals 
[76-94]. Functional connectivity provides a quantitative description 
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of inter-relatedness of information processing in different regions of 
brain, pertaining to a certain cognitive task or in a resting state. In that 
sense, functional connectivity provides information about information 
flows in the brain and influences produced by different areas of the 
brain on each other during particular cognitive tasks. This typically 
provides correlative information but can be used to obtain hints about 
the causal links (from such correlations) that exist between different 
cognitive processes in the brain in subjects’ performing certain tasks. 
The modeling of effective connectivity not only provides an in vivo 
examination of brain function that complements the more invasive 
techniques used in animal research, but also has proved to be a useful 
tool for understanding brain function in both clinical and neurotypical 
populations. This modeling has been instrumental in developing clinical 
interventions. This approach expands the utility of neuroimaging 
data not only to identify isolated brain ROIs that are especially active 
during cognition, perception and action, but also the causal relations 
among activity in these regions [74,95-99]. The inter-connectivity of 
different regions in the brain is a well established concept in clinical and 
neurotypical literature. 

However, this issue of brain interconnectivity is relatively novel in 
the addiction literature. Only one recent fMRI study has examined brain 
functional connectivity during a finger tapping task in MDMA abusers 
[100] whereas in another fMRI study brain effective connectivity was 
examined while the healthy subjects were under the influence of pure 
compounds of cannabis sativa. Furthermore, only one previous PET 
study of opiate craving [61] and only one previous resting state fMRI 
study involving opioid dependent patients [101] have investigated this 
important issue of brain interconnectivity. A few MRI studies that 
have examined functional connectivity in heroin abusers or heroin 
dependent individuals have primarily concentrated on the resting state 
[102-110] and functional or effective connectivity during any cognitive 
task yet needs to be explored. Similarly, the brain interconnectivity 
literature on cocaine addiction is very limited: only one study has 
examined the effect of acute cocaine administration on functional 
connectivity in human primary visual and motor cortex [111], a few 
studies have examined functional connectivity during the resting state 
[58,112-115] and a few studies have examined functional connectivity 
while participants performed a cognitive task [116-119]. 

 Conclusions and Future Directions 

Review of the previous cognitive experimental literature involving 
cocaine addiction reveals that only a limited number of studies have 
examined cocaine-related implicit and explicit memory processing 
[23-27] in cocaine users, despite the fact that neurobiological models of 
addiction argue that memory processes, and especially implicit memory 
processes play a crucial role in escalation and persistence of drug abuse 
[12-14]. However, there is no study that examined both implicit and 
explicit memory processes involving cocaine related visual information 
in the same cocaine abuser or cocaine dependent individual. Future 
research is needed to examine this. Understanding that an individual’s 
explicit memory processes involving drug related visual information are 
impaired whereas the implicit memory processes involving the same 
information are spared will help develop prevention and intervention 
tools that will utilize that person’s intact implicit memory system. The 
implicit memory processes have not been the focus in the field, although 
it has been suggested that changing automatic associative effects could 
be fundamental adjunct to interventions [120]. 

Future work on the role of implicit memory in drug-taking 
behavior would be informed by studies on cognitive processes in the 
alcohol literature. In line with Goldman [121], it can be suggested that 

an implicit spread of activation between addiction related stimuli and 
their respective addiction expectancy concepts in the semantic memory 
network (a permanent associative network in which knowledge is 
stored) contributes to drug taking behavior. Goldman [121] has 
argued that alcohol expectancy concepts (images, memories of sensor 
motor and affective experiences, specific behavior patterns, and verbal 
representations of these concepts) are nodes in the semantic memory 
network and activation of particular nodes occurs in a predictable 
fashion once the individual encounters stimuli that match previously 
encoded material relevant to drinking. These activation patterns 
in turn influence the onset and pattern of drinking by activating 
affective systems in the brain [12]. It has been shown in the cognitive 
experimental literature that implicit memory processes are affected by 
divided attention [122] wherein one retains a high memory load during 
the memory processing. Future cognitive experimental research in the 
field of cocaine addiction should explore how attentional demands 
and memory loads might be harnessed or controlled for cocaine use 
prevention and intervention. That is, it may be possible to use attentional 
manipulations during exposure to a cocaine visual cue to restrict the 
implicit spreading of activation between, for example, cocaine related 
concepts in the semantic memory network.

In the fMRI and PET literature, neural mechanisms underlying 
implicit and explicit memory processes for cocaine cues have not been 
directly investigated either in high-risk for cocaine abuse/dependent 
or in cocaine dependent individuals despite an independent line of 
research has suggested that it would be valuable to do so. Furthermore, 
none of the previous imaging studies has examined connectivity 
between the memory system and craving system in the brain despite 
the fact that it has been argued that these two systems play a crucial 
role in maintenance of drug use behavior [12,19,123]. Future research 
should integrate the results of the neural substrate of memory in non-
clinical samples with research examining the neural mechanisms of 
craving in substance use disordered groups by using fMRI to directly 
examine neural mechanisms that underlie implicit and explicit 
memory processing of cocaine-related visual cues in youthful samples 
who vary in cocaine exposure from none, to occasional, to persistent. 
Research should focus on brain ROIs that have shown to be involved in 
implicit memory processing (LDPC, EVC, PTC) and explicit memory 
processing (amygdala, hippocampus) in non-clinical samples, and 
brain ROIs that have shown to be involved during cocaine as well as 
other cue exposure in cocaine and other substance use disordered 
individuals (insula, OFC, amygdala, hippocampus, AC). Activation in 
LDPC, EVC, and PTC ROIs should be examined while participants’ 
process cocaine related visual information during an implicit memory 
task whereas activation in amygdala and hippocampus ROIs should be 
examined while they process cocaine related visual information during 
an explicit memory task. Also, during both memory tasks, activation 
of craving related brain areas (insula, OFC, AC) should be examined. 
In addition to examining the localized brain ROIs, it is necessary to 
further examine the connectivity between craving related and implicit 
(or explicit) memory related brain areas while participants process 
cocaine related visual cues during implicit (or explicit) memory task by 
using multiple advanced state-of-the art causal modeling approaches 
[75,124-126]. The research findings will elucidate our understanding 
of how brain functioning may differ in persons who vary in extent and 
consequences of cocaine exposure, that is, individuals who have limited 
experience with cocaine versus individuals who are chronic cocaine 
users. More specifically, in the high-risk group, the connectivity from 
the memory system to the craving system is not expected to be as strong 
as in the cocaine dependent individuals as strength of connectivity is a 
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function of repeated exposure over time. Individuals with no previous 
experience with cocaine would not show any connectivity between 
these systems. Thus, the proposed research has practical implications in 
terms of its ability to assess an individual’s level of cocaine experience 
by examining that individual’s connectivity map which reveals the 
individual’s strength of connectivity between the memories and craving 
systems. Such knowledge will be useful in identifying individual specific 
treatments or drug targets. 

Furthermore, an examination of the connectivity map between the 
memory and craving systems during the course of treatment may help 
clinicians identify individuals who may relapse. The novel medication 
development strategies for long-term smoked cocaine use [e.g., 
dopamine receptor agonist (modafinil), dopamine receptor antagonist 
(ecopipam)] should be examined on cocaine dependent individuals to 
see whether their subjective craving ratings change and whether the 
connectivity between the memory and craving systems is diminished as 
a result of medication. At a cognitive level, this will refer to a restriction 
on implicit spreading of activation between cocaine related concepts 
in the semantic memory network. Finally, knowledge gained from this 
research on neurocognitive mechanisms in cocaine addiction will be 
instrumental in developing therapies that will modulate the functions 
of craving related brain areas in cocaine dependent individuals. 

In addition to the proposed above mentioned cognitive experimental 
and fMRI research, advances in structural integrity/connectivity 
obtained by utilizing both Diffusion Tensor Imaging (DTI) and 
Voxel Based Morphometry (VBM) imaging techniques [127,128] can 
enhance our understanding of brain dysfunction in cocaine dependent 
individuals. As these evolving methods mature, a better understanding 
of structural and functional connectivity and their interplay will further 
enhance the field. 

The results from future research will lay the groundwork for more 
articulated neurocognitive models of craving and impulse control in 
cocaine users, and potentially suggest ways that implicit memory 
processes may be harnessed to interrupt craving states. The knowledge 
gained from this future research will have implications for developing 
individually-tailored and effective cocaine use prevention and 
intervention techniques. These techniques could potentially include 
cognitive restructuring within the implicit memory system, neuro 
feedback [129-132], developing therapies to modulate the functions of 
craving related brain areas, and medication development.
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