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Introduction
Liver is the primary organ for glucose metabolism. Apart from 

expressing the enzymes involved in glucose metabolism and regulation, 
liver possesses numerous enzymes involved in detoxification and 
toxicity enhancement (Phase I and Phase II). Also, most substances, 
upon entry into the body are primarily subjected to metabolism in 
the liver. Reports dealing with the effects of high glucose on liver are 
discussed in the following sections of this mini-review.

Liver Damage in Diabetes
Several studies have shown that significant oxidative stress and 

liver damage occurs in diabetes. A study using Non- Obese Diabetic 
(NOD) mice showed elevated serum enzymes associated with liver 
damage and apoptosis as indicated by marked DNA fragmentation 
and all these changes were decreased with selenium treatment [1]. 
Another study indicated that Streptozotocin (STZ)-induced diabetic 
rats (animal model for Type I diabetes) exhibited increased lipid 
peroxidation and decreased levels of antioxidant enzymes- catalase, 
glutathione peroxidase and Superoxide Dismutase (SOD) in liver 
which were reversed with aucubin [2]. The protein expression of the 
antioxidant enzymes, SOD and catalase which are involved in the 
detoxification of Reactive Oxygen Species (ROS) were found to be 
decreased in the STZ-induced diabetic rat liver tissues and vitamin 
C or lipoic acid treatments elevated their levels [3]. STZ mediated 
hyperglycemia decreased glutathione peroxidase, catalase, glucose-6-
phosphate dehydrogenase and transketolase activities in liver tissue of 
diabetic rats and although treatment with melatonin slightly elevated 
the levels of the antioxidant enzymes, it markedly reversed the activities 
of glucose-6-phosphate dehydrogenase and transketolase [4].

Another study reported that glucose levels as indicated by glucose 
oxidase, glycated haemoglobin, an indicator of glycative stress, and the 
8-oxo-2’- deoxyguanosine (8-oxodG) content of DNA, an indicator of
oxidative DNA damage, in the liver of STZ-diabetic rats were much
higher compared with control rats [5]. Similar observations were
reported in another study showing that the nuclear and mitochondrial
DNA levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), another
biomarker for oxidative DNA damage increased several fold in STZ
treated rats and these changes were reversed with rice bran oil treatment 
[6]. Liver 8-OHdG levels in STZ treated rats were significantly decreased 
by combined treatment with insulin and antioxidant (probucol or
vitamin E), but not by insulin treatment alone [7].

STZ induced diabetes led to the increased expression of liver 
and hepatocyte inducible Nitric Oxide Synthase (iNOS) [8]. The 
activation of Peroxisome Proliferator Activated Receptor alpha (PPAR 
alpha) was shown to protect STZ treated mice against the toxicity of 
acetaminophen, a potent hepatotoxicant [9]. Another study observed 
disparate effects of alpha lipoic acid on the decreased liver SOD and 
Glutathione (GSH) levels and increased lipid peroxidation in STZ 
treated rats [10]. The livers of STZ treated rats showed increased 
oxidation of GSH, lipoperoxides and activity of xanthine oxidase, a 
superoxide-generating enzyme [11]. Impaired proteosome activity 
needed to degrade oxidized proteins was observed in the cytosol of 
STZ treated rats [12]. Livers from STZ treated rats have been shown 
to exhibit increased levels of gamma-glutamyltranspeptidase, a 
premalignant marker [13].

Liver mitochondria from STZ-diabetic rats exhibited less 
susceptibility to oxidative damage (induced by Fe3+/Adenosine 
5’-diphosphate (ADP) xanthine/xanthine oxidase), compared to 
normal rats [14]. Increase in apoB-48 lipoproteins was observed, 
due to significantly less sulfate incorporation into heparan sulfate 
proteoglycans in livers of STZ-treated rats [15]. Fatty Aldehyde 
Dehydrogenase (FALDH), a key component of the detoxification 
pathway of aldehydes arising from lipid peroxidation events was 
decreased in two models of insulin-resistant mice: db/db and high fat 
diet mice and STZ-treated rats, suggesting that FALDH dysregulation 
occurs both in hyperinsulinemic insulin-resistant state and 
hypoinsulinemic type 1 diabetes models [16].

Non-alcoholic fatty liver disease, a spectrum of liver damage that 
ranges from relatively benign hepatic steatosis to potentially fatal 
cirrhosis is very closely associated with Type 2 diabetes. The clearance 
of 4-hydroxynonenal, a major product of lipid peroxidation, by the 
enzymes Glutathione-S-Transferase (GST), Aldehyde Dehydrogenase 
(ALDH), and Alcohol Dehydrogenase (ADH) was impaired in 
liver microsomes and mitochondria of BB/WOR diabetic rats [17]. 
An elevation of both alpha- tocopherol and Coenzyme Q content-
antioxidant enzymes, which may be involved in the elimination of 
mitochondrially generated ROS and decreased susceptibility of liver 
mitochondria to oxidative damage, was observed in Goto-Kakizaki 
(12-month-old diabetic) rats, a model of non-insulin dependent 
diabetes mellitus than in the mitochondria from normal rats [18]. 
Further, the mRNA expression of Heme Oxygenase-1 (HO-1), an 
important sensitive marker of the stress response was found to be 
increased in spontaneously diabetic rats [19]. Lipoperoxidative 
aldehydes were shown to accumulate in liver microsomes and 
mitochondria at a higher rate in spontaneously diabetic BB/WOR rats 
than in control non-diabetic animals [20].

The Cytochrome P450 (CYP) enzymes which play a significant role 
in hepatotoxicity - CYP2A6, 2E1, and 3A4/5 were found to be increased 
in hepatocytes of patients with fatty liver due to obesity or diabetes 
[21]. Due to the limited availability of liver samples from humans and 
the tedious process of liver biopsy, the study of effect of high glucose in 
human liver has been restricted to very few reports. 

Studies have also stressed upon the use of herbal preparations in 
protecting against liver damage in diabetes. A new thiazolidinedione 
analog was found to be effective in alleviating oxidative stress in alloxan 
treated rats [22]. Another study observed that tetrahydrocurcumin, 
one of the active metabolites of curcumin lowered oxidative stress in 
livers of STZ- nicotinamide induced diabetic rats [23]. An aqueous 
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extract of Albizzia lebbeck was effective in decreasing oxidative stress 
in alloxan treated rats [24]. A bark extract of Helicteres isora exhibited 
hypoglycemic and hepatoprotective activity in STZ induced diabetic 
rats [25]. The antioxidant effect of an aqueous extract of Scoparia 
dulcis, was observed in rats with STZ-induced diabetes [26]. Similarly, 
a few more studies have explored the hepatoprotective effects of Indian 
medicinal plants in diabetes [27-30].

Use of Hepatocytes to Investigate the Effects of High 
Glucose

In vitro studies using hepatocytes and HepG2 cells have provided 
valuable insights into the mechanisms of glucose toxicity in liver. 
Glycolytic enzymes- glucokinase and phosphofructokinase-2/
fructose bisphosphatase-2 were found to play coordinate roles in the 
elevated hepatic glycolysis observed in hepatocytes obtained from 
in insulin-resistant Zucker fa/fa rats [31]. Human hepatocyte cell 
lines, Huh7 treated with high glucose alone or in combination with 
proinflammatory cytokines, were found to exhibit increased levels of 
the transcription factor Nuclear Factor kappa-B (NF-kappaB) and 
enhanced coagulation-related gene expression and the effects were 
mediated, at least partly, by the generation of oxidative stress [32]. 
Hepatocytes from Zucker fa/fa rats were found to show increased 
sensitivity of glycogen synthesis to phosphorylase-a and impaired 
expression of the glycogen-targeting protein R6 [33]. Carbohydrate 
response element binding protein was found to directly promote 
lipogenic enzyme gene transcription in hepatocytes isolated from wild 
type mice and exposed to high concentration of glucose [34]. A study 
using mouse Hepatocytes (HEP6-16) reported that decreased ATP 
content downregulated mitochondrial uncoupling Protein 2 (UCP2) 
expressions, thus affecting the energy metabolism [35].

However, the use of hepatocytes for a long period proves to be 
difficult due to the unstable expression of differentiated functions, low 
cell survival and rapid cell senescence.

Use of Hepatoma Cell Lines, Hepg2 to Investigate the 
Effects of High Glucose

The human hepatoma cell lines, HepG2 have been used extensively 
to study hyperglycemia in vitro. The expression of hepatic Scavenger 
Receptor class B type I (SR-B1) which binds High Density Lipoprotein 
(HDL) particles that mediate reverse cholesterol transport and thus 
lowers the risk of atherosclerosis was observed to be suppressed in 
HepG2 cells exposed to high glucose [36]. In primary rat Hepatocytes 
and in HepG2 cells, the transcription of the human apolipoprotein 
(apo) A-II gene was upregulated by glucose [37]. High glucose up 
regulated the transcription of human Phospholipids transfer protein 
which plays an important role in human plasma HDL metabolism 
and increased mRNA levels for several genes that are functionally 
important in HDL metabolism, including human ATP-binding 
cassette transporter A1, Apo A-1, SR- B1, and hepatic lipase in HepG2 
cells [38]. High glucose led to the decrease of mitochondrial DNA 
content and inhibition of mitochondrial function in HepG2 cells 
[39]. The effects of a high concentration of glucose on the insulin 
receptor-down signaling were investigated in HepG2 cells to delineate 
the molecular mechanism of insulin resistance under glucose toxicity 
and high concentration of glucose caused phosphorylation of IRS-1, 
leading to selective attenuation of metabolic signaling of insulin [40]. 
Further, the phosphorylation of IRS-1 with high glucose treatment 
was blocked only by Protein Kinase C (PKC) inhibitors. The surface 
binding of asialo- orosomucoid, a well-documented ligand for hepatic 
receptor for asialoglycoproteins, increased significantly with increasing 
glucose concentrations in HepG2 cells [41].

Thus, as evidenced through the above studies utilizing in vivo 
animal models and invitro models of hepatocytes and HepG2 cells, 
metabolism of high concentrations of glucose in liver may impair 
several cellular processes thus leading to injury.
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