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ABSTRACT

Several molecular biomarkers have been proposed to improve prediction of risk on metastasis or on relapse after
treatment for cancer patients. However, tumor heterogeneity and high costs of sequencing have obviated the clinical
implementation of these molecular markers. In addition, current biomarkers are derived from bulk profiles, which
contain both tumor cells and cells from the tumor microenvironment. On the one hand, this results in a confounded
biomarker signal influenced by the cellular composition of the sampled tissue. On the other hand, a bulk-derived
biomarker does not consider the spatial organization of cells, which has shown important prognostic and predictive
potential. Resolving these shortcomings would require expensive spatial profiling, which is infeasible in clinical
settings.

Spatially resolved digital profiling, obtained with deep learning models from whole slide images, presents promising
potential for costefficient exploration of biomarkers at high resolution. Also, the predicted biomarkers from these
models are ideal candidates for downstream lightweight, interpretable and efficient clinical outcome prediction.
Here, we highlight important guidelines for developing such WSI proxy models, in terms of dataset size and label
resolution trade-off, as well as inherent limitations of predicting molecular features on WSIs. We show the added
value of molecular WSI proxy models for clinical outcome prediction as opposed to training WSI models directly for
outcome, in terms of interpretability, dataset size and model efficiency.

Keywords: Digital pathology; Deep learning; Digital molecular profiling; Prostate cancer

INTRODUCTION

In prostate cancer, the risk on metastasis after diagnosis or of
relapse after an initial treatment remains hard to predict based
on clinical features only. Molecular markers, derived by
sequencing primary tumor material are increasingly being
proposed to guide informed clinical decisions at the time of
diagnosis. To avoid missing rare aberrations and to cope with
tumor heterogeneity, multiple lesions in the same primary tumor
rather than only the dominant lesion should be profiled, but
this is cost prohibitive in a clinical setting [1].

In addition, applying sequence-based markers to a tissue results
in a bulkderived signature that captures a confounded
contribution of tumor cells and the Tumor Microenvironment

(TME). The prognostic or predictive signal of the marker is,
therefore, largely affected by the cellular composition of the
tissue that was sampled for biomarker profiling. Furthermore,
such a bulk signature does not consider the spatial organization
of the tumor niche, which is expected to be highly prognostic or
predictive. Modern spatial transcriptomics techniques can offer
such information, but are excessively expensive for clinical
settings [2].

Digital pathology offers potential as costefficient
alternative for spatially resolved molecular profiling. Digitized
histopathology slides (or Whole Slide Images, WSIs) of the
primary tumor are routinely available in clinical care. Studies
learning showed that morphological features

computationally extracted from these WSIs associate with
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molecular properties. Consequently, WSIs, in conjunction with
WSl-based deep learning models, can predict a tumor’s
molecular status in a spatially resolved way without the need for
sequencing. These molecular proxies, rather than the true
molecular labels, can subsequently be used to predict a disease
status.

Here we want to put forward the advantages of WSI-based
digital profiling to identify and screen for prognostic or
predictive markers and contrast their properties with WSI
models that are directly trained to predict clinical endpoints [3].

LITERATURE REVIEW

Impact of model architecture and label resolution
on the data requirements of WSI-based models

The development of deep learning models capable of accurately
predicting a particular label from WSIs requires either a huge
training set of slide/patientlevel labeled WSIs (ten) thousands
of WSIs) or a smaller training set of labeled WSIs with a clear
annotation of the regions from which the label was derived
(hundreds of WSIs). These requirements for dataset size and
annotation resolution stem from inherent properties of deep
learning model architectures for WSIs [4].

Prior to providing a WSI to a deep learning model, the image
needs to be subdivided in small patches (tiles) for efficient and
effective feature extraction. Tiles are usually taken at 256 x 256
or 512 x 512 pixels at 0.5 pm/pixel, resulting in thousands of
tiles per WSI. Depending on the available annotation precision
and dataset size, either a tile level or slide level model

architecture  can be used to predict the molecular label (Figure

D [5].
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Figure 1: Whole slide image clinical outcome prediction workflow.
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Note: Panel A: For a particular whole slide image, labels might
be available at some spatial resolution (2a) (e.g., lesion on the
image selected for molecular profiling). In some cases (2b), no
information is available on which region in the image
corresponds to the label of interest (e.g., patient lymph node
status). Panel B: To develop a WSI prediction model, first N
tiles are extracted from the annotated region(s). Then, a
feature extraction model (e.g., ResNet, Vision Transforme) is
used to extract features for each tile. In the next step, either a
tile-level (2a) or slidedevel (2b) model is trained to make a
prediction for the label of interest on patient level. The tile-level
model requires labels for each tile for training, while the slide-
level model is trained using one single slide-level label. Panel C:
Visualizing tile-level predictions for the tile-level model provides
a spatial heatmap indicating regions with high prediction values.
For slide-level models, techniques exist to approximate/infer tile-
level predictions (e.g., visualizing tile importance). Panel D: To
predict a given clinical outcome, two options exist. On the one
hand, a dedicated WSI model can be trained directly to predict
the desired outcome. Alternatively, the WSI model can be
trained to predict molecular markers (e.g., mutations of interest,
genetic signatures), which afterwards are propagated to a
lightweight, interpretable regression model to predict the clinical
outcome.

Tile-level models are trained to make a prediction for each
individual tile of the WSI independently. For model training,
they therefore require tile-level labels (specific label for each
single tile used for training). Most often labels are available at
the slide-level only e.g., when considering a patientlevel clinical
label or a molecular label derived from bulk sequencing a tumor
region that was not annotated on the WSI. The requirement of
tile level labels therefore necessitates assigning this slidelevel
label to all tiles in the slide, resulting in a large, labeled dataset
of num_tiles x num_slides labeled datapoints that can be used
for training (easily >10 k-100 k even for small num_slides ~ 100).
Tile level models can, therefore, be trained on a small dataset of

100s of tile-level labeled WSIs.

However, in case of high tumor heterogeneity, not all tiles in the
slide carry the same morphological/molecular properties.
Extrapolating a slide level label to each single tile then leads to
mis-labeling of potentially thousands of tiles. So, despite the
potentially large set of tiles that can be used for training, the
noisy labeling prohibits model convergence. It was, indeed,
shown that for a heterogenous tumor like prostate cancer,
restricting the training to tiles for which the label is more certain
significantly increases model performance. Similarly, tile level
models that predict molecular labels can directly benefit from
fine-grained tile level annotations that are becoming available
through modern spatial molecular profiling techniques [6].

If fine-grained annotations are not available or feasible, slide-
level models can be used instead. Such models are trained to
make a prediction for each WSI (not tile) and hence require
slide-level labels only. These models can derive the relevant tiles
for a prediction from the slide automatically, eliminating the
need for precise tilelevel annotations. However, since these
models are trained at slidelevel, the number of available
training labels is much smaller in this case compared to tile-level
models (for a dataset of num_slides WSIs, slide-level models
receive num slides labels, compared to num_slides x num_tiles
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labels for a tiledevel model). Reaching robust and accurate
model convergence with slide-level models, therefore requires a
significantly larger dataset of (ten) thousands of labeled WSIs
(7].

For both tile and slide-level models, techniques exist to visualize
the predicted label at tile-level. In the tile level model this is
achieved by superimposing the tile level predictions back onto
the WSI. For slide level models, techniques exist to approximate
or infer tile level predictions (e.g., through visualizing the tile
importance.

In conclusion, to build robust and accurate WSI prediction
models, tile level models can be used in combination with a
relatively small set of WSIs, provided the labeling is available at
sufficiently high resolution. Slide level models can be used to
compensate for the lack of a higher label resolution, but come at
the expense of requiring many more labeled WSIs [8].

Predicting clinical outcome with WSI-based models

The aforementioned observations have consequences for the
development of deep learning models that directly predict
clinical endpoints from WSIs. Since it is unknown up front
which histopathological features of the heterogeneous tumor
section (region in the WSI) contribute to a patient level clinical
endpoint, generating accurate tile level labels is infeasible. Such
studies must therefore resort to slide level modeling, requiring
paired WSI clinical outcome data of (ten) thousands of patients
and an independent resource heavy model training for each new
clinical endpoint that is envisaged.

Direct outcome models are therefore only suited for clinical
endpoints with routine follow up in standard of care e.g., cancer
diagnosis and/or gleason grading, overall survival, metastasis
free survival, biochemical recurrence, lymph node status or
treatments used in standard of care [9].

They are not applicable for predicting outcome in relatively
small sized clinical trials (as not enough training data will be
available). Furthermore, direct clinical outcome models are
limited in their interpretability. Although feature importance
methods can be applied to indicate certain distinctive areas in
the WSI which were most decisive for the prediction, these
models do not offer straight forward insights into how their
prediction corresponds with established biological knowledge
relating cellular processes with disease aggressiveness [10].

Rather than directly predicting clinical outcome, WSI-based
models can be trained to first proxy molecular labels. Digital
profiling of WSIs with these models results in a proxy of the
molecular label, which subsequently can be used to predict
clinical outcome. Training such WSI-based models for digital
molecular profiling requires paired WSI-molecular labels. As the
required molecular labels are derived from sequence-based
profiling, they have intrinsically a more fine-grained resolution
than a patient level label, such as disease outcome. This allows
using model architectures (e.g. tile level models) that require a
significantly smaller number of labeled WSIs than required for
WSI-based models that directly predict clinical outcome [11].
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For example, mutational status has been shown predictable with
tile-level models from datasets of size ~ 500 when considering
only tiles from the WSI that originate from tumor regions.
Performance can be further significantly boosted by further
reducing the training to the specific region that was used for
sequencing. Soon, development of these WSI-based molecular
proxies will benefit from the increasing body of publicly
available high resolution molecular labels provided by spatial
omics technologies [12].

The molecular markers predicted by these WSI-based models
can then be associated to clinical outcome by lightweight and
interpretable machine learning models (e.g., logistic regression)
(Figure 1d). Such two-step approach for predicting clinical
outcome mitigates the mentioned drawbacks of direct outcome
models. By using a much simpler model than a WSI deep
learning model to perform the eventual association of the
molecular proxy with the disease phenotype, significantly less
training data is required. This allows predicting disease outcome
for smaller sized studies. In addition, the molecular WSI models
can be re-used for various clinical endpoints, resulting in higher
resource and data efficiency. Finally, they provide a higher
interpretability by design, since the prediction for a certain
clinical endpoint can be traced back to predicted molecular
markers.

DISCUSSION

WSI-based models trained on mutational signatures
capture relevant clinical signals, but underperform
as molecular proxies

Indirectly predicting outcome through a molecular label thus
depends on WSIl-based models trained to predict molecular
labels (genetic mutations, gene expression, methylation profiles)
from WSIs of tumor samples. Such models predict the
probability with which the molecular label is present in each
patch of an analyzed WSI. Models have been developed to
predict actionable genomic aberrations, with a focus on genes
that are frequently aberrant in a pan cancer setting to guarantee
sufficient labeled data for training, including somatically
mutated genes such as BRAF, TP53 and amplifications in e.g.,
EGFR. Specifically, for prostate cancer WSI-based proxies for
ERG fusions, SPOP and TP53 have been reported. Overall
performance in correctly predicting the presence of those
aberrations remains modest, also for the more frequently
mutated genes [13].

In a case study on prostate cancer (where TP53 is a marker of
aggressive disease), it was shown that despite modest
performance to predict the TP53 mutation itself (AUC + 0.7),
this predicted mutational status was more significantly associated
with lymph node status as a proxy of aggressive disease than the
original mutational status determined by sequencing. In-depth
analysis showed that the models capture a downstream
histopathological phenotype reminiscent of aggressive disease
that is characteristic for lesions containing TP53 mutations, but
that can also be triggered by other molecular defects (e.g., TP53
deletions or other, more rare alterations).
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By observing the aggressive downstream pathogenic phenotype,
irrespective of the exact mutation that triggered the phenotype,
WSlbased models are seemingly in a better position of
predicting disease outcome than when using the original
mutational status as biomarker. Their low overall performance
as mutational proxy (AUC of in case of TP53) does therefore
not interfere with their potential as digital prognostic markers,
at least not in prostate cancer. However, this capturing of a
downstream phenotype inherently reduces their performance of
using histopathological features for proxying the mutational
status itself [14].

WSI-based models trained on expression signatures
represent reliable molecular proxies

Given these observations made for WSI-based proxies of TP53
mutation in prostate cancer, we argue that when trained on
molecular labels that better reflect downstream pathways, such
as expression labels, WSI-based models have potentially the
same prognostic or predictive value, while at the same time
being good molecular proxies. Several endeavors have already
been made with models that proxy expression signatures, either
by using a model architecture that learn from all genes together
or models that are trained to predict the expression of each gene
or a subset of genes only. The genes for which good WSI-based
proxies of gene expression can be obtained differ per cancer type
and in general mark cell types with visible features on the WSI,
such as endothelial cells and immune cells or genes involved
cancer hallmarks.

Good WSI-based molecular proxies allow coping with tumor
heterogeneity and with the limited statistical power that so far
obviated the clinical implementation of many previously
described molecular markers. Further, it opens avenues for the
cost efficient screening and validation of previously described
molecular markers in large patient cohorts or for the validation
and/or detection of novel biomarkers in clinical trials for which
no sequencing data is available.

Furthermore, they enable for the first time to investigate the
prognostic and predictive value contained in the spatial
colocation of molecular markers and their associated cell types.
A recent study shows how mapping the tile level predicted gene
expression made by the model on the original WSI provides a
proxy of spatially resolved transcript profiling that approximates
well the expression patterns observed by true spatial transcript
profiling. In addition, the expressions of cell type marker genes
are predicted to be spatially collocated on the WSI, indicating
that the deep learning model can extract the co-expression
relation between these genes by their association to similar

features on the WSI [15,16].

Future improvements

Here, we presented the advantages of using molecular WSI
models as proxy for clinical outcome prediction as opposed to
directly training models on WSIs for clinical outcome. While
currently released molecular WSI proxy models show significant
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potential, further improvements are necessary to enhance the
accuracy and robustness of the results.

Here, we presented the advantages of using molecular
WSI models as proxy for clinical outcome prediction as
opposed to directly training models on WSIs for clinical
outcome. While currently released molecular WSI proxy models
show significant potential, further improvements are necessary

to enhance the accuracy and robustness of the results [17].

Particularly, molecular WSI proxy models can benefit greatly
from the growing availability of fine-grained labels obtained with
modern spatial transcriptomics. Spatial transcriptomics data
provides ground truth at tile level, which can directly be used to
fine tune tile level models. Also, these labels can be used to
indirectly guide the tile importance mechanism of slidelevel
models. We spatial
transcriptomics will  boost

expect that such incorporation of

labels into existing pipelines

performance significantly [18].

Apart from increased label resolution, various improvements in
model architecture can also aid in increasing robustness of
results. Currently, the most widely used tile feature extractors in
WSI models are ResNet variations pre-trained on ImageNet (14
million hand-annotated images from over 20.000 categories ‘cat’,
‘dog’...). However, image features derived from ImageNet are
very different from those in WSIs, where morphological features
at different scales occur. Because of the different nature of
features, the use of (partly) fixed feature extractors from
ImageNet might lead to missing relevant morphological features
in WSIs. Recently, several pre-trained feature extractors have
been proposed which have been pre-trained on several hundred
thousand patches in a self-supervised learning setting [19,20]. We
expect these specialized WSI feature extractors to play an
important role in improving accuracy and robustness of the
predictions. Further, improvements in training schemes and
more efficient architectures are active research areas which have
consistently improved performance in WSI prediction tasks.

CONCLUSION

In conclusion, we expect that through both novel model designs
and increased label quality, the accuracy and robustness of
existing models for digital spatial expression profiling from WSIs
will improve significantly. This opens avenues for not only cost
efficient analysis of tumor heterogeneity and exploration of gene
expression dynamics at high resolution, but also for downstream
lightweight,
prediction.

interpretable and efficient clinical outcome
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