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ABSTRACT
Introduction: Cervical cancer is the fourth most prevalent cancer among women worldwide and is a significant 
contributor to cancer- related deaths, with an estimated 300,000 women losing their lives to the disease 
annually. Most of these fatalities occur in Low and Middle Income Countries (LMICs), such as Uganda, where 
access to screening and treatment options is limited. Early detection of cervical cancer is crucial to improve the 
chances of survival for patients. Currently, cervical cancer screening is typically performed through pap smears, 
which involve manual examination of cervical samples for abnormalities by medical experts. This process is 
costly, time-consuming and prone to errors, leading to inaccurate diagnoses. Therefore, it is essential to find 
more effective and efficient alternative methods for cervical cancer screening to improve access in LMICs and 
alleviate the burden of cervical cancer.

Objective: The purpose of this study is to develop an automated pre-cervical cancer screening algorithm to 
detect precancerous cervical lesions.

Materials and methods: We developed a cancer screening algorithm using a 21 layer deep-learning convolution 
neural network trained on a dataset of 2300 images collected from local sources and some obtained from 
Kaggle. 

Results: The best-performing classifier had an Area Under Curve (AUC) of the accuracy of 91.37%, a   precision 
of 88.80%, a recall of 94.69%, an F1 score of 91.65% and an AUC of 96.0%.

Conclusion: The development and implementation of automated pre-cervical cancer screening algorithms have 
the potential to revolutionize cervical cancer detection and contribute significantly to reducing the burden of 
the disease, particularly in resource-limited settings.
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the elimination of cervical cancer as a public health problem, 
which the World Health Assembly (WHA) adopted in August 
2020 [2]. According to this strategy, all countries must maintain 
an incidence rate of below four per 100,000 women for cervical 
cancer to be eliminated. To achieve this, the WHO established 
a 90-70-90 target to be met by 2030. This target involves fully 
vaccinating 90% of girls with the Human Papilloma Virus (HPV) 
vaccine by age 15, screening 70% of women aged 35-45 years 
using a high-performance test and managing 90% of women with 
pre-cancer and 90% of women with invasive cancer.

The current cervical cancer screening practice in Uganda relies 

INTRODUCTION

Cervical cancer is a preventable and curable disease through 
screening and vaccination. Despite this, it remains a significant 
cause of death among women globally. It is the fourth most 
common form of cancer among women worldwide and results 
in approximately 300,000 deaths annually [1]. Low and Middle 
Income Countries (LMICs), such as Uganda, account for 
almost 90% of these deaths due to limited access to screening 
and treatment. In response, the World Health Organization 
(WHO) called for global action to eliminate cervical cancer in 
May 2018. The WHO developed an ambitious strategy to guide 
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on opportunistic screening using Visual Inspection with Acetic 
acid (VIA), specifically targeted towards women aged 25-49 at 
a 3-year interval for Human Immunodeficiency Virus (HIV) 
negative women and every year for HIV positive women [3]. 
However, the lack of resources and infrastructure deficiencies 
have led to low screening participation rates [4]. Another cervical 
cancer screening method is the Papanicolaou (Pap smear), but 
this approach is time consuming, labor intensive and therefore 
less effective in low resource constrained environments [5,6].

Uganda has one of the highest rates of HPV in the world, 
estimated at 33.6%. Consequently, Uganda also has one of the 
highest incidence rates of cervical cancer, with about 54.8 cases 
per 100,000 people annually and a mortality rate of about 41.4 
per 100,000 [7,8]. If Uganda is to achieve the WHO target by 
2030, more effective early identification of cervical cancer and 
treatment programs will be required. But these efforts will require 
adequate financial resources, the development of better screening 
infrastructure and increasing access to treatment. It is against this 
background that we propose to develop an Artificial Intelligence 
(AI) algorithm for automatic cervical cancer image-based diagnosis. 
Recent advancements in AI, particularly computer vision deep 
learning techniques, can provide solutions to overcome unsolved 
colposcopic bottlenecks. AI-based algorithms can learn features 
of cervical lesions from annotated colposcopy images, which 
can then be integrated into an automated screening system. We 
believe that automating the colposcopy examination by creating 
a cervical cancer screening model will reduce potential false 
negatives and positives, improving the accuracy of colposcopy 
diagnosis and cervical biopsy.

The use of deep learning Convolutional Neural Networks (CNN) 
in automating cervical cancer screening has gained significant 
attention in recent years due to their ability to effectively analyze 
and interpret digital images, leading to improved accuracy and 
efficiency in screening cervical cancer. A number of researchers 
have developed classification techniques for automated cervical 
cancer diagnosis using CNNs. In this section, we will discuss some 
of the most relevant and recent studies in this area, highlighting 
their methodologies, strengths and limitations.

The study conducted by Sompawong, et al. [9] utilized the Mask 
Regional Convolutional Neural Network (Mask R-CNN) to 
automate cervical cancer screening using images obtained from 
pap smear slides. This study is notable as it was the first to use 
the Mask R-CNN algorithm to analyze and detect the nucleus of 
cervical cells, thereby classifying normal and abnormal nuclear 
features. The proposed algorithm achieved a classification 
accuracy of 89.8%, with a sensitivity of 72.5% and a specificity 
of 94.3%.

In their study, Kavitha, et al. [10] utilized ant colony optimization-
enabled CNN deep learning technique to extract features and 
subsequently employed three different algorithms, namely CNN, 
Multi-Layer Perception (MLP) and artificial neural network, to 
classify cancerous and non-cancerous cervical images. The CNN 
classifier showed the highest accuracy among the three algorithms 
with 95.2%. However, it should be noted that the study used 
a relatively small dataset, the Herlev dataset and as such, the 
best-performing model may not be suitable for deployment 

beyond the academic setting due to potential limitations in 
generalization caused by the dataset’s size [11]. In another study, 
Priyanka, et al. [12] utilized the Herlev dataset to design a model 
using pre-trained ResNet50 network to classify between normal 
and abnormal cervical cancerous cells. The proposed approach 
achieved a classification accuracy of 74.04%.

Chandran, et al. [13] put forward two deep learning CNN 
architectures, namely the VGG19 model and the Colposcopy 
Ensemble Network (CYENET), to detect cervical cancer using 
colposcopy images. The study results indicated that the CYENET 
model outperformed the VGG19 model, achieving higher 
sensitivity and specificity of 92.4% and 96.2%, respectively. 
The CYENET model also achieved a classification accuracy 
that was 19% higher than that of the VGG19 model. Another 
study conducted by Guo, et al. [14] presented a deep learning 
algorithm designed to detect in-focus cervical images captured 
with smartphones. The study compared the performance of three 
deep learning networks, including retina net (an object detection 
model), fine-tuned deep learning models (Visual Geometry 
Group (VGG) and Inception) and transfer learning models 
(VGG and inception feature extractor+Support Vector Machine 
(SVM)). These models were evaluated based on their ability to 
distinguish between sharp and not sharp images. The results 
showed that the retina net model outperformed its counterparts, 
although it required more training time to achieve a higher 
classification performance compared to the second-best model, 
which was fine- tuned VGG.

Chauhan, et al. [15] conducted a study to assess and analyze the 
impact of the number of channels in the CNN classification model 
on the classification of multi-class Liquid-Based Cytology (LBC), 
Whole Slide Images (WSIs). They proposed a CNN model with 
two convolutional layers and two pooling layers with different 
numbers of channels, including (4,8), (8,16) and (32,64). The 
results revealed that the model with the most channels achieved 
the best performance across all evaluation metrics, with an 
accuracy of 96.89%, precision of 93.38%, sensitivity of 93.75% 
and F-score of 94.15%. Kanavati, et al. [16] conducted a study 
in which they developed a deep-learning model to classify WSIs 
of LBC specimens into neoplastic and non-neoplastic categories. 
Similarly, Cheng, et al. [17] utilized WSIs to train and validate 
a recurrent neural network algorithm designed to evaluate the 
degree of lesion present in WSIs.

Alyafeai, et al. [18] proposed a deep learning pipeline that 
utilized two pre-trained models to automate cervix detection 
and cervical tumor classification. According to the authors, their 
proposed classifier outperformed all existing algorithms in terms 
of classification accuracy and speed. Specifically, the algorithm 
achieved an Area Under Curve (AUC) score of 0.82 while 
classifying each cervix region 20 times faster. Due to its accuracy, 
speed and lightweight architecture, the proposed pipeline is 
highly suitable for deployment on mobile phones, which is not 
the case for other reviewed models.

Although several studies have proposed algorithms to detect 
cervical precancerous cases using various imaging techniques, 
these algorithms are not readily available to other researchers 
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for deployment. Therefore, this study aims to develop a new 
algorithm that can be integrated into Uganda’s Electronic 
Medical Records (EMR) to facilitate easy and efficient screening 
of cervical precancerous cases among women living with HIV 
by health workers. By developing a new screening algorithm that is 
readily available, other researchers and medical professionals will have 
access to a valuable tool that can improve the accuracy and efficiency of 
cervical cancer screening programs in Uganda and beyond.

MATERIALS AND METHODS

We employed the deep-learning CNN technique to automate 

cervical cancer screening. Deep learning is a type of machine 
learning that involves using CNNs to analyze large amounts of 
data and make predictions or decisions [19]. In detecting cervical 
cancer, a deep learning algorithm was trained on large datasets 
of cervical images to identify patterns and features indicative 
of cancer. The implementation framework of this study was 
classified into different stages such as collection and annotation of 
colposcopy images, data preprocessing, model selection, training, 
validation, testing and deployment of the algorithms. Figure 1 
shows the architectural flow diagram of the implementation 
methodology (Figure 1).

Figure 1: A framework for implementing the deep learning cervical cancer screening algorithms. AUC: Area Under Curve.Note:
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Dataset and preprocessing

This study utilized cervical cancer screening public dataset 
provided by Intel and MobileODT that is hosted on the Kaggle 
portal [20]. The dataset comprised 3715 images in the training 
dataset and 452 images in the testing data sets. To create a 
validation dataset, we split the training dataset by 20%, resulting 
in 2973 images in the training set and 742 images in the validation 
set. The images’ resolution ranged from 1024 × 1024 to 3264 × 
2448 pixels. However, due to hardware constraints, all images 
were resized to a uniform size of 256 × 256 and also normalized 
using Z-score normalization before feeding them into the CNN 
model.

Convolutional neural networks
Convolutional Neural Networks (CNNs) have become a 
prominent tool in medical imaging and have shown promising 
results in various applications, including, to mention but a few, 
cancer detection and screening, heart anomalies and Tuberculosis 
(TB) diagnosis [21-24]. In this research, we employed a deep-
learning CNN to classify cervical cancerous and non-cancerous 
images, leveraging the power of this technology to improve the 
accuracy and speed of diagnosis.
A CNN is a deep neural algorithm inspired by the working 
operation of an animal visual cortex and it is primarily used for 
image and video processing that applies a set of learnable filters 
to the input to extract and detect specific features, which are then 
used to perform classification or regression tasks [25]. It consists 
of an input and output layer with multiple hidden layers stacked 
in the middle. These hidden layers are either convolutional, 
pooling or fully connected layers.
Convolutional layer: The convolutional layer is a fundamental 
building block of CNNs used for extracting various features from 
an input image using a convolutional filter, a small weight matrix 
applied to each part of the image to generate a corresponding 
feature map [26]. Each neuron in the layer processes data for its 
receptive field, allowing it to capture local features like edges, 
corners and textures. The convolutional layer reduces the number 
of free parameters in the network and enhances its generalization 
ability by sharing weights across neurons, preventing overfitting to 
training data. The equation shows the mathematical expression 
for the convolution operation.

, 1, 1 ,
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= =

= ∑∑
Where I is the input image, K is the convolutional filter, C is the 
output feature map and M and N are the dimensions of the filter. 
The value of Ci,j represents the result of applying the filter to 
the local receptive field of the input image centered at pixel (i,j). 
The dot product of the filter values Km,n and the corresponding 
input image values Ii+m-1,j+n-1 is computed for each element in the 
receptive field and the results are summed to produce the output 
value Ci,j. This operation is performed for all pixels in the input 
image, generating a complete output feature map that captures 
the local features of the image.
Pooling layer: The purpose of a pooling layer is to down sample 
the output of the previous convolutional layer, reducing its 
spatial dimensions while retaining important information. This 
process helps to decrease the computational complexity of the 

network and prevent overfitting [27]. The most common types of 
pooling layers are max pooling, which selects the maximum value 
in each pool and average pooling, which takes the average value. 
The pooling layer is typically followed by another convolutional 
layer, which continues to extract higher-level features from the 
down sampled output.
Fully connected layer: A fully connected layer, also known as a 
dense layer, is a type of neural network layer where each neuron in 
the layer is connected to every neuron in the previous layer. Each 
connection has a weight, which is learned during training and 
is used to compute a weighted sum of the inputs. This weighted 
sum is then passed through the neuron’s activation function to 
produce an output. The purpose of the fully connected layer is 
to learn complex relationships between the inputs and produce 
a final output, which can be used for either classification or 
regression [28].

Experimental setup

Development environment: The algorithm was developed 
in Python, utilizing the TensorFlow 2.11.0 and Keras 2.12.0 
frameworks. We trained it on an MSI GL75 Leopard 10SFR 
laptop equipped with an 8GB NVIDIA RTX 2070 GDDR6 
Graphical Processing Unit (GPU), using the Compute Unified 
Device Architecture (CUDA) 12.1 and CUDA Deep Neural 
Network (cuDNN) Software Development Kit (SDK) 8.7.0 
platforms.

comprising twenty-one (21) layers. This architecture includes 
seven convolutional layers with varying filter sizes and the same 
activation function (relu), six max-pooling layers for reducing 
the spatial dimensions of the feature maps, and a single fully 
connected layer with a dropout rate of 0.5. Table 1 displays the 
CNN architecture. The binary classification output layer employs 
a sigmoid activation function. We benchmarked this model on 
the VGG16 architecture and fine-tuned the parameters through 
numerous experimental tests until satisfactory results were 
obtained [29]. To prevent overfitting, we incorporated batch 
normalization and dropout in some of the hidden layers and 
we also utilized an L2 regularization of 0.0005 in all the hidden 
layers. The model had a total number of 1,889,152 parameters, 
1,886,913 trainable parameters and 2,240 non-trainable 
parameters (Table 1).

Model implementation: The proposed CNN architecture was 
used to train the model on a pre-processed dataset resized to 
256 × 256 and padded. The training process was performed for 
multiple epochs and the outcomes for different epochs are present 
in Table 2. It took approximately 6 minutes and 34 seconds to 
complete one epoch of the training process. The overall run time 
for the entire training process depended on the number of epochs 
specified during training. During the training process, the Adam 
optimizer was used with backpropagation to minimize the loss 
function, which measures the difference between the predicted 
outputs and the actual labels of the training and validation data 
sets. A learning rate of 0.0001 and a momentum of 0.9 were used 
for the optimizer.

Evaluation metrics: The performance of the proposed cervical 
cancer screening algorithm was evaluated using standard 

Architecture: In our study, we propose a CNN architecture 
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classification metrics, including accuracy, precision, recall, 
F-score and area under the curve. These metrics are commonly 
used to assess the performance of binary classifiers like the one 
developed in this study.

•  Accuracy is the most commonly used metric for 
evaluating the performance of a binary classifier. It is defined 
as the ratio of correct predictions to the total number of 
predictions made by the model:

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +

•  Precision, also known as specificity or False 
Positive Rate (FPR), is a metric that measures the proportion 

of positive predictions made by the model that is actually 
correct:

 
TPPrecision

TP FP
=

+

• Recall, also known as sensitivity or true positive 
rate, is a metric that measures the proportion of actual 
positive samples that the model correctly classifies:

 TPRecall
TP FP

=
+

• The F-score, also known as the F1 score, is a metric 
that combines precision and recall into a single score:

 1

Precision Recall
2

Precision Recall
F

×
= ×

+

1 Convolution 1 3 × 3 3 × 3 32 valid - 256 × 256 × 3 85 × 85 × 32 896

2 Max pooling 1 2 × 2 - - - - 85 × 85 ×32 42 × 42 × 32 0

3 Batch norm 1 -  - -  - - 42 × 42 × 32 42 × 42 × 32 128

4 Convolution 2 3 × 3 1 × 1 64 same - 42 × 42 × 32 42 × 42× 64 18496

5 Max pooling 2 2 × 2 2 × 2 - - - 42 × 42 × 64 21 × 21× 64 0

6 Batch norm 2  - - - - - 21 × 21 × 64 21 × 21 × 64 256

7 Convolution 3 3 × 3 1 × 1 64 same - 21 × 21 × 64 21 × 21 × 64 36928

8 Max pooling 3 2 × 2 2 × 2  -  - - 21 × 21 × 64 10 × 10 × 64 0

9 Convolution 4 3 × 3 1 × 1 128 same - 10 × 10 × 64 10 × 10 × 128 73856

10 Max pooling 4 2 × 2 2 × 2  - - - 10 × 10 × 128 5 × 5 × 128 0

11 Batch norm 3 - -  - - - 5 × 5 × 128 5 × 5 × 128 512

12 Convolution 5 3 × 3 1 × 1 128 same - 5 × 5 × 128 2 × 2 × 128 147584

13 Max pooling 5 2 × 2 2 × 2 - - - 2 × 2 × 128 2 × 2 × 128 0

14 Batch norm 4    - - - 2 × 2 × 128 2 × 2 × 128 512

15 Convolution 6 3 × 3 1 × 1 256 same - 2 × 2 × 256 2 × 2 × 256 295168

16 Max pooling 6 2 × 2 2 × 2  -  - - 2 × 2 × 256 1 × 1 × 256 0

17 Batch norm 5 -  - -  - - 1 × 1 × 256 1 × 1 × 256 1024

18 Convolution 7 3 × 3 1 × 1 512 same - 1 × 1 × 256 1 × 1 × 512 1180160

19 Batch norm 6 - -  - - - 1 × 1 × 512 1 × 1 × 512 2048

20 Dense 1  - -  -  - 256 - - 131328

21
Dropout (0.5) 

output
 - -  -  - 1  - - 257

Table 1: Description of the convolutional neural network architecture.

Accuracy:

Precision:

Recall:

F-score: 

Layer no. Layer type

 

Filter size Stride

 

No. of filters

 

Padding

 

 

 

 

 

Fc units Input Output Parameters



6

Mirugwe A, et al. OPEN ACCESS Freely available online

Trans Med, Vol.13 Iss.4   No:1000309

In the context of cervical cancer screening, we define True 
Positive (TP) as the number of correctly classified images that 
show signs of pre-cancerous cells, while True Negative (TN) 
represents the number of correctly classified images that are free 
of pre-cancerous cells. False Positive (FP) represents the number 
of images that are incorrectly classified as pre-cancerous when 
they are actually negative and False Negative (FN) represents the 
number of images that are incorrectly classified as negative when 
they are actually pre-cancerous.

•  The Area Under the Curve (AUC), 
takes into account both the sensitivity (True Positive Rate 
(TPR)) and specificity (False Positive Rate (FPR)) of the 
model, making it particularly useful for evaluating complex 
models like CNNs that involve large amounts of data and 
feature extraction. A good model should have a high TPR 
and a low FPR, indicating that it can accurately identify 
positive samples while minimizing the number of false 
positives. Mathematically, AUC is calculated by plotting 
the TPR against the FPR over different threshold values 
and measuring the area under the resulting curve, which 
ranges from 0.5 to 1.0, with higher scores indicating better 
performance. It is mathematically expressed as below.

1
1

0

( ( )),AUC TPR FPR t dFPR−= ∫
Where; t is the threshold value used to classify the samples, which 
is used to calculate TPR and FPR at different points on the ROC 
curve and dFPR is the infinitesimal change in the false positive 
rate used to compute the integral over the range of FPR values 
from 0 to 1.

RESULTS

In this study, we propose a CNN architecture for the task of 
screening cervical cancer by accurately classifying between normal 
and precancerous cervix. Our approach is especially relevant in 
countries like Uganda, where there are very few well-trained 
personnel to perform screening and diagnosis of cervical cancer. 
The shortage of skilled personnel can make it challenging to 
achieve high accuracy in screening and diagnosis. Our proposed 
approach offers a potential solution to this problem by providing 
an efficient and accurate method for cervical cancer screening, 
even in resource-constrained settings.

The objective of this study was to explore whether deep learning 
CNN models could effectively conduct cervical cancer screening 
tests and, if so, to determine the most appropriate CNN 
architecture and parameters for this purpose. The results indicate 
that satisfactory outcomes were achieved using the architecture 
presented in Table 1 and the training parameters are outlined.

We used a threshold of 0.5 to convert network output probabilities 
to binary values and the performance of the model was evaluated 
using various metrics such as accuracy, precision, recall, F1 score 
and AUC. The results are presented in Table 2 and the confusion 
matrix is shown in Figure 2. The model trained with 25 epochs 
achieved the best performance with an accuracy of 91.37%, 
precision of 88.80%, recall of 94.69%, an F1 score of 91.65%, 
and AUC of 96.0% as shown in Figure 3. These results suggest 

that our proposed CNN architecture is effective in accurately 
classifying the images (Table 2).

Table 2: Performance metrics of the model for different epochs.

Epochs Accuracy Precision Recall F1-score
Area Under Curve 

(AUC)

20 82.74 80.91 85.90 83.33 88.10

25 91.37 88.80 94.69 91.65 96.00

50 87.00 85.00 90.00 88.00 92.00

90 89.50 87.50  92.00 89.54 94.10

DISCUSSION

Figure 2 displays the confusion matrix resulting from applying 
our top performing model to the testing dataset, which consisted 
of 452 images. The algorithm accurately identified 413 images, 
correctly classifying 199 as normal and 214 as containing 
cancerous lesions. However, we observed that the algorithm 
misclassified 39 images. Of particular concern are the 12 false 
negatives, as they represent a significant risk. Failing to detect 
cancer when present can lead to more severe consequences, as 
cancer may progress to more advanced stages (Figure 2).

Figure 2: The confusion matrix between true label and predicted 
matrix.

We generated a Receiver Operating Characteristic (ROC) curve 
to evaluate the performance of our model in distinguishing true 
positives from negatives, as illustrated in Figure 3. The ROC 
curve is critical as it measures the ability of the CNN model to 
classify both positive and negative samples correctly. We derived 
the curve by graphing the true positive rate against the false 
positive rate at different threshold values. Notably, the AUC of 
our model was 0.96, indicating an excellent ability to distinguish 
between true positives and negatives (Figure 3).

Area under the curve:
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Figure 3: Receiver Operating Characteristic (ROC) curve of the best 

CONCLUSION

In this study, we have introduced an approach for cervical 
cancer screening that utilizes a 21-layer deep learning CNN 
architecture. Our approach effectively distinguishes between 
normal and precancerous cervix, providing a potential solution 
to the issue of limited skilled personnel available for cervical 
cancer screening and diagnosis in Uganda. With an accuracy of 
91.37%, a precision of 88.80%, a recall of 94.69%, an F1 score 
of 91.65% and an AUC of 96.0%, the algorithm exhibits high 
sensitivity and specificity in identifying potential cervical cancer 
cases, concluded that CNN algorithm developed in this research 
could be adopted for clinical deployment.

The findings of this study highlight the potential of deep learning 
CNN algorithms in improving cervical cancer screening, and 
further research will focus on deploying the model into Uganda 
EMR for clinical applications and evaluation of the algorithm 
performance on locally collected data.
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