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ABSTRACT
Several molecular biomarkers have been proposed to improve prediction of risk on metastasis or on relapse after

treatment for cancer patients. However, tumor heterogeneity and high costs of sequencing have obviated the clinical

implementation of these molecular markers. In addition, current biomarkers are derived from bulk profiles, which

contain both tumor cells and cells from the tumor microenvironment. On the one hand, this results in a confounded

biomarker signal influenced by the cellular composition of the sampled tissue. On the other hand, a bulk-derived

biomarker does not consider the spatial organization of cells, which has shown important prognostic and predictive

potential. Resolving these shortcomings would require expensive spatial profiling, which is infeasible in clinical

settings.

Spatially resolved digital profiling, obtained with deep learning models from whole slide images, presents promising

potential for cost-efficient exploration of biomarkers at high resolution. Also, the predicted biomarkers from these

models are ideal candidates for downstream lightweight, interpretable and efficient clinical outcome prediction.

Here, we highlight important guidelines for developing such WSI proxy models, in terms of dataset size and label

resolution trade-off, as well as inherent limitations of predicting molecular features on WSIs. We show the added

value of molecular WSI proxy models for clinical outcome prediction as opposed to training WSI models directly for

outcome, in terms of interpretability, dataset size and model efficiency.
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INTRODUCTION
In prostate cancer, the risk on metastasis after diagnosis or of
relapse after an initial treatment remains hard to predict based
on clinical features only. Molecular markers, derived by
sequencing primary tumor material are increasingly being
proposed to guide informed clinical decisions at the time of
diagnosis. To avoid missing rare aberrations and to cope with
tumor heterogeneity, multiple lesions in the same primary tumor
rather than only the dominant lesion should be profiled, but
this is cost prohibitive in a clinical setting [1].

In addition, applying sequence-based markers to a tissue results
in a bulk-derived signature that captures a confounded
contribution of tumor cells and the Tumor Microenvironment

(TME). The prognostic or predictive signal of the marker is,
therefore, largely affected by the cellular composition of the
tissue that was sampled for biomarker profiling. Furthermore,
such a bulk signature does not consider the spatial organization
of the tumor niche, which is expected to be highly prognostic or
predictive. Modern spatial transcriptomics techniques can offer
such information, but are excessively expensive for clinical
settings [2].

Digital pathology offers great potential as cost-efficient
alternative for spatially resolved molecular profiling. Digitized
histopathology slides (or Whole Slide Images, WSIs) of the
primary tumor are routinely available in clinical care. Studies
using deep learning showed that morphological features
computationally extracted from these WSIs associate with
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molecular properties. Consequently, WSIs, in conjunction with
WSI-based deep learning models, can predict a tumor’s
molecular status in a spatially resolved way without the need for
sequencing. These molecular proxies, rather than the true
molecular labels, can subsequently be used to predict a disease
status.

Here we want to put forward the advantages of WSI-based
digital profiling to identify and screen for prognostic or
predictive markers and contrast their properties with WSI
models that are directly trained to predict clinical endpoints [3].

LITERATURE REVIEW

Impact of model architecture and label resolution
on the data requirements of WSI-based models

The development of deep learning models capable of accurately
predicting a particular label from WSIs requires either a huge
training set of slide/patient-level labeled WSIs (ten) thousands
of WSIs) or a smaller training set of labeled WSIs with a clear
annotation of the regions from which the label was derived
(hundreds of WSIs). These requirements for dataset size and
annotation resolution stem from inherent properties of deep
learning model architectures for WSIs [4].

Prior to providing a WSI to a deep learning model, the image
needs to be subdivided in small patches (tiles) for efficient and
effective feature extraction. Tiles are usually taken at 256 × 256
or 512 × 512 pixels at 0.5 µm/pixel, resulting in thousands of
tiles per WSI. Depending on the available annotation precision
and dataset size, either a tile level or slide level model
architecture can be used to predict the molecular label (Figure
1) [5].

Figure 1: Whole slide image clinical outcome prediction workflow. 

Note: Panel A: For a particular whole slide image, labels might 
be available at some spatial resolution (2a) (e.g., lesion on the 
image selected for molecular profiling). In some cases (2b), no 
information is available on which region in the image 
corresponds to the label of interest (e.g., patient lymph node 
status). Panel B: To develop a WSI prediction model, first N 
tiles are extracted from the annotated region(s). Then, a 
feature extraction model (e.g., ResNet, Vision Transforme) is 
used to extract features for each tile. In the next step, either a 
tile-level (2a) or slide-level (2b) model is trained to make a 
prediction for the label of interest on patient level. The tile-level 
model requires labels for each tile for training, while the slide-
level model is trained using one single slide-level label. Panel C: 
Visualizing tile-level predictions for the tile-level model provides 
a spatial heatmap indicating regions with high prediction values. 
For slide-level models, techniques exist to approximate/infer tile-
level predictions (e.g., visualizing tile importance). Panel D: To 
predict a given clinical outcome, two options exist. On the one 
hand, a dedicated WSI model can be trained directly to predict 
the desired outcome. Alternatively, the WSI model can be 
trained to predict molecular markers (e.g., mutations of interest, 
genetic signatures), which afterwards are propagated to a 
lightweight, interpretable regression model to predict the clinical 
outcome.

Tile-level models are trained to make a prediction for each 
individual tile of the WSI independently. For model training, 
they therefore require tile-level labels (specific label for each 
single tile used for training). Most often labels are available at 
the slide-level only e.g., when considering a patient-level clinical 
label or a molecular label derived from bulk sequencing a tumor 
region that was not annotated on the WSI. The requirement of 
tile level labels therefore necessitates assigning this slide-level 
label to all tiles in the slide, resulting in a large, labeled dataset 
of num_tiles × num_slides labeled datapoints that can be used 
for training (easily >10 k-100 k even for small num_slides ~100). 
Tile level models can, therefore, be trained on a small dataset of 
100s of tile-level labeled WSIs.

However, in case of high tumor heterogeneity, not all tiles in the 
slide carry the same morphological/molecular properties. 
Extrapolating a slide level label to each single tile then leads to 
mis-labeling of potentially thousands of tiles. So, despite the 
potentially large set of tiles that can be used for training, the 
noisy labeling prohibits model convergence. It was, indeed, 
shown that for a heterogenous tumor like prostate cancer, 
restricting the training to tiles for which the label is more certain 
significantly increases model performance. Similarly, tile level 
models that predict molecular labels can directly benefit from 
fine-grained tile level annotations that are becoming available 
through modern spatial molecular profiling techniques [6].

If fine-grained annotations are not available or feasible, slide-
level models can be used instead. Such models are trained to 
make a prediction for each WSI (not tile) and hence require 
slide-level labels only. These models can derive the relevant tiles 
for a prediction from the slide automatically, eliminating the 
need for precise tile-level annotations. However, since these 
models are trained at slide-level, the number of available 
training labels is much smaller in this case compared to tile-level 
models (for a dataset of num_slides WSIs, slide-level models 
receive num slides labels, compared to num_slides × num_tiles
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For example, mutational status has been shown predictable with 
tile-level models from datasets of size ~500 when considering 
only tiles from the WSI that originate from tumor regions. 
Performance can be further significantly boosted by further 
reducing the training to the specific region that was used for 
sequencing. Soon, development of these WSI-based molecular 
proxies will benefit from the increasing body of publicly 
available high resolution molecular labels provided by spatial 
omics technologies [12].

The molecular markers predicted by these WSI-based models 
can then be associated to clinical outcome by lightweight and 
interpretable machine learning models (e.g., logistic regression)
(Figure 1d). Such two-step approach for predicting clinical 
outcome mitigates the mentioned drawbacks of direct outcome 
models. By using a much simpler model than a WSI deep 
learning model to perform the eventual association of the 
molecular proxy with the disease phenotype, significantly less 
training data is required. This allows predicting disease outcome 
for smaller sized studies. In addition, the molecular WSI models 
can be re-used for various clinical endpoints, resulting in higher 
resource and data efficiency. Finally, they provide a higher 
interpretability by design, since the prediction for a certain 
clinical endpoint can be traced back to predicted molecular 
markers.

DISCUSSION

WSI-based models trained on mutational signatures
capture relevant clinical signals, but underperform
as molecular proxies

Indirectly predicting outcome through a molecular label thus 
depends on WSI-based models trained to predict molecular 
labels (genetic mutations, gene expression, methylation profiles) 
from WSIs of tumor samples. Such models predict the 
probability with which the molecular label is present in each 
patch of an analyzed WSI. Models have been developed to 
predict actionable genomic aberrations, with a focus on genes 
that are frequently aberrant in a pan cancer setting to guarantee 
sufficient labeled data for training, including somatically 
mutated genes such as BRAF, TP53 and amplifications in e.g., 
EGFR. Specifically, for prostate cancer WSI-based proxies for 
ERG fusions, SPOP and TP53 have been reported. Overall 
performance in correctly predicting the presence of those 
aberrations remains modest, also for the more frequently 
mutated genes [13].

In a case study on prostate cancer (where TP53 is a marker of 
aggressive disease), it was shown that despite modest 
performance to predict the TP53 mutation itself (AUC ± 0.7), 
this predicted mutational status was more significantly associated 
with lymph node status as a proxy of aggressive disease than the 
original mutational status determined by sequencing. In-depth 
analysis showed that the models capture a downstream 
histopathological phenotype reminiscent of aggressive disease 
that is characteristic for lesions containing TP53 mutations, but 
that can also be triggered by other molecular defects (e.g., TP53 
deletions or other, more rare alterations).
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labels for a tile-level model). Reaching robust and accurate 
model convergence with slide-level models, therefore requires a 
significantly larger dataset of (ten) thousands of labeled WSIs 
[7].

For both tile and slide-level models, techniques exist to visualize 
the predicted label at tile-level. In the tile level model this is 
achieved by superimposing the tile level predictions back onto 
the WSI. For slide level models, techniques exist to approximate 
or infer tile level predictions (e.g., through visualizing the tile 
importance.

In conclusion, to build robust and accurate WSI prediction 
models, tile level models can be used in combination with a 
relatively small set of WSIs, provided the labeling is available at 
sufficiently high resolution. Slide level models can be used to 
compensate for the lack of a higher label resolution, but come at 
the expense of requiring many more labeled WSIs [8].

Predicting clinical outcome with WSI-based models

The aforementioned observations have consequences for the 
development of deep learning models that directly predict 
clinical endpoints from WSIs. Since it is unknown up front 
which histopathological features of the heterogeneous tumor 
section (region in the WSI) contribute to a patient level clinical 
endpoint, generating accurate tile level labels is infeasible. Such 
studies must therefore resort to slide level modeling, requiring 
paired WSI clinical outcome data of (ten) thousands of patients 
and an independent resource heavy model training for each new 
clinical endpoint that is envisaged.

Direct outcome models are therefore only suited for clinical 
endpoints with routine follow up in standard of care e.g., cancer 
diagnosis and/or gleason grading, overall survival, metastasis 
free survival, biochemical recurrence, lymph node status or 
treatments used in standard of care [9].

They are not applicable for predicting outcome in relatively 
small sized clinical trials (as not enough training data will be 
available). Furthermore, direct clinical outcome models are 
limited in their interpretability. Although feature importance 
methods can be applied to indicate certain distinctive areas in 
the WSI which were most decisive for the prediction, these 
models do not offer straight forward insights into how their 
prediction corresponds with established biological knowledge 
relating cellular processes with disease aggressiveness [10].

Rather than directly predicting clinical outcome, WSI-based 
models can be trained to first proxy molecular labels. Digital 
profiling of WSIs with these models results in a proxy of the 
molecular label, which subsequently can be used to predict 
clinical outcome. Training such WSI-based models for digital 
molecular profiling requires paired WSI-molecular labels. As the 
required molecular labels are derived from sequence-based 
profiling, they have intrinsically a more fine-grained resolution 
than a patient level label, such as disease outcome. This allows 
using model architectures (e.g. tile level models) that require a 
significantly smaller number of labeled WSIs than required for 
WSI-based models that directly predict clinical outcome [11].
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potential, further improvements are necessary to enhance the 
accuracy and robustness of the results.

Here, we presented the advantages of using molecular 
WSI models as proxy for clinical outcome prediction as 
opposed to directly training models on WSIs for clinical 
outcome. While currently released molecular WSI proxy models 
show significant potential, further improvements are necessary 
to enhance the accuracy and robustness of the results [17].

Particularly, molecular WSI proxy models can benefit greatly 
from the growing availability of fine-grained labels obtained with 
modern spatial transcriptomics. Spatial transcriptomics data 
provides ground truth at tile level, which can directly be used to 
fine tune tile level models. Also, these labels can be used to 
indirectly guide the tile importance mechanism of slide-level 
models. We expect that such incorporation of spatial 
transcriptomics labels into existing pipelines will boost 
performance significantly [18].

Apart from increased label resolution, various improvements in 
model architecture can also aid in increasing robustness of 
results. Currently, the most widely used tile feature extractors in 
WSI models are ResNet variations pre-trained on ImageNet (14 
million hand-annotated images from over 20.000 categories ‘cat’, 
‘dog’...). However, image features derived from ImageNet are 
very different from those in WSIs, where morphological features 
at different scales occur. Because of the different nature of 
features, the use of (partly) fixed feature extractors from 
ImageNet might lead to missing relevant morphological features 
in WSIs. Recently, several pre-trained feature extractors have 
been proposed which have been pre-trained on several hundred 
thousand patches in a self-supervised learning setting [19,20]. We 
expect these specialized WSI feature extractors to play an 
important role in improving accuracy and robustness of the 
predictions. Further, improvements in training schemes and 
more efficient architectures are active research areas which have 
consistently improved performance in WSI prediction tasks.

CONCLUSION
In conclusion, we expect that through both novel model designs 
and increased label quality, the accuracy and robustness of 
existing models for digital spatial expression profiling from WSIs 
will improve significantly. This opens avenues for not only cost 
efficient analysis of tumor heterogeneity and exploration of gene 
expression dynamics at high resolution, but also for downstream 
lightweight, interpretable and efficient clinical outcome 
prediction.
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By observing the aggressive downstream pathogenic phenotype, 
irrespective of the exact mutation that triggered the phenotype, 
WSI-based models are seemingly in a better position of 
predicting disease outcome than when using the original 
mutational status as biomarker. Their low overall performance 
as mutational proxy (AUC of in case of TP53) does therefore 
not interfere with their potential as digital prognostic markers, 
at least not in prostate cancer. However, this capturing of a 
downstream phenotype inherently reduces their performance of 
using histopathological features for proxying the mutational 
status itself [14].

WSI-based models trained on expression signatures
represent reliable molecular proxies

Given these observations made for WSI-based proxies of TP53 
mutation in prostate cancer, we argue that when trained on 
molecular labels that better reflect downstream pathways, such 
as expression labels, WSI-based models have potentially the 
same prognostic or predictive value, while at the same time 
being good molecular proxies. Several endeavors have already 
been made with models that proxy expression signatures, either 
by using a model architecture that learn from all genes together 
or models that are trained to predict the expression of each gene 
or a subset of genes only. The genes for which good WSI-based 
proxies of gene expression can be obtained differ per cancer type 
and in general mark cell types with visible features on the WSI, 
such as endothelial cells and immune cells or genes involved 
cancer hallmarks.

Good WSI-based molecular proxies allow coping with tumor 
heterogeneity and with the limited statistical power that so far 
obviated the clinical implementation of many previously 
described molecular markers. Further, it opens avenues for the 
cost efficient screening and validation of previously described 
molecular markers in large patient cohorts or for the validation 
and/or detection of novel biomarkers in clinical trials for which 
no sequencing data is available.

Furthermore, they enable for the first time to investigate the 
prognostic and predictive value contained in the spatial 
colocation of molecular markers and their associated cell types. 
A recent study shows how mapping the tile level predicted gene 
expression made by the model on the original WSI provides a 
proxy of spatially resolved transcript profiling that approximates 
well the expression patterns observed by true spatial transcript 
profiling. In addition, the expressions of cell type marker genes 
are predicted to be spatially collocated on the WSI, indicating 
that the deep learning model can extract the co-expression 
relation between these genes by their association to similar 
features on the WSI [15,16].

Future improvements

Here, we presented the advantages of using molecular WSI 
models as proxy for clinical outcome prediction as opposed to 
directly training models on WSIs for clinical outcome. While 
currently released molecular WSI proxy models  show significant
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